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This study focuses on mitigating patient congestion in healthcare departments by 

employing an M/G/1 queue. The system comprises of two crucial servers, HR (Human 

Resource) and nurse and investigates the flow of patients between them. The HR 

department's role in managing staffing and generating daily census reports significantly 

reduces nursing demand and congestion, directing patients to the nursing unit for 

intensive medical care. The system demonstrates stability when the HR's arrival rate is 

lower than its service rate, effectively reducing congestion. Utilizing the Matrix-

Geometric method ensures system stability, crucial for efficient healthcare operations. 

The hidden Markov model, supported by the Viterbi algorithm, facilitates the 

determination of the most efficient HR and nurse sequencing and necessary staffing 

levels, accommodating sequences of any length. The novelty of the work lies in the 

choice of Viterbi algorithm in modelling as its computational complexity 

O(n)=O(6)=O(1). The hidden Markov model and Baum-Welch algorithm offer a 

comprehensive analysis of patient flow dynamics, unveiling hidden states and 

transitions that influence system performance. This comprehensive understanding aids 

in managing overcrowding and optimizing resource utilization. Presenting the results 

numerically in tables provides a holistic view of healthcare department dynamics, 

contributing to effective process improvements and resource allocation. This study's 

innovative integration of methodologies offers a sophisticated approach to 

understanding and optimizing the dynamics of patient flow in healthcare departments. 
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1. INTRODUCTION

Life expectancy at birth continues to increase remarkably 

throughout the world. With a rise in the mortality age, senior 

population, expensive new medical technologies, and a society 

demanding higher quality health care, the demand for optimal 

cost healthcare is increasing day by day. The population over 

the age of 65 is rapidly increasing, however longitivity is 

accompanied with ailments which need due attention. 

Hospitalizations of elderly patients are more frequent, 

complicated, carry more risk of being prolonged. All these 

contribute to added congestion in hospitals leading to the need 

of proper hospital resource management. Many sections of 

health care departments face a crisis in both efficient man 

power and other resource availability. People have been trying 

to resolve these issues from long by adapting suitable 

techniques such as having flexi employment of staff and hiring. 

However, the resource scheduling and management goes a 

step ahead to resolve these issues for health care providers. In 

this paper, we provide a queuing model to optimize nurse 

staffing in a small section of health care unit. This study 

attempts to provide recommendations and insights that are 

based on evidence, with the goal of empowering healthcare 

providers to improve both the quality and efficiency of the 

treatment they provide to their patients. The goals of the 

research are framed within the larger framework of enhancing 

resource allocation, decreasing patient congestion and 

eventually raising the bar for the quality of treatment provided 

within healthcare departments. 

The M/G/1 model seems to be more appropriate as the 

arrival patients follows Poisson distribution and require 

service at various levels consuming different time slots. This 

leads to a general service pattern. The incoming population 

needs assistance for direction which is offered by the HR 

leading to outpatient or admission. In the past, most papers had 

referred to M/M/1 queues [1, 2]. As the need and time varies 

from patient-to-patient, general distribution seems to be apt. 

Obtaining analytical solutions for the stationary probability 

of the number of customers in the system for an M/G/1 queue 

is difficult. Therefore, we use the matrix-geometric method to 

compute the stationary probability distribution. The matrix-

geometric method models and analyses complicated systems 

with random patient arrivals, service times, and state 

transitions. It excels in healthcare contexts where patients 

switch providers and phases of care. Our research will use this 

strategy to examine if the healthcare department's patient flow 

system can efficiently manage incoming patients and avoid 

congestion and delays. The matrix-geometric method 

investigates complex healthcare unit dynamics by using 

matrices to express state transition probabilities. It calculates 
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server utilization, patient wait times, and queue lengths. In this 

work we can provide hospital administrators with data-driven 

suggestions for nurse staffing and care quality by revealing 

resource allocation and system efficiency. 

The M/G/1 queue is employed and matrix geometric 

method is used to derive the relative measures. The scenario 

and conclusions are numerically illustrated and presented as 

graphs. 

 

1.1 Literature review 

 

Of all the units constituting, a hospital emergency care unit 

is of at most importance. We shall classify the relevant papers 

in this review based on their conclusions and the methodology 

they used, Queueing Theory and Capacity Planning Research: 

Green [1] addresses this problem of Emergency Department 

(ED) overcrowding which is a growing problem in current 

scenario. As some use ED for routine checkups it turns out to 

be leading to fatal consequences for the seriously ill patients. 

In this paper the author Linda V Green illustrates how lack of 

proper capacity management policies by hospital managers 

and government officials lead to drastic situations. The main 

cause being mis-understanding of service system dynamics. 

