
Theoretical Analysis of Squeeze Lubrication Using Double ZZ Transform: Application of 

Non-Newtonian Fluids 

Rehab Ali Khudair1* , Enas Yahya Abdullah2 , Athraa Neamah Albukhuttar1

1 Department of Mathematics, Faulty of Education for Girls, Kufa University, Najaf 54002, Iraq 
2 Department of Mathematics, Faculty of Education, Kufa University, Najaf 54002, Iraq 

Corresponding Author Email: rihaba.khudair@uokufa.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.110401 ABSTRACT 

Received: 5 August 2023 

Revised: 30 October 2023 

Accepted: 10 November 2023 

Available online: 26 April 2024 

This paper highlights the flow of non-Newtonian fluids through porous elastic layers of 

human articular cartilage and describes the effect of lubricating fluid flow on the 

performance of daily activities and various activities with high accuracy through the 

design of a mathematical model. The current work includes the equations of motion, 

the equation of continuity, and squeeze lubrication as influencing factors on phases 

(stance phase-swing phase) in the gait cycle. In other words, study the characteristics of 

lubrication through the cohesive force of particles, initial concentration, smoothness of 

the surface, vertical roughness, and the weight of the human body. These expressions 

are computed using the double ZZ transformation and are used to describe many 

problems in the field of science, including the heat equation, Klein–Gordon equation, 

and others, all of which are crucial for physical applications and fractional differential 

equation because of its frequent appearance in fluid mechanics, mathematical biology, 

electrochemistry, and physics. The current findings show that solving these equations 

by Using single transforms is more difficult than using the double transform, because 

using a double transform the partial equation is converted directly into an algebraic 

equation, while the single transform converts the partial equation into an ordinary 

equation firstly and then into an algebraic equation, which requires more calculation 

and methods to obtain the exact solution. Besides, the theoretical and applied 

description of the lubrication mechanism is evident when hydrodynamic pressure is 

generated between the different layers, which plays an important role in the kinematic 

friction force between layers and particles. Furthermore, the results are presented 

graphically. From the analysis and computations of the results, it is found that the 

pressure and friction forces increase with an increase in the cycle of time. Cycle time 

greatly affects (pressure - friction force). It is known that the walking pattern varies 

depending on the daily activities that a person performs, which is greatly reflected in 

the increased pressure on the synovial joints, which is reflected in the increased friction 

between the (layer - molecules) responsible for lubricating articular. 
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1. INTRODUCTION

The idea of “integral transforms give us power and ease to 

solve such fundamental problems as initial value ones of a 

linear and of an integral differential equation, and numerous 

mathematicians across the world became interested in this 

problem during the last decades” of their applications of fluid 

mechanics was of great interest to the authors such as Sumudu, 

ARA, Saban, SEA, and SEJI [1-7]. 

Most problems in applied science and engineering fall under 

double integral equations or partial differential equations that 

are used to describe the nature and behavior of the physical 

outcome. Finally, the researcher concluded that, two years 

ago, 2016, Ranjit and Waghmare [8] hard work led to 

developing single transform to double transform partial 

equations that help in most mathematics problems to date. 

Ranjit and Waghmare 2016 applied the double Laplace double 

transform method to get the linear/nonlinear space-time exact 

solutions of the time-fractional telegraph when they 

considered t double Laplace finds the solution. Conclusion 

Ranjit and Waghmare t double Laplace transform method 

reduces the computational work volume since it is easier in 

solving partial equations as compared to single Laplace 

because the solution to the problems does not require an A 

domain polynomial, Lagrange multiplier value, He’s 

polynomials, and small parameters. 

Especially, compared to the numerical ones, the double 

Laplace transform has quite common use to solve the partial 

differential equations with unknown functions of two 

variables, which is general, and less easy to check in a 

numerical way. Therefore, it is highly advisable to check the 

performance of numerical methods to find the model error 

with analytical ones, which have developed and become more 

available. One of highly effective such analytical methods is 
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the integral transformations, which are used to find analytical 

solutions of partial differential equations. Apart from the 

discussed double Laplace transform, there are other 

applications in the literature as the double extensions of the 

double Laplace transform and double Shuhu and double ARA-

Sumudu transforms [9-11]. 

