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In this study, we aim to prove the generalized Hyers-Ulam-Rassias (GHUR) stability for 

the following Euler-Lagrange (EL) type cubic functional equation 𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 +
𝑏𝑦) = (b + 1)(b − 1)2[𝑓(𝑥) + 𝑓(𝑦)] + 𝑏(b + 1)𝑓(𝑥 + 𝑦)in non-Archimedean (n.A)

quasi-Banach spaces and n.A (n,𝛽) Banach spaces. In recent decades, the stability of 

functional equations has emerged as one of the most intriguing and engaging topics, as 

it leads to the applications of functional equations in various domains such as algebraic 

geometry, Group theory, Mechanics etc., This study is to investigate the GHUR stability 

for the above equation using Hyers direct method. Furthermore, we obtain the stability 

results for the aforementioned equation with an illustrative example for the n.A case. 

With the study of the example one may easily understand how the stability result of 

functional equations in n.A case differs from the setting of classical Banach spaces. 
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1. INTRODUCTION

Functional equations are mandatory for the examination of 

stability problems in a wide range of contexts. During a 

gathering of the mathematics committee at the University of 

Wisconsin in 1940, Ulam [1] was the first person to bring up 

the idea of the stability problem within the context of a 

functional equation. Further, he addressed many unanswered 

questions among the topics in the same year. The following is 

an essential question within the domain of functional 

equations theory: When 𝐺1is a group and 𝐺2 is a metric group

and for a given 𝜖 > 0  does there exists a 𝛿 > 0  such that 

𝑑(ℎ(𝑥𝑦), ℎ(𝑥)ℎ(𝑦)) < 𝛿 for a function ℎ: 𝐺1 → 𝐺2 and for all

𝑥, 𝑦 ∈ 𝐺1, implies that there exists a homomorphism 𝐻: 𝐺1 →
𝐺2 satisfying the inequality 𝑑(ℎ(𝑥), 𝐻(𝑥)) < 𝜖 for all 𝑥 ∈ 𝐺1?

This understanding of stability is crucial to guaranteeing that 

mathematical models and systems are reliable and predictable 

in real-world applications. Hyers [2] provided the first partial 

response to the question of Ulam in 1941 by taking Banach 

spaces into consideration. This has helped to develop a better 

understanding of the features of stability in mathematical 

systems. The answer given by Hyers was extended for additive 

mappings by Aoki [3] in 1950. Later, Rassias [4] gave the 

generalized version of Hyer’s theorem for linear mappings in 

1978. For the previous thirty years, the generalization of HU 

stability has been greatly influenced by the Rassias result. This 

was demonstrated by Gajda [5] in 1991 for the case of p>1. 

Both Rassias and Semrl demonstrated that the aforementioned 

statement cannot be made for p=1. In 1994, Gavruta [6] 

obtained the generalization of HU stability for approximately 

additive mappings. Kenary [7] discussed a cubic functional 

equation and its stability over random normed spaces. The 

GHUR stability of the same over Banach spaces has been 

discussed by Jun and Kim [8].  In 2006, Jun and Kim [9] 

determined the stability results for Jensen-type functional 

equations of cubic mappings. Ramachandran and Sangeetha 

[10] obtained the stability results of generalized quadratic

functional equation over n.A normed spaces. In 2009,

Moradlou et al. [11] achieved the stability concerning

homomorphisms and derivation on C*-ternary rings in

connection with an EL type additive mapping. The stability

results for an Euler-Lagrange-Rassias (ELR) type functional

equation was obtained by Pietrzyk [12] in 2006. In Banach

spaces, the GHUR stability for an EL type cubic functional

equation was carried out by Najati and Moradlou [13] in the

year 2009. In 2011, Eskandani et al. [14] demonstrated the

stability of a generalized mixed type of a functional equation

in quasi-𝛽-normed spaces. Gordji et al. [15] discussed HUR

stability for the additive-quadratic type of the equations over

fuzzy Banach spaces in the year 2012. Koh and Kang [16]

examined an ELR type quartic functional equation for the

solution and also for its stability in various quasi normed

spaces in 2013. The concept of p-Adic numbers were mainly

initiated by Hensel [17] in the year 1897. The involvement of

p-Adic numbers in analyzing the stability of functional

equations is complex and significant. Moreover, the utilization

of p-Adic methods extends to fields like number theory,

algebraic geometry, and cryptography, enriching the

exploration of functional equation stability. In stability theory,

n.A spaces are useful for examining how systems behave

under perturbations. Arriola and Beyer [18] established the

stability in the setting of n.A spaces for the first time. For more
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understanding of n.A and stability of functional equations in 

various spaces one may refer to studies [19-26]. In the year 

2011, Eskandani and Gavruta [27] obtained the stability results 

of the pexiderized Cauchy functional equation in n.A spaces. 

In the same year, perturbation of higher ring derivations in n.A 

Banach algebras was discussed by Eshaghi Gordji et al. [28] 

using fixed-point method. In 2011, Park [29] discussed various 

stability results considering different mappings in 2-Banach 

spaces and related topics. Also, the Ulam stability in 2-Banach 

spaces uses fixed point approach and this was demonstrated by 

Ciepliński [30] in 2021. The idea of 2-Banach spaces extends 

the conventional concept of Banach spaces by including a 

dual-norm structure, leading to a deeper understanding of 

vector spaces and their characteristics. Wang et al. [31] 

investigated the stability of additive 𝜌 -type functional 

inequalities in the setting of n.A 2-normed spaces in 2021. 

Aribou and Kabbaj [32] explored the stability of 𝑁 -

dimensional quadratic type functional inequality in n.A 

Banach spaces. In the same year, Wang [33] discussed the 

same for a mixed type quadratic and cubic functional equation 

in n.A (n, β) normed spaces. HU stability of functional 

equation deducing from quadratic mapping in n.A (n, β) 

normed spaces was proved by Alessa et al. [34] in 2021. In 

2015, Yang et al. [35] illustrated the stability of diverse types 

of functional equation within (n, β) normed spaces. The (n, β) 

normed space stands out as an exceptionally adaptable and 

enlightening framework, providing a nuanced view of the 

convergence and stability of mathematical systems. In 2023, 

Ramakrishnan and Uma [36] established the stability for 

quadratic-additive type functional equation in n.A quasi 

Banach spaces. Very recently, Ramakrishnan et al. [37] 

obtained the GHU stability of a Bi-Quadratic mapping for the 

case of n.A spaces. Jun and Kim [38] investigated the GHUR 

stability for an EL type cubic functional equation in quasi-

Banach spaces. In the year 2022, more improved results of 

those equations were obtained by Dung and Sintunavarat [39].  

Our study focuses mainly to obtain the GHUR stability of 

following Eq. (1) in n.A quasi-Banach spaces and n.A (n,𝛽) 

Banach spaces.  