The queueing system models are employed to identify, rectify 

and upgrade the existing polices followed for resource 

allocation, often with negligible additional capacity. Zhang et. 

al [3] proposed a state dependent model to achieve best 

possible resource utilization for the benefit of long-term care 

requirement. Green [2] claimed that queueing analysis has a 

key role in estimating availability requirements for possible 

future scenarios, including demand surges due to new diseases 

or acts of terrorism. This in fact proves useful in handling 

unanticipated pandemic situations. This work describes basic 

queueing models as well as some simple modifications and 

extensions that are particularly useful in the healthcare setting. 

It is well illustrated by examples showcasing their use. The 

critical issue of data requirements as well as model choice, 

model-building is presented. The interpretation of the 

numerical results well establishes the use of this paper on a 

day to day basis. 

Nurse Scheduling and Workforce Management Research: A 

new perspective to solving shortage in nurse supply is dealt by 

Diaz et al. [4]. They have presented a conceptual frame work 

of nurses’ shortage and have tried to resolve using the 

industrial solutions. The limitations are also discussed. The 

nursing shortage has been modelled as a staff scheduling 

problem using the concept of inventory and queueing theory 

to optimize the requirement. It is explicitly seen that the simple 

over-pulling of nurses is generating a fictitious over-demand 

that is driven by internal demand cycles. In the concluding 

note it is observed that as per this study the demand at times is 

common to both the hospital and outside agencies leading to 

fictitious demand. Healthcare Capacity Management: 

Fagefors et al. [5] gave an insight to the efficient capacity 

management in healthcare systems. Overtime, temporary 

hiring of staff, movement of staff across departments, utilizing 

external agencies for staff provision and queueing patients and 

availing the services from external providers have been 

identified as the major factors contributing towards deficit 

healthcare staff management. Data collected through 

questionnaire from the Region Västra Götaland healthcare was 

used to compute multiple regression analysis. In the end it was 

found that the prerequisites and required managerial 

approaches used to efficiently manage most of the capacity in 

the system differ significantly between different parts of the 

system. These differences must be addressed. The results in 

the paper give a clear insight to the shortfalls in capacity 

management and a clear understanding of efficient capacity 

management in healthcare systems. Boyle et al. [6] proposed 

discrete event simulation model for prediction of the impact of 

delayed discharge in a hospital. The extra time loss for the 

patients and the denial of beds for the needy patients is 

considered. Two cases of discharge are discussed wherein 

patients are moved to smaller community hospitals or sent 

home with nursing assistance provided by care givers. 

Simulation model is used in modelling the flow of patients to 

both intermediate and long-term care in the UK NHS, and 

modelling delayed discharge using an acceptance probability 

to represent the situations where a transfer is delayed due to a 

variety of constraints. This paper is specific to the 

Southampton context, but could be transformed into a reusable 

model that can be applied to any hospital. Markov chains and 

matrix analytic methods in Healthcare Modelling: Latouche 

and Ramaswami [7] provided an introduction to matrix 

analytic methods in stochastic modelling, offering 

foundational insights. Bolch et al. [8] delved into queueing 

networks and Markov chains, demonstrating their application 

in modelling healthcare systems. Chakravarthy [9, 10] offered 

a comprehensive resource on matrix-analytic methods, 

providing both analytical and simulation approaches in 

healthcare modelling. Healthcare Quality Assessment Using 

Hidden Markov Models: Awad et al. [11] introduced hidden 

Markov models and their potential applications in healthcare, 

particularly for quality assessment. Mitchell et al. [12] 

discussed the application of hidden Markov models in 

capturing the quality of care in geriatric wards, illustrating 

their practicality in real healthcare scenarios. Apart from the 

previously described contributions, there exist further 

applications in the literature that tackle various domains as 

policy implementation, state-dependent servers, warehouse 

management, and algorithm-driven learning. Abushilah and 

Abbas [13] assessed clustering methods and indices using 

simulated data and R software 3.1, focusing on object group 

identification and partition optimization. Adiyeloja et al. [14] 

analysed six brewery plant production lines' efficiency using 

data envelopment analysis, revealing that two of the most 

efficient lines required reduced manpower and increased 

output. Chen and Chen [15] explored a call centre with 

impatient customers, repairable servers, and Interactive Voice 

Response Units, highlighting the exponential failure rate and 

its impact on design parameters. 

Saritha et al. [16] examined a single-component inventory 

model with replenishment schedules, optimizing cost, 

minimizing service time, and enhancing warehouse stock 

efficiency. Sama et al. [17] investigated the performance of a 

two-phase queueing system, utilizing steady state equations 

and probability generating functions for system design. Jiang 

et al. [18] proposed reinforcement learning AQM (RLAQM), 

improving network stability and performance through active 

queue management. Shah et al. [19] investigated the 

performance evaluation of a multisatge service system using 

matrix geometric methods. Through their research, they aim to 

analyze and assess the efficiency and effectiveness of the 

system's operation, providing insights into its performance 

characteristics.  Darapaneni et al. [20] explored the 

performance of MapReduce frameworks using an analytical 

transient queuing model, examining job arrival rates and 

completion times. Kumar et al. [21] analyzed a multi-
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processor call center retrial queueing network, focusing on 

breakdowns, repairs, and performance measures using matrix-

analytic techniques and numerical results. 