In 2016, Zafar [12] introduced a new integral transform ‘ZZ 

Transform Method’’ and it was used for the new integral 

transform technique application to solve first order linear 

differential equation, for example, Law of Natural Growth or 

Law of Natural Decay. ZZ transform Method is used for 

differential equation with variable coefficients. In 2022 a new 

transform, the double ZZ transform, was developed by 

researchers to extend the one-dimensional ZZ transform to two 

dimensions [13, 14]. We have also derived a few important 

theorems and properties. this method the Partial Differential 

equation is resolved without converting it to ordinary 

differential equation i.e., it is not necessary to determine the 

complete solution of Ordinary differential equation. This is the 

most important advantage of this method. Thus, it is very 

convenient & effective method. To demonstrate the 

effectiveness and great accuracy of the suggested transform, 

the transform is employed to find a solution to the popular 

squeeze action issue for unstable and incompressible fluid 

flow through the porous elastic of layers. By pressing the 

synovial fluid, the squeeze lubrication generates the 

hydrodynamic pressure. Both human articular mobility and 

synovial joints are required. The interstitial fluid must be 

removed from the solid organic matrix when the cartilages are 

squeezed under physiologically normal conditions (see Figure 

1). The synovial fluid causes the interstitial fluid of the solid 

organic matrix to move relatively and to get drained by 

convection and diffusion [15, 16]. The amount of hyaluronic 

acid in the synovial fluid rises with lubrication and therefore 

imbibition and excretion of the solid mass increases its 

concentration [17, 18]. As cited by Wegamir increasing the 

concentration of Hyaluronic acid increases the viscosity of 

synovial fluid. 

 

 

 
 

Figure 1. Physical information of synovial joint (Human 

knee joint) [19] 

 

Squeeze lubrication occurs when the bearing surfaces move 

at right angles to each other. The pressure in the fluid film is 

generated by the movement of the articular surfaces parallel to 

each other. As the approaching surfaces come closer, the 

competing surfaces force the air out of the area of contact. The 

pressure is caused by the attraction force that exists between 

the surfaces in the field of the lubricant, which persists as the 

fluid film is compressed. The squeeze lubrication is useful in 

short, high-pressure utilization. The demand of this device 

comes from a frequent pressure generation [20].  

The pressure yielded in the femur-humerus and between the 

head of the femur and the tibia on the intervention of the 

synovial fluid is an example. It is significant because it is more 

directly related to the gait phase while it can only sustain twice 

the weight of the individual due to movement. The lubricating 

fluid is flowing through the pores of the articular cartilage to 

the lubricated when the movements are taking place. The 

amount of fluid remains constant, but the pressure emerged 

from the action of one layer of fluid compressing one another 

varies centuries. 

 

 

2. BASIC DEFINITION OF FRACTIONAL CALCULUS 

 

In this section, the study provides some basic definitions 

and theories of the double ZZ transform that will be used in 

this article: 

 

2.1 Definition [12] 

 

Let φ(t) be a function defined for all t≥0, then ZZ transform 

of φ(t) is the function Z(γ, ρ) is defined by: 

 

𝑍(𝛾, 𝜌) = 𝛽{𝜑(𝑡)} =
𝜌

𝛾
∫ 𝜑 (𝑡) 𝑒−

𝜌

𝛾
𝑡∞

0
 𝑑𝑡  (1) 

 

The inverse ZZ−transform of Z(γ, ρ) and it is defined as β{φ 

(t)}=Z-1(Z(γ, ρ)), where Z-1 is the inverse ZZ−transform 

operator. 