 

𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦)
= (b + 1)(b − 1)2[𝑓(𝑥) + 𝑓(𝑦)]
+ 𝑏(b + 1)𝑓(𝑥 + 𝑦) 

(1) 

 

It is obvious that the solution of Eq. (1) is 𝑓(𝑥) = 𝑐𝑥3. The 

solution is called a cubic function. This research article is 

organized as follows: In section 2, we will present some 

preliminary ideas relevant to our topic which will help us to 

obtain the results for our main investigation. In section 3 we 

will explore the GHUR stability of Eq. (1) in n.A quasi-Banach 

spaces, n.A 𝑝-Banach spaces and n.A (n,𝛽) Banach spaces by 

Hyers direct method, which is provided with an example. In 

section 4 conclusion of this study will be summarized. 

 

 

2. PRELIMINARIES 

 

This section offers fundamental results regarding different 

norms within a linear space. 

 

Definition 2.1 [24] The function or valuation |. |: 𝕂 → ℝ is 

said to be non-Archimedean over the field 𝕂 if it meets the 

three requirements listed below, where 𝑥, 𝑦 ∈ 𝕂: 

 

(i) |𝑥| ≥ 0 𝑎𝑛𝑑 |𝑥| = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 0; 
(ii) |𝑥𝑦| = |𝑥|. |𝑦|; 
(iii) |𝑥 + 𝑦| ≤ 𝑚𝑎𝑥 {|𝑥|, |𝑦|}. 
 

In the above conditions, (iii) is called a stronger triangle 

inequality. The field 𝕂, with the above valuation is called n.A 

field. The valuation is called trivial if |𝑥| = 0 when 𝑥 = 0 and 

|𝑥| = 1, when 𝑥 ≠ 0. Otherwise, it is called non-trivial. 

In this study we consider 𝕂 as a complete non-trivially 

valued n.A field.  

The best example for a n.A field is the field of p-Adic 

numbers. Also, in a n.A field, any triangle is isosceles and any 

two spheres are either identical or disjoint. Every point of the 

sphere is its centre. 

 

Definition 2.2 [24] Let the space 𝑋 be considered as a linear 

space over 𝕂. A function or norm ∥. ∥: 𝑋 → ℝ is called n.A if 

it meets the below three conditions. 

 

(i) ∥ 𝑥 ∥= 0 iff 𝑥 = 0; 

(ii) ∥ 𝑟𝑥 ∥= |𝑟| ∥ 𝑥 ∥ for all 𝑥 ∈ 𝑋, 𝑟 ∈ 𝕂;  

(iii) ∥ 𝑥 + 𝑦 ∥≤ 𝑚𝑎𝑥{∥ 𝑥 ∥, ∥ 𝑦 ∥} for all 𝑥, 𝑦 ∈ 𝑋. 

 

the space 𝑋 with the above norm is called a n.A normed space. 

From (iii), we have ∥ 𝑥𝑛 − 𝑥𝑚 ∥≤ 𝑚𝑎𝑥{∥ 𝑥𝑗+1 − 𝑥𝑗 ∥; 𝑚 ≤

𝑗 ≤ 𝑛 − 1} (𝑛 ≥ 𝑚). 

 

Definition 2.3 [24] In a n.A normed space 𝑋, A sequence {𝑥𝑛} 

is termed as Cauchy iff {𝑥𝑛+1 − 𝑥𝑛}  converges to “zero”. 

Further the space is called complete if every Cauchy sequence 

converges in it. 

 

Definition 2.4 Let the space 𝑋 be considered as a linear space 

over 𝕂. Then a norm ‖. ‖: 𝑋 → ℝ is known as n.A quasi norm 

if it satisfies the conditions outlined below: 

 

(i) ∥ 𝑥 ∥≥ 0 and ∥ 𝑥 ∥= 0 if and only if 𝑥 = 0; 

(ii) ∥ 𝜆𝑥 ∥= |𝜆| ∥ 𝑥 ∥ for all 𝜆 ∈ 𝕂 and all 𝑥 ∈ 𝑋; 
(iii) There is a constant 𝜅 ≥ 1 such that 

 

∥ 𝑥 + 𝑦 ∥≤ 𝜅 𝑚𝑎𝑥(∥ 𝑥 ∥, ∥ 𝑦 ∥) (2) 

 

where 𝑥, 𝑦 ∈ 𝑋. The space 𝑋 with the above norm is called a 

n.A quasi normed space. Also, it is important to note that every 

n.A normed space is a n.A quasi normed space. 

 

Definition 2.5 A complete n.A quasi normed space is a n.A 

quasi-Banach space. A n.A quasi norm ∥. ∥ is said to be a 𝑝-

norm if the third condition is replaced by ∥ 𝑥 + 𝑦 ∥𝑝≤ max {∥
𝑥 ∥𝑝, ∥ 𝑦 ∥𝑝}  for every 𝑥, 𝑦 ∈ 𝑋  and 0 < 𝑝 ≤ 1 . This space 

becomes a Banach space when it is complete.  

 

Definition 2.6 [34] Let the space 𝑋 be considered as a linear 

space over 𝕂. Then for a positive integer 𝑛 and for a constant 

𝛽 with 0 < 𝛽 ≤ 1, the function ‖. , … , . ‖𝛽: 𝑋𝑛 → ℝ is said to 

be (𝑛, 𝛽) norm on 𝑋 if  

 

(i)  ‖𝑥1, 𝑥2, … , 𝑥𝑛‖𝛽 = 0  iff 𝑥1, 𝑥2, … , 𝑥𝑛  are linearly 

dependent; 

(ii) ‖𝑥1, 𝑥2, … , 𝑥𝑛‖𝛽  is invariant under permutation of 

𝑥1, 𝑥2, … , 𝑥𝑛; 

(iii) ‖𝛼𝑥1, 𝑥2, … , 𝑥𝑛‖𝛽 = |𝛼|𝛽‖𝑥1, 𝑥2, … , 𝑥𝑛‖𝛽; 
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(iv) ‖𝑥 + 𝑦, 𝑥2, … , 𝑥𝑛‖𝛽  

≤ max{‖𝑥, 𝑥2, … , 𝑥𝑛‖𝛽 , ‖𝑦, 𝑥2, … , 𝑥𝑛‖𝛽}. 

where 𝑥, 𝑦, 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑋 and 𝛼 ∈ 𝕂. 

Then (𝑋, ‖. , … , . ‖𝛽)  is termed as a n.A (𝑛, 𝛽) -normed 

space. 