These studies provide an extending knowledge of queueing 

theory, capacity planning, healthcare management, and 

optimization approaches, these works collectively help to 

improve efficiency and performance across a range of systems 

and disciplines.  The research is primarily focused on M/G/1 

queue and matrix-geometric methods, which are fundamental 

to the research's approach.  

As the problem still prevails, we have employed Markov 

models and M/G/1 queue where in the service requirement 

each individual patient is different and would not fix to a 

specific distribution. In Section 2, the model description is 

discussed, Section 3 depicts the stability condition and 

stationary distribution of the model. Performance measures are 

derived in Section 4. Numerical analysis is done in Section 5. 

Hidden Markov model concept for the observed states is 

discussed in Section 6 and Section 7 gives the conclusion. 

 

 

2. MODEL DESCRIPTION 

 

The system under consideration comprises of two states HR 

and nursing unit namely, assigned to state 1 and state 2 

respectively. All arrivals are first directed to the HR for further 

recommendation of treatment. Patients requiring admission 

are forwarded to state 2 i.e., the nursing unit. All arrivals pass 

through HR before reaching nursing unit. λ1 reflects the 

frequency with which outpatients present to the HR (Human 

Resources) unit for service. Outpatients are people who come 

to the healthcare department just for HR services. 

Consultations, prescription renewals, and recommendations 

for additional medical care are examples of these services. λ1 

is critical in defining the workload of the HR unit. A higher λ1 

indicates a greater number of outpatients seeking HR services, 

affecting HR staff workload and perhaps resulting to longer 

wait times if not managed properly. 

λ2 denotes the rate at which patients requiring admission or 

inpatient care arrive at the nursing unit. The HR department 

identifies and refers these patients for more intensive medical 

treatment and care. The value of λ2 is crucial for determining 

the demand on the nursing unit. A larger λ2 indicates a bigger 

number of patients requiring inpatient services, which might 

constrain resources, affect nursing unit occupancy rates, and 

impact patient flow within the healthcare department.  

The total arrival rate to the healthcare system incorporates 

both λ1 and λ2, i.e., λ1+λ2. This metric describes the overall 

patient flow into the healthcare department, including both 

outpatients and inpatients. The significance of this combined 

arrival rate resides in its broad impact on the whole healthcare 

system. It has an impact on the allocation of HR and nursing 

unit resources, patient wait times, service quality, and overall 

system efficiency. Understanding and regulating the system 

arrival rate is critical for optimizing patient care and reducing 

congestion. 

μ1 denotes the transit of the HR from having ‘i’ number of 

patients to ‘i-1’ number of patients. θ1 denotes the discharge 

procedure sending a patient by the nurse at state (i, 2) to the 

HR at (i-1, 1) denoted by N(i, 2)→HR(i-1, 1). The mobility of 

arriving patients within the states is denoted by "HR to HR" 

and "nurse to nurse" in the terminology that has been presented 

in nomenclature. The movement of the patients is defined as 

(i, 1) to (i+1, 1) and (i, 2) to (i+1, 2) for each possible value of 

i as in Figure 1. In the given ordered pair, 1 represents HR state 

and 2 represents nurse state. According to the description, the 

HR will be responsible for the patient's admission and 

discharge, during which time the nurse will take over 

responsibility for the patient's medicine and care. The 

notations in the table clearly depict the probabilities of the 

transitions that occur in the proposed model. The limitation for 

the model is that, the HR sends a patient to nurse only when 

the number of patients with nurse is less than or equal to that 

with the HR. Similarly, for transition from nurse to HR.  

 

 
 

Figure 1. Transition diagram of patient flow to both HR and 

nurse 

 

Let N(t) be the number of customers in the system at time t, 

and ξ(t) be the server states HR and nurse at time t (t≥0). We 

describe the state space of the proposed model to be {(0, 1), (0, 

2)}⋃{(n, i): n≥1, i=1, 2}. The infinitesimal generator Q of the 

process is given by: 

 

𝑄 =

[
 
 
 
 
 
𝐵 𝐴0 . .
𝐴2 𝐴1 𝐴0

. . 𝐴2 𝐴1

  

. . . . . .

. . . . . .
𝐴0 . . . .

. . . . 𝐴2

. . . . . .

. . . . . .
  