 

2.2 Definition [13] 

 

The double ZZ transform of the function φ(x, t) is defined 

by the double integral as:  

 

𝛽2{𝜑 (𝑥, 𝑡)} = 𝑍((𝜃, 𝜌), (𝜔, 𝛾))

=
𝜃

𝜔
 
𝜌

𝛾
 ∫ ∫ 𝜑(𝑥 , 𝑡)𝑒−

(
𝜃
𝜔
 𝑥+

𝜌
𝛾
 𝑡)

∞

0

 𝑑𝑥 𝑑𝑡 

∞

0

 
(2) 

 

The inverse double ZZ−transform of Z((θ,ρ), (ω,γ)) and it is 

defined as β2{φ(x, t)}=Z-1 (Z((θ,ρ), (ω,γ))), where Z-1 is the 

inverse ZZ−Transform operator. 

Table 1 shows double ZZ transform for some special 

functions [13]. 

 

Table 1. Double ZZ transform for some special functions 

[13] 

 
φ(x, t) β2{φ(x, t)} φ(x, t) β2{φ(x, t)} 

k k cos(αx+ϵt) 
𝜃𝜌(𝜃𝜌 − 𝛼𝜖𝛾𝜔)

(𝜃2 + 𝛼2𝜔2) (𝜌2 + 𝜖2𝛾2)
 

e(αx+ϵt) 
𝜃 𝜌

(𝜃−𝛼𝜔) (𝜌−𝜖𝛾)
  sin(αx+ϵt) 

𝜃𝜌(𝜖𝜃𝛾 + 𝛼𝜔𝜌)

(𝜃2 + 𝛼2𝜔2) (𝜌2 + 𝜖2𝛾2)
 

xδ yε 𝛿!  𝜀! (
𝜔

𝜃
)
𝛿

(
𝛾

𝜌
)
𝜀

  cosh(α+ϵt) 
𝜃𝜌(𝜃𝜌 + 𝛼𝜖𝛾𝜔)

(𝜃2 − 𝛼2𝜔2) (𝜌2 − 𝜖2𝛾2)
 

 

2.3 Theorem [13] 

 

Double ZZ transform of first and second order partial 
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derivatives are in the form: 

 

𝛽2 {
𝜕𝜑 (𝑥, 𝑡)

𝜕𝑥
} =

𝜃

𝜔
(𝑍(𝜃, 𝜌) − 𝛽(𝜑(0, 𝑡)) 

𝛽2 {
𝜕2𝜑 (𝑥, 𝑡)

𝜕𝑥2
} =

𝜃2

𝜔2
(𝑍((𝜃, 𝜌), (𝜔, 𝛾)) − 𝛽(𝜑(0, 𝑡))

−
𝜃

𝜔
(
𝜕

𝜕𝑥
𝛽(𝜑(0, 𝑡)) 

𝛽2 {
𝜕𝜑 (𝑥, 𝑡)

𝜕𝑡
} =

𝜌

𝛾
(𝑍((𝜃, 𝜌), (𝜔, 𝛾)) − 𝛽(𝜑(𝑥, 0))

 
 

𝛽2 {
𝜕2𝜑 (𝑥, 𝑡)

𝜕𝑡2
} =

𝜌2

𝛾2
(𝑍((𝜃 , 𝜌), (𝜔, 𝛾)) − 𝛽(𝜑(𝑥, 0))

−
𝜌

𝛾
(
𝜕

𝜕𝑡
 𝛽(𝜑(𝑥, 0)) 

𝛽2 {
𝜕2𝜑 (𝑥, 𝑡)

𝜕𝑥𝜕𝑡
} =

𝜃

𝜔
𝜑(0,0) −

𝜃

𝜔
 𝛽(𝜑 (0, 𝑡))

+
𝜃

𝜔
(
𝜌

𝛾
(𝑍((𝜃, 𝜌), (𝜔, 𝛾)) − 𝛽(𝜑(𝑥, 0))) 

 

 

3. ASSUMPTIONS OF SQUEEZE LUBRICATION 

 

Some of assumptions have been adopted in the current 

study: 

(1) Non-Newtonian fluid 

(2) Incompressible squeeze lubrication fluid 

(3) Unsteady 

(4) Neglect bodily forces like gravity and magnetic field  

(5) In fluid dynamics, the no-slip condition for viscous 

fluids assumes that at a solid boundary, the fluid will have zero 

velocity relative to the boundary. The fluid velocity at all 

fluid–solid boundaries is equal to that of the solid boundary. 