 

 

3. STABILITY RESULTS OF EQUATION (1) OVER 

NON-ARCHIMEDEAN QUASI-BANACH SPACES AND 

NON-ARCHIMEDEAN (𝒏, 𝜷)-BANACH SPACES 

 

Theorem 3.1 Let 𝜙: 𝑋 × 𝑋 → ℝ+ for which 𝑓: 𝑋 → 𝑌  ( 𝑋 

denotes a n.A quasi normed space, while 𝑌 represents a n.A 

quasi Banach space) satisfies the inequality: 

 

∥ 𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) − (b + 1)(b
− 1)2[𝑓(𝑥) + 𝑓(𝑦)] − 𝑏(b
+ 1)𝑓(𝑥 + 𝑦) ∥≤ 𝜙(𝑥, 𝑦) 

(3) 

 

and 

 

lim
𝑖→∞

(
𝜅

|b|3
)𝑖𝜙(𝑏𝑖𝑥, 𝑏𝑖𝑦) (4) 

 

converges, where 𝑥, 𝑦 ∈ 𝑋. Then an EL type cubic mapping 

exists uniquely as 𝑇: 𝑋 → 𝑌 fulfills the Eq. (1) and 

 

‖𝑓(𝑥) − 𝑇(𝑥)‖ ≤
𝜅

|b|3
[max {(

𝜅

|𝑏|3
)

𝑖

𝜙(𝑏𝑖𝑥, 0)}] : 0 ≤ 𝑖 < 𝑛  (5) 

 

where, 𝑇 is given by: 

 

𝑇(𝑥) = lim
𝑛→∞

𝑓(𝑏𝑛𝑥)

𝑏3𝑛
 (6) 

 

for 𝑥 ∈ 𝑋. 
 

Proof. To demonstrate the stability results, it is necessary to 

establish the following: 

 

(i) The sequence {
𝑓(𝑏𝑛𝑥)

𝑏3𝑛 } is a Cauchy sequence. 

(ii) If 𝑇(𝑥) = lim
𝑛→∞

𝑓(𝑏𝑛𝑥)

𝑏3𝑛  then 𝑇 is cubic. 

(iii) Further 𝑇 satisfies ∥ 𝑆(𝑥) − 𝑇(𝑥) ∥≤ 𝛿. 

(iv) 𝑇 is unique. 

 

For, first we substitute 𝑦 = 0 in inequality (3) and divide 

the inequality with |𝑏|3, then, we obtain: 

 

‖
𝑓(𝑏𝑥)

𝑏3
− 𝑓(𝑥) −

(𝑏 + 1)(𝑏 − 1)2𝑓(0)

𝑏3
‖ ≤

1

|𝑏|3
𝜙(𝑥, 0) 

 

now, let 𝑓(0) = 0 then it may be written as: 

 

‖𝑓(𝑥) −
𝑓(b𝑥)

𝑏3
‖ ≤

1

|b|3
𝜙(𝑥, 0) (7) 

 

now changing 𝑥 by 𝑏𝑖𝑥 in inequality (7) and dividing either 

side by |𝑏|3𝑖, we get the following: 

 

‖
𝑓(𝑏𝑖𝑥)

𝑏3𝑖
−

𝑓(𝑏𝑖+1𝑥)

𝑏3(𝑖+1)
‖ ≤

1

|b|3

𝜙(𝑏𝑖𝑥, 0)

|b|3𝑖
 (8) 

by using the method of mathematical induction on 𝑛  and 

taking summation from 𝑖 = 0,1, . . . , 𝑛 − 1 we get: 

  

‖𝑓(𝑥) −
𝑓(𝑏𝑛𝑥)

𝑏3𝑛
‖ ≤

𝜅

|b|3
[max {(

𝜅

𝑏3
)𝑖𝜙(𝑏𝑖𝑥, 0), 

(
𝜅

𝑏3
)𝑛−1𝜙(𝑏𝑛−1𝑥, 0)}]: 0 ≤ 𝑖 ≤ 𝑛 − 2 

(9) 

 

We obtain the inequality (7) when 𝑛 = 1. Now we take 𝑛 =
𝑛 + 1 in inequality (9), then we have: 

 

‖𝑓(𝑥) −
𝑓(𝑏𝑛+1𝑥)

𝑏3(𝑛+1)
‖ ≤ max {𝜅 ‖𝑓(𝑥) −

𝑓(𝑏𝑥)

𝑏3
‖, 

𝜅 ‖
𝑓(𝑏𝑥)

𝑏3
−

𝑓(𝑏𝑛+1𝑥)

𝑏3(𝑛+1)
‖} ≤ max {

𝜅

|𝑏|3
𝜙(𝑥, 0), 

𝜅2

|𝑏|3

𝜙(𝑏𝑥, 0)

𝑏3
, . . . ,

𝜅𝑛+1

|𝑏|3

𝜙(𝑏𝑛𝑥, 0)

(𝑏3)𝑛
}

≤
𝜅

|𝑏|3
[max {(

𝜅

𝑏3
)𝑖𝜙(𝑏𝑖𝑥, 0), 

(
𝜅

𝑏3
)𝑛𝜙(𝑏𝑛𝑥, 0)}]: 0 ≤ 𝑖 ≤ 𝑛 − 1 

 

now we can prove the sequence {
𝑓(𝑏𝑛𝑥)

𝑏3𝑛 } is convergent. For, we 

can divide the inequality (9) by |𝑏|3𝑚 and also change 𝑥 by 

𝑏𝑚𝑥, hence, we can see the inequality (9) as follows: 

 

‖
𝑓(𝑏𝑛+𝑚𝑥)

𝑏3(𝑛+𝑚)
−

𝑓(𝑏𝑚𝑥)

𝑏3𝑚
‖

=
1

|b|3𝑚
‖

𝑓(𝑏𝑛𝑏𝑚𝑥)

𝑏3𝑛
− 𝑓(𝑏𝑚𝑥)‖

≤
𝜅

|b|3𝑚+3
[max {(

𝜅

𝑏3
)𝑖𝜙(𝑏𝑖𝑏𝑚𝑥, 0), 

(
𝜅

𝑏3
)𝑛−1𝜙(𝑏𝑛−1𝑏𝑚𝑥, 0)}]

≤
𝜅

𝜅𝑚|b|3
[max {(

𝜅

𝑏3
)𝑚+𝑖𝜙(𝑏𝑚+𝑖𝑥, 0), 

(
𝜅

𝑏3
)𝑚+𝑛−1𝜙(𝑏𝑚+𝑛−1𝑥, 0)}],    𝑛, 𝑚 > 0 

(10) 

 

which converges to 0 as 𝑚 → ∞ , hence we obtain the 

sequence {
𝑓(𝑏𝑛𝑥)

𝑏3𝑛 } as Cauchy. So, we can establish: 

 

𝑇(𝑥) = lim
𝑛→∞

𝑓(𝑏𝑛𝑥)

𝑏3𝑛
 

 

letting 𝑛 → ∞ in inequality (9), we achieve the inequality (5). 