𝐴1 𝐴0 . .
𝐴2 𝐴1 𝐴0

. . . . . . ]
 
 
 
 
 

 

where,  

B=[
−(𝜆1 + 𝜂1) 𝜂1

𝜂2 −(𝜆2 + 𝜂2)
], 

𝐴0 = [
𝜆1 0
0 𝜆2

], 

𝐴2 = [
𝜇1 𝜃2

𝜃1 𝜇2
], 

𝐴1 = [
−(𝜆1 + 𝜂1 + 𝜇1 + 𝜃2) 𝜂1

𝜂2 −(𝜆1 + 𝜂2 + 𝜇2 + 𝜃1)
]. 

 

 

3. STEADY-STATE ANALYSIS 

 

In this section, we look into the mathematical details to 

thoroughly understand the steady-state behaviour of our 

healthcare department model. The steady-state analysis is 

essential in our work as it is a vital metric for determining the 

efficiency of the system in handling the patient flow. It enables 

us to assess the stability, performance, and resource allocation 

of the healthcare system, with the ultimate goal of reducing 

patient congestion. 

 

3.1 Stability condition 

 

We now derive the condition for the stability of the given 

queue. Let us define  

 

A=A0+A1+A2. 

∴ 𝐴 = [
−(𝜃2 + 𝜂1) 𝜃2 + 𝜂1

𝜃1 + 𝜂2 −(𝜃1 + 𝜂2)
]. 
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It can be seen that A is a finite and irreducible generator. 

There exists a stationary probability vector π=[π0 π1] of A. 

For convenience let us denote π0,1=π0, where π0,1 is the 

steady state transition vector at HR. and π0,2=π1, where π0,2 is 

the steady state transition vector at nurse. 

Also, 
 

𝜋𝐴 = 0 and 𝜋𝑒 = 1 (1) 

 

where, e is the unit column vector. 

Using Theorem 3.1.1 in Neuts the necessary and sufficient 

condition for the stability of the system is as follows: 

 

𝜋𝐴2𝑒 > 𝜋𝐴0𝑒 (2) 

 

−(𝜃2 + 𝜂1)𝜋0 + (𝜃1 + 𝜂2)𝜋1 = 0 (3) 

 
(𝜃2 + 𝜂1)𝜋0 − (𝜃1 + 𝜂2)𝜋1 = 0 

𝜋0 + 𝜋1 = 1 
(4) 

 

Solving we get: ⇒ −(𝜃2 + 𝜂1)𝜋0 − (𝜃1 + 𝜂2)𝜋0 + (𝜃1 +
𝜂2) = 0, 

 

𝜋0 =
(𝜃1 + 𝜂2)

(𝜃2 + 𝜂1) + (𝜃1 + 𝜂2)
 (5) 

 

𝜋1 =
(𝜃2 + 𝜂1)

(𝜃2 + 𝜂1) + (𝜃1 + 𝜂2)
 (6) 

 

Using 𝜋0 and 𝜋1 in inequality (2), we get: 

 

𝜌 =  
(𝜃1 + 𝜂2)𝜆1 + (𝜃2 + 𝜂1)𝜆2

(𝜃1 + 𝜂2)(𝜇1 + 𝜃2) + (𝜃2 + 𝜂1)(𝜇2 + 𝜃1)
< 1 (7) 

 

3.2 Stationary probability distribution 
 

The steady state probability is defined as 𝑃𝑖,𝑛 =

lim
𝑡→∞

Pr (𝑁(𝑡) = 𝑛, 𝜉(𝑡) = 𝑖) , 𝑛 𝜖 𝑁 , 𝑖 = 1, 2. 

Let π be the stationary probability vector of the generator Q 

satisfying πQ=0 and πe=1, where 0 is a row vector with all 

zeros and e is a column vector with all ones. The vector is 

partitioned as π=[π0, π1, π2, …] where π0=[π0,1, π0,2] and 

πn=[πn.1, πn.2] for n≥1. 

i.e., πne=πn,1+πn,2=1. 

Based on the matrix-geometric method [7], the stationary 

probability vector π can be computed. By applying Lemma 

6.4.3 [7] we get the following equations: 
 

𝜋0(𝐵 + 𝐴0𝐺) = 0 (8) 

 

𝜋0(𝐼 − 𝑅)−11 = 1 (9) 

 

𝜋𝑛 = 𝜋0𝑅
𝑛 , 𝑛 ≥ 1 (10) 

 

There exist matrices R, U and G satisfying the equations: 

 

𝑈 = 𝐴1 + 𝐴0𝐺; 𝑅 = 𝐴0(−𝑈)−1; 𝐺 = (−𝑈)−1𝐴2 

𝐴2 + 𝐺𝐴1 + 𝐺2𝐴0 = 0; 𝐴0 + 𝑅𝐴1 + 𝑅2𝐴2 = 0 
(11) 

 

The rate matrix R and G are the minimal non-negative 

solution to the matrix-quadratic equation. 