 

 

4. DATA REDUCTION 

 

4.1 Basic equation 

 

The main equations that describe the theoretical analysis of 

the characteristics of the squeeze pressure region of the 

synovial fluid for the human joint can be derived and be a 

function of the phases of movement and gait of the synovial 

joint and the mathematical model and result analysis of the 

squeeze lubrication when the above-mentioned boundary 

conditions are addressed. This is a deterministic analysis and 

the effects of squeeze lubrication and the pressure and the 

friction force between the synovial fluid particles and the 

synovial fluid particles and layers against themselves are 

considered simultaneously. 

 

4.2 Mathematical formulation of the problem 

 

The continuity equation simply expresses the law of 

conservation of mass (mass per unit time entering the tube 

must flow out at same rate). The equation of continuity in 

cylindrical coordinates when the fluid is non-compressible, is 

written as follows:  

 
𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
+
1

𝑟

𝜕𝑣

𝜕𝜃
+
𝜕𝑤

𝜕𝑧
= 0  

 

The equations of motion of a real fluid can be developed 

from consideration of the force action on a small element of 

the fluid including the shear stresses generated by fluid motion 

and viscosity. These equations are called Navier- Stokes is 

written as follows: 

 
𝐷𝑢

𝐷𝑡
−
𝑣2

𝑟
= 𝐹𝑟 −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝑣(∇2𝑢 −

𝑢

𝑟2
−

2

𝑟2

𝜕𝑢

𝜕𝜃
)  

 

After applying the assumptions of squeeze lubrication, the 

equations responsible the flow with (turbulent – regular) 

through porous elastic layers become follows: 

 
𝜕2𝑢

𝜕𝑧2
=
1

𝜇
 
𝜕𝑝

𝜕𝑟
 (1 + 𝐿 + 𝑤 + 𝑣)  (3) 

 
𝜕2𝑣

𝜕𝑧2
= 𝑆𝑟  (4) 

 
𝜕𝑢

𝜕𝑟
+ 

𝜕𝑤

𝜕𝑧
= 0  (5) 

 

With nondimensional initial and boundary conditions: 

 

𝑣(𝑟, 0) = 𝐶0, 𝑣𝑧(𝑟, 0) = 𝐶1, 𝑢(𝑟 , ℎ) =
𝜕ℎ

𝜕𝑡
𝑈1,  

𝑢(𝑟, −ℎ) =
𝜕ℎ

𝜕𝑡
𝑈2, 𝑤(𝑟, 𝑧) = 0,𝑤(𝑟, 𝑧) = ℎ

𝜕2ℎ

𝜕𝑟 𝜕𝑡
  

(6) 

 

where, 𝑆𝑟 =
𝐷𝑛 𝐾𝑇(𝑇1−𝑇0)

𝑟𝑛(𝐶1−𝐶0)
, 𝑤 =

𝑆𝑝

𝑅 𝑐𝑒𝑛𝑡
. Where r body force, (u, 

w) are the velocity components of the lubricant in r and 

directions respectively, P is pressure, µ dynamic viscosity, L 

stride length, w is weight of human and Sr sote's number. 

By taking double ZZ transform to Eq. (4) and using 

boundary condition of the tangential component of the fluid 

velocity in the film region: 

 

𝑣(𝑟, 0) = 𝐶0, 𝑣𝑧(𝑟, 0) = 𝐶1  (7) 

 

where, 

 

𝐺(𝑥, 0) = 𝐶0,
𝜕

𝜕𝑧
𝐺(𝑥, 0) = 𝐶1  

𝜌2

𝛾2
(𝐺((𝜃, 𝜌), (𝜔, 𝛾)) − 𝐺(𝑥, 0)) −

𝜌

𝛾
(
𝜕

𝜕𝑧
𝐺(𝑥, 0)) =

1

𝜇
 

(8) 