Now we prove that 𝑇 satisfies Eq. (1). For, we can replace 𝑥, 𝑦 

as 𝑏𝑛𝑥, 𝑏𝑛𝑦  respectively in inequality (3) and divide the 

equation by |𝑏|3𝑛. Then we get: 

 

(
1

𝑏3
)𝑛 ∥ 𝑓(𝑏. 𝑏𝑛𝑥 + 𝑏𝑛𝑦) + 𝑓(𝑏𝑛𝑥 + 𝑏. 𝑏𝑛𝑦) 

−(𝑏 + 1)(𝑏 − 1)2[𝑓(𝑏𝑛𝑥) + 𝑓(𝑏𝑛𝑦)] 
−𝑏(𝑏 + 1)𝑓(𝑏𝑛𝑥 + 𝑏𝑛𝑦) ∥ 

≤ (
𝜅

|𝑏|3
)𝑛𝜙(𝑏𝑛𝑥, 𝑏𝑛𝑦) 

 

then by letting 𝑛 → ∞ , we obtain the result. Suppose we 

assume that another function 𝑆: 𝑋 → 𝑌 meets the Eq. (1) and 

also the inequality (5). Let 𝑥 = 𝑏𝑛𝑥. Then we have 𝑆(𝑏𝑛𝑥) =
𝑏3𝑛𝑆(𝑥), now from inequality (5) we have: 
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∥ 𝑆(𝑥) − 𝑇(𝑥) ∥= |𝑏|−3𝑛 ∥ 𝑆(𝑏𝑛𝑥) − 𝑇(𝑏𝑛𝑥) ∥ 

≤ |𝑏|−3𝑛(∥ 𝑆(𝑏𝑛𝑥) − 𝑓(𝑏𝑛𝑥) − 𝑐 ∥ 

+∥ 𝑓(𝑏𝑛𝑥) + 𝑐 − 𝑇(𝑏𝑛𝑥) ∥) 

≤ |𝑏|−3𝑛max {𝜅 ∥ 𝑆(𝑏𝑛𝑥) − 𝑓(𝑏𝑛𝑥) − 𝑐 ∥, 
𝜅 ∥ 𝑓(𝑏𝑛𝑥) + 𝑐 − 𝑇(𝑏𝑛𝑥) ∥} 

≤
𝜅

|𝑏|3
𝑚𝑎𝑥{(

𝜅

|𝑏|3
)𝑛+𝑖𝜙(𝑏𝑛+𝑖𝑥, 0)} ∶ 0 ≤ 𝑖 < 𝑛 

 

further letting 𝑛 → ∞, we obtain the result. 

 

Corollary 3.2 Let |3| < 1  and let 𝜏: [0, ∞) → [0, ∞)  be 

defined by: 

 

𝜏(𝑠) = {
|27|𝑛

𝑛 + 1
, 𝑠 = |3|𝑛𝑟, 𝑛 ∈ ℕ ∪ {0}, 𝑟 > 0

𝑠                    otherwise 

 

 

suppose that 𝛿 > 0, and if 𝑋 is a quasi-normed space and 𝑌 is 

a quasi-Banach space, 𝑓: 𝑋 → 𝑌  satisfies the inequality (3) 

when b= 3, that is, 

 
‖𝑓(3𝑥 + 𝑦) + 𝑓(𝑥 + 3𝑦) − 12𝑓(𝑥 + 𝑦) − 16𝑓(𝑥)

− 16𝑓(𝑦)‖ ≤ 𝛿 𝑚𝑎𝑥{𝜏‖𝑥‖, 𝜏‖𝑦‖} 

 

for all 𝑥, 𝑦 𝑖𝑛 𝑋 . Then another mapping exists uniquely as 

𝑇: 𝑋 → 𝑌 satisfies the Eq. (1) such that: 

 

‖𝑓(𝑥) − 𝑇(𝑥)‖ ≤
1

|81|
𝛿𝜏‖𝑥‖ 

 

Proof. Define 𝜙: 𝑋 × 𝑋 → [0, ∞)  by  𝜙(𝑥, 𝑦) =
𝛿 𝑚𝑎𝑥{𝜏‖𝑥‖, 𝜏‖𝑦‖} then we have: 

 

lim
𝑛→∞

𝜅𝑛

|3|3𝑛
𝜙(3𝑛𝑥, 3𝑛𝑦) 

≤ lim
𝑛→∞

𝜅𝑛

|3|3𝑛
𝛿 𝑚𝑎𝑥{𝜏‖3𝑛𝑥‖, 𝜏‖3𝑛𝑦‖} 

≤ lim
𝑛→∞

𝜅𝑛

|3|3𝑛
𝛿 𝑚𝑎𝑥 {

|3|3𝑛

𝑛 + 1
𝜏‖𝑥‖,

|3|3𝑛

𝑛 + 1
𝜏‖𝑦‖} 

≤ lim
𝑛→∞

𝜅𝑛

|3|3𝑛
 
|3|3𝑛

𝑛 + 1
𝛿 𝑚𝑎𝑥{𝜏‖𝑥‖, 𝜏‖𝑦‖} 

≤ lim
𝑛→∞

𝛿
𝜅𝑛

𝑛 + 1
𝑚𝑎𝑥{𝜏‖𝑥‖, 𝜏‖𝑦‖} 

≤ lim
𝑛→∞

𝛿
𝜅𝑛

𝑛 + 1
 𝜙(𝑥, 𝑦) = 0 

 

further let �̅�(𝑥)  = 𝑚𝑎𝑥 {
𝜅𝑛

|3|3𝑛  𝜙(3𝑛 , 0)} 

= 𝑚𝑎𝑥 {
𝜅𝑛

|3|3𝑛

|3|3𝑛

𝑛 + 1
𝜙(𝑥, 0)} 

= 𝑚𝑎𝑥 {
𝜅𝑛

𝑛 + 1
𝜙(𝑥, 0)} =

𝜅𝑛

𝑛 + 1
𝜙(𝑥, 0) 

 

using Theorem 3.1, which yields the required result. 

 

Theorem 3.3 Let a mapping 𝜙: 𝑋2 → ℝ+ for which 𝑓: 𝑋 → 𝑌 

(𝑋 denotes a n.A quasi normed space, while 𝑌 represents a n.A 

quasi Banach space) satisfies 

 

∥ 𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) − (b + 1)(b − 1)2[𝑓(𝑥)
+ 𝑓(𝑦)] − 𝑏(b + 1)𝑓(𝑥 + 𝑦) ∥
≤ 𝜙(𝑥, 𝑦) 

(11) 

 

and 

 

lim
𝑖→∞

(|b|3𝜅)𝑖𝜙(
𝑥

𝑏𝑖
,

𝑦

𝑏𝑖
) (12) 

 

converges for each 𝑥, 𝑦 ∈ 𝑋 . Then another EL type cubic 

mapping exists uniquely as 𝑇: 𝑋 → 𝑌 fulfills the Eq. (1) and: 

 

∥ 𝑓(𝑥) − 𝑇(𝑥) ∥≤
1

|b|3 max (|b|3𝜅)𝑖𝜙(
𝑥

𝑏𝑖
, 0): 0 ≤ 𝑖 < 𝑛 (13) 

 

where, 𝑇 is given by: 

 

𝑇(𝑥) = lim
𝑛→∞

𝑏3𝑛𝑓(
𝑥

𝑏𝑛
) (14) 

 

for 𝑥 ∈ 𝑋. 