We observe that π0 is the solution of Eq. (8) and the 

normalizing condition π.e=1 is equivalent to Eq. (9), we have: 

𝜋0 ≠ 0; 𝐵 + 𝐴0𝐺 = 0 (12) 
 

From Eq. (12), we can get: 
 

𝐺 = −𝐵𝐴0
−1 (13) 

 

Substituting Eq. (13) in Eq. (11) we obtain the values of R 

and U: 
 

𝜋0 = 𝐼 − 𝑅 (14) 
 

𝜋1 = 𝜋0 𝑅 (15) 
 

Similarly, we can obtain the value of πn for n≥2. 

In summary, this section provides a comprehensive analysis 

of patient distribution and system behaviour using the 

stationary probability distribution Pi,n , in the healthcare model. 

The study employs steady-state transition probabilities (π0 and 

π1) for HR and nurse states. These probabilities are shown by 

Eqs. (5) and (6) based on system parameters θ and η. The 

stationary probability vector is computed using the matrix-

geometric approach. R, U, and G matrix equations characterize 

transitions and interactions within the healthcare system. This 

allows the assessment of system stability and steady-state 

behaviour [i.e., the stationary probability distribution Pi,n is 

used in this section to analyze patient distribution and system 

behaviour in a healthcare model. The proposed model 

evaluates system stability using matrix-geometric method and 

steady-state transition probabilities for HR and nurse states.] 
 

 

4. PERFORMANCE MEASURES 

 

The system performance measures are expressed in terms of 

the stationary probability vector π as follows: 

(i) Expected number of customers in the system: 

The expected number of customers in the system stands first 

and foremost priority, because it helps healthcare providers 

balance the patient population. It is done by understanding the 

bed requirement and scheduling staff shifts noticing 

bottlenecks where additional resources should be allotted. 

The expected number of customers in the system is given 

by: 

 

𝐿𝑛 = ∑ ∑ 𝑛 𝑝𝑛,𝑖
∞
𝑛=1

2
𝑖=1 =𝜋1𝑒[𝐼 − 𝑅]−2 (16) 

 

(ii) Expected number of customers in the queue: 

It helps to forecast future patients leads. It serves as a key to 

estimate capacity requirements for possible future scenarios 

such as another pandemic or acts of violence (war scenario). 

Thus, the expected number of customers in the queue is: 

 

𝐿𝑞 = ∑ ∑ (𝑛 − 1). 𝑝𝑛,𝑖
∞
𝑛=1

2
𝑖=1 = 𝜋1[(𝐼 − 𝑅)−2𝑒 −

𝐴2𝐵
−1𝑒] − 1  

(17) 

 

(iii) Expected waiting time in the system: 

The expected waiting time helps us to notify the delays 

which are the main pot holes leading to sophistication and 

even death in emergency case treatments. Emergency care 

plays a vital role for different threatening illnesses, accident 

cases, bleeding, breathing difficulties and epileptic seizures. 

This could be addressed and minimized only if the expected 

waiting time is taken into account. The expected waiting time 

in the system is: 
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𝑊𝑠 =
𝐿𝑠

𝜆1 + 𝜆2

 (18) 

 

(iv) Expected waiting time in the queue: 

The waiting time in the queue is the very important 

determining factor for quality patient experience. It directly 

measures the level of care one receives. It is a major challenge 

faced by big hospitals throughout the country. Increased 

waiting time is a cause of stress for both the patient and doctor 

so needs attention. 

Hence, the expected waiting time in the queue is found to 

be: 

 

𝑊𝑞 =
𝐿𝑞

𝜆1 + 𝜆2

 (19) 

 

 

5. NUMERICAL SIMULATION 

 

To numerically demonstrate how the system performance 

measures behave under different system parameters, Mat lab 

software was used. The queueing system's parameters are first 

defined in the code. The arrival rates of two different customer 

types (outpatient and inpatient) are shown by λ1 and λ2. The 

MGM model's parameters are represented by the matrices A2, 

A1, A0, and B. The parameter values for the model are listed in 

Table 1. Based on these values, the transition matrices π0 and 

π1 are derived using the matrix computations A, D, G, U, and 

R. Additionally, performance indicators for system utilization 

and customer wait times are captured using Mat lab code. All 

system parameters are chosen in a way so that they satisfy the 

stability condition ρ<1. 