 

𝑣(𝑥, 𝑧) =
1

2
𝑆𝑟𝑧

2 + 𝐶1𝑧 + 𝐶0  (9) 

 

Now, modifying the film region Eq. (3) of the Navier-

Stokes equation to include the tangential component of fluid 

velocity: 

 
𝜕2𝑢

𝜕𝑧2
=
1

𝜇
 
𝜕𝑝

𝑑𝑟
 [1 + 𝑆𝐿 + 𝑤 + 𝑣] =

1

𝜇
 
𝜕𝑝

𝑑𝑟
  

[
1 + 𝑆𝑙 + 𝑤 +

1

2
 𝑆𝑟  𝑧

2 + 𝐶1 𝑧

+𝐶0
]  

(10) 

 

Then: 
 

𝜌2

𝛾2
 (𝐺((𝜃, 𝜌), (𝜔, 𝛾)) − 𝐺(𝑥, 0)) −

𝜌

𝛾
(
𝜕

𝜕𝑧
𝐺(𝑥, 0))  

=
1

𝜇

𝜕𝑝

𝑑𝑟
[(1 + 𝑆𝑙 + 𝑤 + 𝐶0) +

1

2
𝑆𝑟

𝛾2

𝜌2
+ 𝐶1

𝛾

𝜌
]  

(11) 

 

𝑢(𝑟, 𝑧) =
1

𝜇

𝜕𝑝

𝑑𝑟
[(1 + 𝑆𝑙 + 𝑤 + 𝐶0)

𝑧2

2
+

1

24
𝑆𝑟 𝑧

4 +

𝐶1𝑧
3] + 𝐴1𝑧 + 𝐵1  

(12) 
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After substitution a boundary condition 𝑢(𝑟, ℎ) =
𝜕ℎ

𝜕𝑡
 𝑈1,, 𝑢(𝑟, −ℎ) =

𝜕ℎ

𝜕𝑡
𝑈2 and performing simple mathematical 

operations: 

 

𝑢(𝑟, 𝑧) =
1

𝜇

𝜕𝑝

𝑑𝑟
[
1

2
(1 + 𝑆𝑙 + 𝑤 + 𝐶0)(𝑧

2 −

ℎ2)
1

24
𝑆𝑟(𝑧

4 − ℎ4) +
1

6
𝐶1(𝑧

3 − ℎ2𝑧)] +
1

2ℎ

𝜕ℎ

𝜕𝑡
(𝑈1 −

𝑈2)𝑧 +
1

2

𝜕ℎ

𝜕𝑡
(𝑈1 + 𝑈2)  

(13) 

 

Integrating Eq. (5) with respect to z with the boundary 

conditions of 𝑤(𝑟, 𝑧) = 0,𝑤(𝑟, 𝑧) = ℎ 
𝜕2ℎ

𝜕𝑟 𝜕𝑡
, we can achieve 

the porosity non-Newtonian: 

 

𝑤(𝑟, ℎ) =
𝜕

𝜕𝑟

1

𝜇

𝜕𝑝

𝑑𝑟
(
−1

2
(1 + 𝑆𝑙 + 𝑤 + 𝐶0) (

1

3
𝑧3 − ℎ2𝑧)  

−
1

24
𝑆𝑟 (

1

5
𝑧5 − ℎ4𝑧) −

1

6
𝐶1 (

1

4
𝑧4 −

1

2
ℎ2𝑧2))  

−
1

2ℎ

𝜕ℎ

𝜕𝑡
(𝑈1 − 𝑈2)

𝑧2

2
∓
1

2

𝜕ℎ

𝜕𝑡
(𝑈1 + 𝑈2)𝑧  

(14) 

 

ℎ 
𝜕2ℎ

𝜕𝑟 𝜕𝑡
= −

𝜕2𝑝

𝜕𝑟2
[
1

2
(1 + 𝑆𝑙 + 𝑤 + 𝐶0) (

1

3
ℎ3 − ℎ3)  