 

Proof. Replace 𝑥 by 
𝑥

𝑏𝑖 in inequality (7) and multiply both 

sides of inequality (7) by |b|3𝑖 we get: 

 

‖𝑏3𝑖𝑓(
𝑥

𝑏𝑖
) − 𝑏3(𝑖+1)𝑓(

𝑥

𝑏𝑖+1
)‖ ≤

1

|b|3
|b|3𝑖𝜙(

𝑥

𝑏𝑖
, 0) (15) 

 

using an induction method on 𝑛 and taking summation from 

𝑖 = 0,1,2, . . . , 𝑛 in inequality (15) we obtain that: 

 

‖𝑓(𝑥) − 𝑏3𝑛𝑓 (
𝑥

𝑏𝑛
)‖ ≤

1

|b|3
max {(|b|3𝜅)𝑖𝜙(

𝑥

𝑏𝑖
, 0), 

(|b|3𝜅)𝑛−1𝜙(
𝑥

𝑏𝑛−1
, 0)}: 0 ≤ 𝑖 ≤ 𝑛 − 2 

(16) 

 

now, we take 𝑛 = 𝑛 + 1 in inequality (16), then 

 

‖𝑓(𝑥) − 𝑏3(𝑛+1)𝑓 (
𝑥

𝑏𝑛+1
)‖ ≤ max {𝜅 ‖𝑓(𝑥) − 𝑏3𝑓 (

𝑥

𝑏
)‖, 

𝜅 ‖𝑏3𝑓(
𝑥

𝑏
) − 𝑏3(𝑛+1)𝑓(

𝑥

𝑏𝑛+1
)‖}

≤
1

|𝑏|3
max {(|𝑏|3𝜅)𝑖𝜙 (

𝑥

𝑏𝑖
, 0) , (|𝑏|3𝜅)𝑛𝜙(

𝑥

𝑏𝑛
, 0)} 

: 0 ≤ 𝑖 ≤ 𝑛 − 1 

 

let us now show that {𝑏3𝑛𝑓(
𝑥

𝑏𝑛)}  is convergent. For, 

multiplying the inequality (16) by |𝑏|3𝑚 and also changing 𝑥 

by 𝑏𝑚𝑥, we get 

 

‖𝑏3𝑚𝑓(𝑏𝑚𝑥) − 𝑏3(𝑚+𝑛)𝑓(
𝑏𝑚𝑥

𝑏𝑛
)‖

= |𝑏|3𝑚 ‖𝑓(𝑏𝑚𝑥) − 𝑏3𝑛𝑓(
𝑏𝑚𝑥

𝑏𝑛
)‖ 

≤
|𝑏|3𝑚

|𝑏|3
𝑚𝑎𝑥 {(|𝑏|3𝜅)𝑖𝜙(

𝑏𝑚𝑥

𝑏𝑖
, 0), 

(|𝑏|3𝜅)𝑛−1𝜙(
𝑏𝑚𝑥

𝑏𝑛−1
, 0) ≤

|𝑏|3𝑚

𝜅𝑚|𝑏|3
max {(|𝑏|3𝜅)𝑚+𝑖 

𝜙 (
𝑏𝑚𝑥

𝑏𝑖
, 0) , (|b|3𝜅)𝑚+𝑛−1𝜙(

𝑏𝑚𝑥

𝑏𝑛−1 , 0)}, ∶ 0 ≤ 𝑖 ≤ 𝑛 − 1 

   𝑛, 𝑚 > 0 

 

which converges to 0  as 𝑚 → ∞ . Hence the sequence 

{𝑏3𝑛𝑓(
𝑥

𝑏𝑛)} is Cauchy. Therefore, we may define: 

 

𝑇(𝑥) = lim
𝑛→∞

𝑏3𝑛𝑓(
𝑥

𝑏𝑛
) 
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where 𝑥 ∈ 𝑋. Then by letting 𝑛 → ∞ in inequality (16), we 

obtain the result. The uniqueness of T can be obtained in a 

similar approach given to theorem 3.1. 

 

Theorem 3.4 Let 𝑋 be a n.A quasi-normed space and 𝑌 be a 

n.A 𝑝 -Banach space. Let 𝜙: 𝑋 × 𝑋 → ℝ+  and 𝑓: 𝑋 →  𝑌 

satisfies the functional inequality: 
  

∥ 𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) − (b + 1)(b − 1)2[𝑓(𝑥)
+ 𝑓(𝑦)] − 𝑏(b + 1)𝑓(𝑥 + 𝑦) ∥
≤ 𝜙(𝑥, 𝑦) 

(17) 

 

and 

 

lim
𝑖→∞

𝜙(𝑏𝑖𝑥, 𝑏𝑖𝑦)𝑝

|b|3𝑝𝑖
 (18) 

 

converges. Then another EL type cubic function exists 

uniquely as 𝑇: 𝑋 → 𝑌 given by Eq. (6), which holds Eq. (1) 

and: 

 

‖𝑓(𝑥) − 𝑇(𝑥)‖ ≤
1

|b|3
[max {

𝜙(𝑏𝑖𝑥, 0)𝑝

|b|3𝑝𝑖
}]

1
𝑝 

: 𝑙 ≤ 𝑖 < 𝑚 

(19) 

 

Proof. From the inequality (8) and by the definition of 𝑝-

norm, we have: 

 

‖
𝑓(𝑏𝑙𝑥)

𝑏3𝑙
−

𝑓(𝑏𝑚𝑥)

𝑏3𝑚
‖

𝑝

≤ ‖
𝑓(𝑏𝑖𝑥)

𝑏3𝑖
−

𝑓(𝑏𝑖+1𝑥)

𝑏3(𝑖+1)
‖

𝑝

 

                                                              ∶ 𝑙 ≤ 𝑖 ≤ 𝑚 − 1 

≤
1

|b|3
𝑚𝑎𝑥 {

𝜙(𝑏𝑖𝑥, 0)𝑝

|b|3𝑝𝑖
} 

(20) 

 

for each 𝑥  belongs to 𝑋  and all 𝑙, 𝑚  with 𝑚 > 𝑙 ≥ 0 . 

Letting  𝑚 → ∞  it tends to zero and we get the sequence 

{
𝑓(𝑏𝑚𝑥)

𝑏3𝑚 } is Cauchy for every 𝑥 ∈ 𝑋 also, by the completeness 

of 𝑌 we can write: 

T(𝑥) = lim
𝑚→∞

𝑓(𝑏𝑚𝑥)

𝑏3𝑚
 

 

now we prove that the function 𝑇 fulfills the Eq. (1). For, we 

put 𝑥 = 𝑏𝑚𝑥  and 𝑦 = 𝑏𝑚𝑦  in inequality (17) and divide 

either side by |𝑏|3𝑚𝑝 and taking 𝑝-norm we obtain: 
 

lim
𝑚→∞

1

|𝑏|3𝑚𝑝 ∥ 𝑓(𝑏𝑚(𝑏𝑥 + 𝑦)) + 𝑓(𝑏𝑚(𝑥 + 𝑏𝑦)) 

−(𝑏 + 1)(𝑏 − 1)2[𝑓(𝑏𝑚𝑥) + 𝑓(𝑏𝑚𝑦)] 