 

Table 1. Values of parameter used in the model 
 

(λ1, λ2) (μ1, μ2) (η1, η2) (θ1, θ2) 

(21,12) (25,14) (0.5, 0.4) (0.4,0.3) 

 

Table 2. Arrival rates and system performance measures 

 
(λ1, λ2) Ln Lq Ws Wq 

(15,10) 
1.4563 

2.2727 

0.8720 

1.5719 

0.0583 

0.0909 

0.0349 

0.0629 

(15,11) 
1.4563 

3.2353 

0.8697 

2.4676 

0.0560 

0.1244 

0.0334 

0.0949 

(15,12) 
1.4563 

5.0000 

0.8677 

4.1648 

0.0539 

0.1852 

0.0321 

0.1543 

(15,13) 
1.4563 

9.2857 

0.8661 

8.3822 

0.0520 

0.3316 

0.0309 

0.2994 

(15,14) 
1.4563 

35.0000 

0.8647 

34.0277 

0.0502 

1.2069 

0.0298 

1.1734 

(17,10) 
2.0482 

2.2727 

1.3851 

1.5703 

0.0759 

0.0842 

0.0513 

0.0582 

(19,10) 
3.0159 

2.2727 

2.2729 

1.5691 

0.1040 

0.0784 

0.0784 

0.0541 

(21,10) 
4.8837 

2.2727 

4.0599 

1.5681 

0.1575 

0.0733 

0.1310 

0.0506 

(23,10) 
10.0000 

2.2727 

9.0946 

1.5673 

0.3030 

0.0689 

0.2756 

0.0475 

(25,10) 
83.3333 

2.2727 

82.3457 

1.5666 

2.3810 

0.0649 

2.3527 

0.0448 

 

Table 2 shows that, when λ1 and λ2 approach μ1 and μ2 

respectively, there is a steep increase in the number of 

customers in the system. When λ1<μ1 and λ2<μ2 , the system 

gives an optimal number of customers with a moderate 

gradient. If the number of patients assigned to nursing unit is 

constant the relative measures do not increase drastically as far 

as λi<μi, i=1, 2. This is observed for all measures Ln, Lq, Ws, 

Wq. 

 

 
(a) 

 

 
(b) 

 

Figure 2. (a) Performance measures for fixed λ1(15) and 

varying λ2; (b) Performance measures for fixed λ2(10) and 

varying λ1 

 

As the number of customers in the system increases, the 

waiting time in the queue and the system proportionally 

increase. This would help to manage the resources, avoiding 

congestion. The moderate gradient as seen from the graph 

depicts efficient functioning of the system avoiding too much 

congestion after λ2 reaches 13 (in Figure 2(a)) and λ1 reaches 

23 (in Figure 2 (b)) the steep rise in the slope suggests a 

proportional increase in the patient population. This is 

observed for all the measures. The last scenario gives the most 

preferrable condition in healthcare management. However, in 

real time the previous 2 scenarios are more in vogue. This 

leads to the study of congestion analysis time after time though 

previous literature is available. The data in Table 2 has been 

illustrated using the following two graphs. When λ1 is fixed 

the rate of change is observed and studied for HR. In this case 
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the system is stable up to a population size of 13 when λ1=15. 

When λ2 is fixed the rate of change is observed and studied 

with respect to nurse utilization the HR component being 

stable. From the graph depicted below it is clearly seen the 

system is very efficient up to a patient population of 23 when 

λ2=10. This indicates that λ1 and λ2 play a crucial role in the 

stability of the system based on μ1 and μ2. Therefore, it is 

essential to optimize the cost and at the same time increase μ1 

and μ2 to the maximum possible extent. This would help to 

increase the system capacity without affecting its cost 

effective functioning. 

 

 

6. HIDDEN MARKOV MODEL TO PREDICT THE 

ADMISSION AND DISCHARGE SEQUENCE 
 

In the context of a hospital patient flow model, HR job is to 

collect the data or medical records of patient, scheduling 

appointment and billing the amount for taking care of patients. 

Nurses job is to escort the patient to the bed, checking patient 

health and needs, help the doctor in emergency situation. Here 

adding an inpatient denotes an admission and reduction of 

inpatient or sending an inpatient back to HR denotes a 

discharge. The hidden states are HR and nurse as the Human 

Resources and nursing states describe the internal procedures 

and operations of the healthcare system. External observers or 

patients cannot directly observe these states. Admission and 

discharge states, on the other hand, are visible because they 

correspond to actual interactions patients experience with the 

healthcare system. Patients can see when they are admitted or 

discharged, but they often do not have direct access to HR or 

nurse processes. Moreover, the distribution of resources, such 

as staff scheduling and resource management, takes place 

predominantly in the HR and nurse states. These internal 

decisions have an impact on the flow of patients between 

admission and discharge. As a result, it is critical to treat HR 

and nurse states as hidden since they influence observed states 

but are not directly evident to patients. 

Hospital has to know, whether the service provided by nurse 

and HR are good but they are hidden. So, by admission and 

discharge which is discussed in the hidden Markov model 

(HMM) finds application in forecasting both admission and 

discharge sequences. A hidden Markov model (HMM) 

consists of two parts: hidden and observed elements. The 

hidden part, governed by a Markov process, remains 

unobserved, while the observed part depends on the hidden 

part's realization. Analyzing a recorded sequence of events 

allows in identifying hidden states and understanding the 

relationship between the components. 