+
1

24
𝑆𝑟 (

1

5
 ℎ5 − ℎ5) +

1

6
𝐶1 (

1

4
ℎ4 −

1

2
ℎ4)]  

−
ℎ

4

𝜕2ℎ

𝜕𝑟 𝜕𝑡
(𝑈1 −𝑈2) +

1

2

𝜕2ℎ

𝜕𝑟 𝜕𝑡
(𝑈1 + 𝑈2)ℎ  

(15) 

 

4.3 Squeeze film pressure 

 

For theoretical and computational reasons, it is crucial to 

include the non-dimensional parameters in the pressure's 

governing equations. The different lubricating system 

parameters should be presented in non-dimensional form as 

well. 

 

𝑝∗ = −
𝑝ℎ°
2

𝜇𝑅
𝜕2ℎ

𝜕𝑟 𝜕𝑡

, ℎ𝑐 =
ℎ

ℎ0
, 𝐿 =

−𝐿 𝑤 𝐻

𝑁
  

𝑤 =
−�̅� 𝑁 𝑅

𝑆𝐿
, 𝛽 =

ℎ0

𝑅
, 𝑈 =

−𝑈2

𝑈1
, 𝑟∗ =

𝑟

𝑅
  

(16) 

 

where, S, W, D are the stride length, body weight of human 

and distance.  

Then, 

 
𝜕2𝑝∗

𝜕𝑟∗2
=

−(1+0.25(3+�̅�)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

  
(17) 

 

After that: 

 
𝜃2

𝜔2
(𝐺((𝜃 , 𝜌), (𝜔, 𝛾)) − 𝐺(0 , 𝑧)) −

𝜃

𝜔
(
𝜕

𝜕𝑥
𝐺(0, 𝑧)) =

−(1+0.25(3+�̅�)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

 (18) 

 

𝑝∗(𝑟 , 𝑧) =
−(1+0.25(3+�̅�)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

+ 𝐴2𝑟
∗ + 𝐵2  

(19) 

 

After substitution a boundary condition 𝑝∗(1, 𝑧) =

0,
𝜕

𝜕𝑥
 𝑝∗(0, 𝑧) = 0  in Eq. (19) and performing simple 

mathematical operations, we get: 

𝑝∗(𝑟 , 𝑧) =
1.5(1−𝑟∗2)(1+0.25 (3+𝑈)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

  
(20) 

 

4.4 Friction force 

 

The friction force between layers the particles of synovial 

fluid is very important factor. We will study set of internal 

factors that affect the force of friction, assume that non-

Newtonian fluid and Newton low of viscosity be:  

 

𝜏 = 𝜇 (
𝜕𝑢

𝜕𝑧
)  (21) 

 

where, μ is dynamic viscosity and the term (
𝜕𝑢

𝜕𝑧
)  velocity 

gradient of z is obtained from the velocity distribution. 

 
𝜕𝑢

𝜕𝑧
=
1

𝜇

𝜕𝑝

𝜕𝑥
𝑅𝑎 �̅� (

ℎ2

2
− 𝑧2) +

𝑄 𝑢 𝑡

ℎ3
  (22) 

 

𝜇
𝜕𝑢

𝜕𝑧
=
𝜕𝑝

𝜕𝑥
𝑅𝑎 �̅� (

ℎ2

2
− 𝑧2) +

𝜇 𝑄 𝑢 𝑡

ℎ3
  (23) 

 

𝐹 = ∫ 𝜇
𝜕𝑢

𝜕𝑧
 𝑑𝑟

𝑅∗

0
  (24) 

 

where, z=h (film thickness). 