−𝑏(𝑏 + 1)𝑓(𝑏𝑚(𝑥 + 𝑦)) ∥𝑝≤ lim
𝑚→∞

𝜙(𝑏𝑚𝑥, 𝑏𝑚𝑦)𝑝

|𝑏|3𝑚𝑝  

 

then letting 𝑚 → ∞, we obtain the result. Suppose that another 

cubic mapping 𝑆: 𝑋 → 𝑌  exists, which fulfills Eq. (1) and 

inequality (19). Then, we have 𝑆(𝑏𝑚𝑥) = 𝑏3𝑚𝑆(𝑥), now from 

inequality (19) we have 

 

∥ 𝑆(𝑥) − 𝑇(𝑥) ∥𝑝= |𝑏|−3𝑚𝑝 ∥ 𝑆(𝑏𝑚𝑥) − 𝑇(𝑏𝑚𝑥) ∥𝑝 

≤ |𝑏|−3𝑚𝑝(∥ 𝑆(𝑏𝑚𝑥) − 𝑓(𝑏𝑚𝑥) − 𝑐 

+𝑓(𝑏𝑚𝑥) + 𝑐 − 𝑇(𝑏𝑚𝑥) ∥𝑝) 

≤ |b|−3𝑚𝑝max {∥ 𝑆(𝑏𝑚𝑥) − 𝑓(𝑏𝑚𝑥) − 𝑐 ∥𝑝, 
∥ 𝑓(𝑏𝑚𝑥) + 𝑐 − 𝑇(𝑏𝑚𝑥) ∥𝑝} 

≤
1

|𝑏|3𝑝 𝑚𝑎𝑥 {
𝜙(𝑏𝑚+𝑖𝑥, 0)𝑝

|𝑏|3(𝑚+𝑖)𝑝
} : 0 ≤ 𝑖 < 𝑛 

hence by letting 𝑛 → ∞ we obtain the proof of the theorem. 

 

Theorem 3.5 Let 𝑋 be a n.A quasi-normed space and 𝑌 be a 

n.A 𝑝-Banach space. Let 𝜙: 𝑋 × 𝑋 → ℝ+  and 𝑓  from 𝑋  to 𝑌 

satisfies the functional inequality: 
 

∥ 𝑓(b𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) − (b + 1)(b − 1)2[𝑓(𝑥)
+     𝑓(𝑦)] − 𝑏(b + 1)𝑓(𝑥 + 𝑦) ∥
≤ 𝜙(𝑥, 𝑦) 

(21) 

 

and 
 

lim
𝑖→∞

|b|3𝑝𝑖𝜙(
𝑥

𝑏𝑖
,

𝑦

𝑏𝑖
)𝑝 (22) 

 

converges. Then another EL type cubic mapping exists 

uniquely as 𝑇: 𝑋 → 𝑌 defined by inequality (14) which holds 

the Eq. (1) and  
  

∥ 𝑓(𝑥) − 𝑇(𝑥) ∥≤
1

|b|3
[max {(|b|3𝑝𝑖)𝜙(

𝑥

𝑏𝑖
, 0)𝑝}]

1
𝑝 

: 𝑙 ≤ 𝑖 < 𝑚 

(23) 

 

Proof. From the inequality (15) and by the definition of 𝑝-

norm, we have: 
 

‖𝑏3𝑙𝑓 (
𝑥

𝑏𝑙
) − 𝑏3𝑚𝑓 (

𝑥

𝑏𝑚
)‖

𝑝

≤
‖𝑏3𝑖𝑓 (

𝑥

𝑏𝑖
) − 𝑏3(𝑖+1)𝑓 (

𝑥

𝑏𝑖+1
)‖

: 𝑙 ≤ 𝑖 ≤ 𝑚 − 1

𝑝

 

≤
1

|b|3 𝑚𝑎𝑥 {|b|3𝑝𝑖𝜙 (
𝑥

𝑏𝑖
, 0)𝑝} 

(24) 

 

where 𝑥 𝑖𝑛 𝑋.  Hence by letting 𝑚 → ∞ , the sequence 

{𝑏3𝑚𝑓(
𝑥

𝑏𝑚)} is said to be Cauchy and it converges since 𝑌 is 

complete. Hence, we can write: 

 

𝑇(𝑥) = lim
𝑚→∞

𝑏3𝑚𝑓(
𝑥

𝑏𝑚) 

 

where 𝑥 ∈ 𝑋. The remaining proof follows a similar approach 

to the preceding theorem. 

 

Theorem 3.6 Let 𝜙: 𝑋𝑛+1 → ℝ+ be a function with: 

 

lim
𝑖→∞

𝜙 (
𝑏𝑖𝑥, 𝑏𝑖𝑦, 𝑣2, … , 𝑣𝑛

|𝑏|𝑖𝛽
) = 0 (25) 

 

for 𝑥, 𝑦, 𝑣2, … , 𝑣𝑛 in 𝑋. Presume that 𝑓: 𝑋 →  𝑌 (where 𝑋 is a 

n.A (𝑛, 𝛽)- normed space and 𝑌 is a n.A (𝑛, 𝛽)- Banach space) 

is a mapping that meets the inequality: 

 

‖𝐷𝑓(𝑥, 𝑦), 𝑣2, … , 𝑣𝑛‖
𝛽

≤ 𝜙(𝑥, 𝑦, 𝑣2, … , 𝑣𝑛) (26) 

 

where, 𝐷𝑓(𝑥, 𝑦) is defined as: 𝑓(𝑏𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) −

(𝑏 + 1)(𝑏 − 1)2[𝑓(𝑥) + 𝑓(𝑦)] − 𝑏(𝑏 + 1)𝑓(𝑥 + 𝑦)  and 

where 𝑥, 𝑦, 𝑣2, … , 𝑣𝑛 ∈ 𝑋.  Then an another EL cubic type 

mapping exists uniquely as 𝑇: 𝑋 → 𝑌 such that 

 
‖𝑓(𝑥) − 𝑇(𝑥), 𝑣2, … , 𝑣𝑛‖𝛽

≤ lim
𝑖→∞

 max {|𝑏|−3𝑚𝛽𝜙 (
𝑏𝑚𝑥, 0, 𝑣2, … , 𝑣𝑛

|𝑏|3𝛽
) : 0 ≤ 𝑚

< 𝑖} 

(27) 
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Proof. Let 𝑦 = 0 in inequality (26) and also divide it by |𝑏|3𝛽, 

we obtain: 

 

‖
𝑓(𝑏𝑥)

𝑏3 − 𝑓(𝑥), 𝑣2, … , 𝑣𝑛‖
𝛽

≤ 𝜙 (
𝑥, 0, 𝑣2, … , 𝑣𝑛

|𝑏|3𝛽
) (28) 

 

now replace 𝑥 by 𝑏𝑖𝑥 in inequality (28) and divide either side 

by |𝑏|3𝑖, then 

 
 

‖
𝑓(𝑏𝑖+1 𝑥)

𝑏3(𝑖+1)
−

𝑓(𝑏𝑖𝑥)

𝑏3𝑖
, 𝑣2, … , 𝑣𝑛‖

𝛽

≤ |𝑏|−3𝑖𝛽𝜙 (
𝑏𝑖𝑥, 0, 𝑣2, … , 𝑣𝑛

|𝑏|3𝛽
) (29) 

 

by letting 𝑖 approach infinity and applying inequality (25), we 

obtain: 

 

lim
𝑖→∞

‖
𝑓(𝑏𝑖+1 𝑥)

𝑏3(𝑖+1)
−

𝑓(𝑏𝑖𝑥)

𝑏3𝑖
, 𝑣2, … , 𝑣𝑛‖

𝛽

= 0 

 

where 𝑥, 𝑣2, … , 𝑣𝑛 ∈ 𝑋. Therefore {
𝑓(𝑏𝑖𝑥)

𝑏3i } is said to be Cauchy. 