In the following discussion, we examine a discrete output 

hidden Markov model, where the hidden component is 

characterized by a homogeneous Markov chain. 

·H={HR, N} a set of h(=2) hidden states; where HR denotes 

HR nurse and N denotes nurse in the bed system.  

·O={A, D} a set of m(=2) observed states; A denotes 

admission to bed and D denotes discharge from bed. 

·π=(πHR, πN) initial distribution, where 𝜋𝑖 ≝ 𝜋𝐻𝑖
= 𝑃(𝑋0 =

𝐻𝑖) ≥ 0; 
·P=[pij], 1≤i, j≤2, transition probability matrix between the 

hidden states HR and nurse. i.e., 𝑃 = 𝑃(𝑋𝑡 = 𝑁|𝑋𝑡−1 = 𝐻𝑅) 

for a hidden random variable Xt with H states in total. 

·E=[eij], output probability or the emission matrix, i.e., the 

probability of observing A or D at time t for state Xt=N is given 

by, 𝐸 = 𝑃(𝑌𝑡 = 𝐴 𝑜𝑟 𝐷|𝑋𝑡 = 𝑁). 

The elements of the transition matrix and the emission 

probability satisfy the following conditions ∑ 𝑝𝑖𝑗 =ℎ
𝑗=1

1 , ∑ 𝑒𝑖𝑗 = 1𝑚
𝑗=1  and the initial distribution π satisfy the 

condition ∑ 𝜋𝑗 = 1ℎ
𝑗=1 . 

Thus, we can describe a hidden Markov chain by θ=(P, E, 

π). The objective is to deduce the concealed states responsible 

for generating specific observed sequences or predict 

forthcoming observations and hidden states using available 

data. Accomplishing this task is typically achieved through 

algorithmic approaches such as the Forward-Backward 

algorithm, Viterbi algorithm, or Baum-Welch algorithm, all of 

which enable efficient computation of probabilities and 

likelihoods linked to the hidden states.  

To depict the dynamics of hidden states, we shall establish 

a random initialization of a probability matrix indicating the 

transitions between these states. The relationships between 

hidden states, is represented in Figure 3. 

 

 
 

Figure 3. Transition diagram for hidden states 

 

It is necessary to have the parameters P, E, and π in order to 

accurately characterize the HMM. One of the most important 

requirements for these parameters is that they should fulfill the 

normalization constraints, which ensure that the probabilities 

add up to 1. The purpose of our model is to make use of these 

parameters (θ) to either infer the hidden states (HR and nurse) 

that are accountable for the generation of particular observable 

sequences (admission and discharge) or make predictions 

about upcoming observations and hidden states. This is done 

by making use of the data that is currently accessible. This is 

accomplished using the Baum-Welch algorithm, which 

provides assistance in estimating the values of the parameters 

P, E and π in our scenario. The Baum-Welch algorithm’s goal 

is to locate the local maximum of the likelihood function, 

which represents the probability of the observed data (A and 

D) given by the HMM parameters. This local maximum can 

be thought of as the best possible estimate of the probability of 

the observed data. This estimation is performed based on the 

sequences that have been observed, and it enables you to infer 

the hidden states that are most likely to be present, as well as 

the transitions between them. 

We shall now assume the starting values of HR and nurse 

as π=[0.4 0.6]. Applying Baum-Welch algorithm for the 

random initial conditions set above in Figure 3, we can find 

the local maximum for 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃(𝑂|𝜃) (i.e., the 

HMM parameters 𝜃  that maximize the probability of the 

observation) and the expected transition count. 
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Table 3. Output results from the Baum-Welch Algorithm for 

the Hidden Markov Model (HMM) parameter estimation 

based on the observation sequence ADADDA 

 

 

Expected Transition 

Count 
Expected Emission Count 

HR N A D 

HR 2.0988 0.7356 1.4545 1.5455 

N 0.7123 1.4533 1.5000 1.5000 

 

Normalized Transition 

Matrix 

Normalized Emission 

Matrix 

HR N A D 

HR 0.7466 0.3360 0.4923 0.5075 

N 0.2534 0.6640 0.5077 0.4925 

 

As an example, we examine a sequence of observations, 

denoted as “ADADDA,” with a length of six. MATLAB 

software was utilized to calculate the expected transition count, 

emission count, estimated transition matrix, and emission 

matrix. The resulting output is presented in the Table 3. 

 

 
 

Figure 4. Probability distribution related to hidden states 

 

Figure 4 illustrates that the likelihood of a specific observed 

state occurring varies based on the corresponding hidden state. 

The probabilities of transitioning from the state HR to 

discharge are slightly higher compared to transition to the 

admission state. When the hidden states are HR and nurse, the 

admission and discharge processes exhibit equally likely 

occurrence with slightly varying probability. 

 

Viterbi algorithm 

Step 1: Initialization. 