 

𝐹ℎ = ∫ (
𝜕𝑝

𝜕𝑟
 𝑅𝑎 �̅�  (

ℎ2

2
− 𝑧2) +

𝜇 𝑄 𝑢 𝑡

ℎ3
) 𝑑𝑟

𝑅

0
  (25) 

 

𝐹ℎ = ∫ (
𝜕𝑝

𝜕𝑟
𝑅𝑎�̅� (− 

ℎ2

2
) +

𝜇 𝑄 𝑢 𝑡

ℎ3
) 𝑑𝑟 

𝑅

0
  (26) 

 

Now, we have been presented dimensionless friction force: 

 

𝐹∗ℎ =
𝐹ℎ

𝜇 𝑢 𝐻0
, 𝑟∗ =

𝑟

𝐻0
, 𝑝∗ =

𝑝 ℎ2

𝜇 𝑢 𝐻0
  (27) 

 

After have been applied Eq. (21) in Eq. (20), then: 

 

𝐹∗ℎ = ∫ (−
𝜕𝑝∗

𝜕𝑟0
 �̅�  (

 𝑅𝑎

2
) + 𝑄∗)  𝜕𝑟∗

𝑅∗

0
  

𝑝∗(𝑟, 𝑧) =
1.5(1−𝑟∗2)(1+0.25 (3+�̅�)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

  (28) 

 

Now, derivative the dimensionless squeeze film pressure 

(p*) respect to r* and substitute in Eq. (22):  

 
𝐹∗ℎ =

∫

(

 

−
1.5(1−𝑟∗2)(1+0.25 (3+𝑈)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

�̅� (
𝑅𝑎

2
)

+𝑄∗ )

  𝜕𝑟∗
𝑟∗

0
  

𝐹∗ℎ = − 
(0.75 𝑅∗2) (1+0.25 (3+�̅�)( 𝜇̅̅ ̅̅  𝑅𝑎)

(

1

3
 𝑅3 (1−

𝐿 𝑤 𝐻

𝑁
−
�̅� 𝑁 𝑅

𝑆𝐿
+𝐶0)

+
1

3
 𝛽 𝑅 ℎ𝑐(0.1 𝛽 𝑅 ℎ0+0.125 𝐶1)

)

  

(29) 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Squeeze pressure 

 

The variation of the dimensionless squeeze film pressure 

(p*) generated by the squeeze film action as a function of 
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dimensionless distance (r*) for different values of fluid 

velocity (�⃗⃗� ) is shown in Figure 2 and Table 2 with using Eq. 

(20). It is observed increase in the velocity of the synovial fluid 

particles leads to the movement of the particles, which leads to 

an increase in the rate of collision of the particles and the 

viscosity of the synovial fluid increases, and thus the pressure 

increases. 

 

Table 2. Relationship between velocity of particles and 

pressure 

 
After 20-Cycle Time 

1.9 1.5 1 0.5 0.1 Velocity 

2.68803 2.56722 2.41621 2.2652 2.14439 Pressure 

After 80-Cycle Time 

3.9 3.5 3 2.5 2 Velocity 

3.29909 3.17127 3.02026 2.86925 2.71824 Pressure 

After250-Cycle Time 

6 5.5 5 4.5 4 Velocity 

3.92634 3.77533 3.62431 3.4733 3.32229 Pressure 

 

 
 

Figure 2. Variation of dimensionless pressure (p*) for 

different parametric of velocity parameters (�⃗⃗� ) 
 

 
 

Figure 3. Variation of dimensionless pressure (p*) for 

different parametric of weight of human parameters (w) 

 

The different dimensionless pressure distribution for 

different value weight of human is seen in Figure 3 and Table 

3. It is found that the pressure increases with the increase in 

weight of the human and time of cycle, and the explanation is 

that the longer the cycle, which leads to an increase in the rate 

of flow of lubricant from the porosity and with the different 

activities performed by the person, the weight doubles and the 

production of lubricants decreases. 

The variation of the dimensionless squeeze film pressure 

(p*) generated by the squeeze film action as a function of 

dimensionless distance (r*) for different values of fluid 

concentration (C0) is seen in Figure 4 and Table 4. It is cleared 

the dimensionless pressure increasing and become more with 

decreasing value of synovial fluid concentration (C0=0.2) 

inversely, increasing fluid initial concentration (C0=0.6) that 

lead to decreasing in dimensionless pressure. 