Now we define another mapping 𝑇: 𝑋 → 𝑌 such that 
 

𝑇(𝑥) = lim
𝑖→∞

𝑓(𝑏𝑖𝑥)

𝑏3𝑖
 (30) 

 

using the method of mathematical induction one can illustrate 

that 
 

‖
𝑓(𝑏𝑖𝑥)

𝑏3𝑖
− 𝑓(𝑥), 𝑣2, … , 𝑣𝑛‖

𝛽

= ‖ ∑ (
𝑓(𝑏𝑚+1 𝑥)

𝑏3(𝑚+1)
−

𝑓(𝑏𝑚𝑥)

𝑏3𝑚 , 𝑣2, … , 𝑣𝑛)

𝑖−1

𝑚=0

‖

𝛽

≤ 𝑚𝑎𝑥 {
‖

𝑓(𝑏𝑚+1 𝑥)

𝑏3(𝑚+1)
−

𝑓(𝑏𝑚𝑥)

𝑏3𝑚
, 𝑣2, … , 𝑣𝑛‖

𝛽

                                              ∶ 0 ≤ 𝑚 < 𝑖

}

≤ |𝑏|−3𝑚𝛽  𝑚𝑎𝑥 {𝜙 (
𝑏𝑚𝑥, 0, 𝑣2, … , 𝑣𝑛

|𝑏|3𝛽
) : 0 ≤ 𝑚 < 𝑖} 

(31) 

 

letting 𝑖 → ∞ in inequality (31) and applying inequality (30) 

we can see that the inequality (27) holds. By inequality (26), 

we have that: 

 

‖
‖

𝑓 (𝑏𝑖(𝑏𝑥 + 𝑦))

𝑏3𝑖
+

𝑓 (𝑏𝑖(𝑥 + 𝑏𝑦))

𝑏3𝑖
− (𝑏 + 1)(𝑏 − 1)2

𝑓 (𝑏𝑖(𝑥))

𝑏3𝑖
−

(𝑏 + 1)(𝑏 − 1)2
𝑓 (𝑏𝑖(𝑦))

𝑏3𝑖
− (𝑏2 + 𝑏)

𝑓 (𝑏𝑖(𝑥 + 𝑦))

𝑏3𝑖
, 𝑣2, … , 𝑣𝑛

‖
‖

𝛽

 

≤ lim
𝑖→∞

𝜙 (
𝑏𝑖𝑥,𝑏𝑖𝑦,𝑣2,…,𝑣𝑛

|𝑏|3𝑖𝛽
) = 0. 

 

Hence the mapping 𝑇  satisfies Eq. (1). Let 𝑇′: 𝑋 → 𝑌  be 

another function meets inequality (27) then: 

 

‖𝑇(𝑥) − 𝑇′(𝑥), 𝑣2, … , 𝑣𝑛‖𝛽 = ‖𝑇(𝑏𝑘𝑥) −

𝑇′(𝑏𝑘𝑥), 𝑣2, … , 𝑣𝑛‖𝛽 ≤ 𝑚𝑎𝑥 {‖𝑇(𝑏𝑘𝑥) −

𝑓(𝑏𝑘𝑥), 𝑣2, … , 𝑣𝑛‖𝛽 , ‖𝑓(𝑏𝑘𝑥) − 𝑇′(𝑏𝑘𝑥), 𝑣2, … , 𝑣𝑛‖
𝛽

} ≤

1

|𝑏|3𝛽  lim
𝑖→∞

 𝑚𝑎𝑥 {𝜙 (
𝑏𝑚 𝑥,0,𝑣2,…,𝑣𝑛

|𝑏|3𝑚𝑘𝛽 ) : 𝑘 ≤ 𝑚 < 𝑘 + 𝑖}. 

 

which tends to zero as 𝑘 → ∞. 
 

Theorem 3.7 Let 𝜙: 𝑋𝑛+1 → ℝ+ be a function with: 

lim
𝑖→∞

|𝑏|3𝑖𝛽𝜙 (
𝑥

𝑏𝑖
,

𝑦

𝑏𝑖
, 𝑣2, … 𝑣𝑛) = 0 (32) 

 

for 𝑥, 𝑦, 𝑣2, … , 𝑣𝑛 ∈ 𝑋. Presume that 𝑓: 𝑋 →  𝑌 (where 𝑋  is a 

n.A (𝑛, 𝛽)- normed space and 𝑌 is a n.A (𝑛, 𝛽)- Banach space) 

is a mapping that meets the inequality: 

 

‖𝐷𝑓(𝑥, 𝑦), 𝑣2, … , 𝑣𝑛‖
𝛽

≤ 𝜙(𝑥, 𝑦, 𝑣2, … , 𝑣𝑛) (33) 

 

where, 𝐷𝑓(𝑥, 𝑦) is defined as: 𝑓(𝑏𝑥 + 𝑦) + 𝑓(𝑥 + 𝑏𝑦) −

(𝑏 + 1)(𝑏 − 1)2[𝑓(𝑥) + 𝑓(𝑦)] − 𝑏(𝑏 + 1)𝑓(𝑥 + 𝑦)  and 

where 𝑥, 𝑦, 𝑣2, … , 𝑣𝑛 ∈ 𝑋.  Then another EL cubic type 

mapping exists uniquely as 𝑇: 𝑋 → 𝑌 such that 

 
‖𝑓(𝑥) − 𝑇(𝑥), 𝑣2, … , 𝑣𝑛‖𝛽

≤ lim
𝑖→∞

𝑚𝑎𝑥 {|𝑏|3𝑚𝛽𝜙 (
𝑥

𝑏𝑚 
, 0, 𝑣2, … , 𝑣𝑛) : 0 ≤ 𝑚 < 𝑖} 

(34) 

 

Proof. Let 𝑦 = 0 in inequality (33), we obtain that: 

 

‖𝑓(𝑏𝑥) − 𝑏3𝑓(𝑥), 𝑣2, … 𝑣𝑛‖𝛽 ≤ 𝜙(𝑥, 0, 𝑣2, … , 𝑣𝑛) 