Initialize the variables Viterbi path, state paths, and state 

probabilities, the initial observation (in this case, "A"), with 

t=1. 

Step 2: Initialization of the First Observation 

HR and nurse for each concealed state: 

Determine the probability of the starting state: 

HR*E(A|HR)=δt(HR). 

where δt is used to denote the probability of being in a 

particular state at a specific time point in the sequence of 

observations. 

Determine the probability of the starting state: nurse is equal 

to nurse * E(A|nurse). 

Step 3: Recursion 

The following observations (in this case, "D," "A," "D," 

"D," "A") follow HR and nurse for each concealed state: 

Based on the maximum of the probability of the previous 

state and the likelihood of the transition, determine the state 

probability: 

Max( 𝛿𝑡 (nurse) * P(HR|nurse) * E(D|HR), 𝛿𝑡  (HR) = 

𝛿𝑡−1(nurse) * P(HR|nurse) * E(D|HR)). 

Nurse=max (nurse-1(HR) * P(nurse|HR) * E(D|nurse), 

nurse-1(nurse) * P(nurse|nurse) * E(D|nurse)). 

For each concealed state (HR and nurse), note the most 

likely prior state. 

Step 4: Finishing 

Determine the latest observation's highest state probability: 

P*(last) is equal to max(δT(HR), δT (nurse)), where T is the 

sequence's length and δT corresponds to the probability of 

being in a specific state at the end of the observed sequence. 

Step 5: Turning around 

Backtrack through the state routes (𝜓), starting with the 

most likely state in the previous observation (HR or nurse), to 

determine the best route for the entire sequence. 

Every time step t (from T-1 to 1): 

Pick the concealed state with the prior state which the 

recorded pathways indicate was the most likely. 

Step 6: Ending 

Taking into account the estimated transition probabilities 

and emissions for the HR and nurse states, the Viterbi path (𝜋) 

now provides the most advantageous course for the observed 

sequence ("ADADDA"). 

Based on the probabilities provided by the Baum-Welch 

algorithm, the Viterbi algorithm aids in determining the most 

probable sequence of hidden states (HR and nurse) which 

produced the observed sequence ("ADADDA"). When 

analyzing hidden state dynamics in healthcare contexts, the 

resulting Viterbi path is a crucial tool. 

Subsequently, we employ the Viterbi algorithm to 

determine the optimal path of the observed sequence, utilizing 

the transition matrix obtained through Baum-Welch algorithm. 

From Figure 5, the optimal Viterbi path is seen to be HR-N-

HR-N-N-HR with the emission sequence of A-D-A-D-D-A. 

 

 
 

Figure 5. Optimal path for sequence of length six 

 

 

7. CONCLUSION 

 

An M/G/1 queuing model is proposed to break down a 

healthcare system's complex patient flow into HR and nurse 

states in this investigation. Patient backflow is common in 

healthcare operations, so we've allowed it. The relative 

A

D

0.48

0.5

0.52

HR

N

0.4923
0.5077

0.5075

0.4925 A

D
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measures are calculated using the matrix-geometric approach 

to assess system performance under different scenarios. In this 

study it is found that the system is stable when the arrival rate 

of patients seeking HR assistance (λ1) is lower than the HR 

service rate (μ1). Healthcare administrators should note that 

HR remains stable while patient numbers rise. Our study digs 

deeper, especially when admission levels shift. Table 2 shows 

a considerable increase in relative measures when the 

admission rate (λ) approaches the service rate (μ). This 

observation is notable since it shows that HR system efficiency 

reduces more than nurse unit efficiency when patient arrivals 

rise. Healthcare administrators need this information to 

understand how operational scenarios affect patient 

congestion and system performance. To guarantee efficient 

patient care during high admission periods, staffing and 

resource allocation must be effective. Hidden Markov is used 

to enhance the analysis. Future admission and discharge 

sequences can be forecasted and one could find the best paths 

using this method. This forecasting can transform healthcare 

management to its best. It helps decision-makers distribute 

resources, manage patient loads, and improve healthcare 

delivery. Our analysis and the Hidden Markov technique are 

both academically and practically useful. They help healthcare 

executives make data-driven decisions to reduce patient 

congestion and maintain high-quality care. 
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NOMENCLATURE 

 

λ1 Arrival rate to HR from HR  

μ1 Service rate from HR to HR 

λ2 Arrival rate from nurse to nurse 

μ2 Service rate from nurse to nurse 

η1 

θ2 

Arrival rate from HR to nurse (state 1 to state 2) 

HR(i,1) → N(i,2) 

HR(i,1) → N(i-1,2) 

θ2+η1 Arrival rate from HR to nurse 

η2 

θ1 

Arrival rate from nurse to HR (state 2 to state 1) 

N(i,2) → HR(i,1) 

N(i,2) → HR(i-1,1) 

θ1+η2 Arrival rate from nurse to HR 
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