 

replace 𝑥 by 
𝑥

𝑏𝑖+1 and multiply both sides by |𝑏|3𝑖𝛽, we have: 

 

‖𝑏3𝑖𝑓 (
𝑥

𝑏𝑖
) − 𝑏3(𝑖+1)𝑓 (

𝑥

𝑏𝑖+1 
) , 𝑣2, … , 𝑣𝑛‖

𝛽

≤ |𝑏|3𝑖𝛽𝜙 (
𝑥

𝑏𝑖
, 0, 𝑣2, … , 𝑣𝑛) 

(35) 

 

where 𝑥, 𝑣2, … , 𝑣𝑛 ∈ 𝑋. When 𝑖 approaches ∞ using Eq. (32), 

we obtain: 

 

lim
𝑖→∞

‖𝑏3𝑖𝑓 (
𝑥

𝑏𝑖
) − 𝑏3(𝑖+1)𝑓 (

𝑥

𝑏𝑖+1
) , 𝑣2, … , 𝑣𝑛‖

𝛽
= 0. 

 

Therefore, the sequence {𝑏3𝑖𝑓 (
𝑥

𝑏𝑖)}  is Cauchy. Now we 

define the mapping 𝑇: 𝑋 → 𝑌 such that: 

 

𝑇(𝑥) = lim
𝑖→∞

 𝑏3𝑖𝑓 (
𝑥

𝑏𝑖
) (36)  

 

by using the method of mathematical induction, we express 

that: 

 

‖𝑓(𝑥) − 𝑏3𝑖𝑓 (
𝑥

𝑏𝑖
) , 𝑣2, … , 𝑣𝑛‖

𝛽

= ‖ ∑ (𝑏3𝑚𝑓 (
𝑥

𝑏𝑚
) − 𝑏3(𝑚+1)𝑓 (

𝑥

𝑏𝑚+1
) , 𝑣2, … , 𝑣𝑛)

𝑖−1

𝑚=0

‖

𝛽

≤ max {
‖𝑏3𝑚𝑓 (

𝑥

𝑏𝑚
) − 𝑏3(𝑚+1)𝑓 (

𝑥

𝑏𝑚+1
) , 𝑣2, … , 𝑣𝑛‖

𝛽

: 0 ≤ 𝑚 < 𝑖

} 

≤ max {|𝑏|3𝑚𝛽𝜙 (
𝑥

𝑏𝑚
, 0, 𝑣2, … , 𝑣𝑛) : 0 ≤ 𝑚 < 𝑖} 

(37) 

 

letting 𝑖 → ∞ in inequality (37) and applying Eq. (36) we can 

see that the inequality (34) holds. By (33): 

 

‖𝑏3𝑖𝑓 (
𝑏𝑥 + 𝑦

𝑏𝑖
) + 𝑏3𝑖𝑓 (

𝑥 + 𝑏𝑦

𝑏𝑖
) − (𝑏 + 1)(𝑏 − 1)2𝑏3𝑖𝑓 (

𝑥

𝑏𝑖
)

− (𝑏 + 1)(𝑏 − 1)2𝑏3𝑖𝑓 (
𝑦

𝑏𝑖
)

− (𝑏2 + 𝑏)𝑏3𝑖𝑓 (
𝑥 + 𝑦

𝑏𝑖
)‖

𝛽

≤ lim
𝑖→∞

|𝑏|3𝑖𝛽𝜙 (
𝑥

𝑏𝑖
,

𝑦

𝑏𝑖
, 𝑣2, … 𝑣𝑛) = 0 
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hence the mapping 𝑇  satisfies Eq. (1). Let 𝑇′: 𝑋 → 𝑌  be 

another function meets (34), then: 

 

‖𝑇(𝑥) − 𝑇′(𝑥), 𝑣2, … , 𝑣𝑛‖𝛽 = ‖𝑇 (
𝑥

𝑏𝑘
) − 𝑇′ (

𝑥

𝑏𝑘
) , 𝑣2, … , 𝑣𝑛‖

𝛽
 

≤ 𝑚𝑎𝑥 {‖𝑇 (
𝑥

𝑏𝑘
) − 𝑓 (

𝑥

𝑏𝑘
) , 𝑣2, … 𝑣𝑛‖

𝛽
, ‖𝑓 (

𝑥

𝑏𝑘
)

− 𝑇′ (
𝑥

𝑏𝑘
) , 𝑣2, … 𝑣𝑛‖

𝛽
} 

≤ lim
 𝑖→∞

 𝑚𝑎𝑥 {
|𝑏|3𝑚𝑘𝛽𝜙 (

𝑥

𝑏𝑚 
, 0, 𝑣2, … , 𝑣𝑛)

: 𝑘 ≤ 𝑚 < 𝑘 + 𝑖
}. 

 

which tends to zero as 𝑘 → ∞. 
In the following, we give a counter example to the stability 

result of the above Eq. (1) for the n.A case. For, we consider 

𝑏 = 3 in Eq. (1). 

 

Example 3.8 Let 𝑓: 𝑋 → ℝ where 𝑋 is a linear space over 𝐾 

with a non-trivial n.A valuation (|. |𝑝). Then for 𝑝 > 13 and 

𝑓(𝑥) = 2, 𝛿 = 1 we have, 

 
|𝑓(3𝑥 + 𝑦) + 𝑓(𝑥 + 3𝑦) − 12𝑓(𝑥 + 𝑦) − 16𝑓(𝑥)

− 16𝑓(𝑦)|p ≤ 𝛿 

 

by using the fact that |84|p = 1, we have the sequence: 

 

|27−𝑛𝑓(3𝑛𝑥) − 27−(𝑛+1)𝑓(3𝑛+1𝑥)|
p

= |27−𝑛 . 2 − 27−(𝑛+1). 2|
p

= |27−𝑛
52

27
|

𝑝

= 1 

 

now consider another sequence: 

 

|27𝑛𝑓(3−𝑛𝑥) − 27(𝑛+1)𝑓(3−(𝑛+1)𝑥)|
𝑝

= |27𝑛. 2 − 27𝑛+1. 2|p = |27𝑛 (−52)|𝑝

= 1 

 

thus, the sequences are not convergent. 

 

 

4. CONCLUSIONS 

 

In this research article, we have examined the GHUR 

stability of an EL cubic type Eq. (1) in n.A quasi-Banach 

spaces, n.A 𝑝-Banach spaces and n.A (n,𝛽) Banach spaces. 

Also, we explored the results using famous Hyers direct 

method. This method is pivotal for achieving the stability 

outcomes. Additionally, we provided an illustrative example 

to help the readers demonstrate the application of our results 

in non-Archimedean context. In future, in the setting of other 

normed spaces, the GHUR stability for the Eq. (1) or any 

generalized form of functional equation can be investigated. 
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NOMENCLATURE 
 

𝜅 modulus of concavity 

 

Greek symbols 

 

𝜙, 𝜏 functions 

𝛿 smallest positive integer 
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