Table 3. Relationship between weight of human and pressure 

 
After 20-Cycle Time 

90 80 70 60 50 
Weight of 

human 

3.16554 3.00133 2.85332 2.71921 2.59715 Pressure 

After 80-Cycle Time 

90 80 70 60 50 
Weight of 

human 

3.869 3.66829 3.48739 3.32348 3.1743 Pressure 

After 250-Cycle Time 

90 80 70 60 50 
Weight of 

human 

4.57245 4.33526 4.12146 3.92776 3.75144 Pressure 

 

Table 4. Relationship between initial constriction and 

pressure 

 
After 20-Cycle Time 

7 6 5 4 3 
Cohesion 

strength 

2.61697 2.71792 2.87804 3.15663 3.76806 Pressure 

After 80-Cycle Time 

7 6 5 4 3 
Cohesion 

strength 

3.19851 3.32348 3.5176 3.8581 4.60541 Pressure 

After 250-Cycle Time 

7 6 5 4 3 
Cohesion 

strength 

3.78006 3.92775 4.15717 4.55957 5.4427 Pressure 

 

The relationship between dimensionless hydrodynamic 

pressure (p*) with different porosity of articular cartilage (β) is 

shown in Figure 5. As a result, it can be seen that reducing the 

porosity causes additional outflow of synovial fluid from 

synovial cells, which, in turn, increases the hydrodynamic 

pressure between layers. At the brushes in non-Newtonian 

lubrication for film thickness involves the cycle time becomes 

a minimum film thickness, and again, time is necessary. The 

effect of a film thickness parameter (H) of gab between two 

articulates on the variation (p*) is demonstrated in Figure 6. 

 

 
 

Figure 4. Variation of dimensionless pressure (p*) for 

different parametric of initial concentration (c0) 

 

 
 

Figure 5. The variation of dimensionless pressure (p*) for 

different parametric porosity parameters (β) 
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Figure 6. Variation of dimensionless pressure (p*) for 

different parametric of film thickness (H) 

 

It is observed increases values of (h*), when flexibility of 

synovial joint to lead increase pressure (p*) because the expand 

the tissue and thus increasing the flow of fluid responsible for 

generating pressure  and effective radius of curvature 

parameter (R) on the variations of (p*) is shown in Figure 7. It 

is observed that the pressure film (p*) increases with the 

decreasing value of (R). 

 

 
 

Figure 7. Variation of dimensionless pressure (p*) for 

different parametric curvature parameter (R) 

 

 
 

Figure 8. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different parametric of 

viscosity parameters (𝜇) 

 

 
 

Figure 9. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different initial 

concentration 

 

5.2 Kinematic friction force 

 

Kinetic friction force is the force that occurs when resisting 

motion due to contact between a layer and a particle that is 

moving against it. The current study has dealt with a set of 

internal factors that affect the force of friction and after 

applying Eq. (29) to these factors using a 12 mathematical 

program. Dimensional friction force (ξ*) as a function of the 

gait phase (ω) for different values of different viscosity (𝜇), 

high viscosity means an increase in the cohesion force between 

the molecules, which leads to a high kinetic friction force 

between molecules. The friction force is related to the phases 

of movement in a direct relationship as shown in the Table  5 

and Figure 8. Dimensional friction force (ξ*) as a function of 

the gait phase (ω) for different initial concentration (c0). The 

force of adhesion between particles when it is high, the 

concentration of the liquid is high, especially in the phase of 

heel contact as shown Figure 9. 

 

Table 5. Relationship between parametric of viscosity 

parameters (𝜇) and Kinematic friction force (ξ*) 

 
Parametric of 

Viscosity  
ω=5 ω=10 ω=15 ω=20 ω=25 

Parameters (𝜇) ξ* ξ* ξ* ξ* ξ* 

0.01 0.37 1.20 2.57 4.50 6.98 

0.02 0.65 2.30 5.05 8.91 13.87 

0.03 0.92 3.40 7.53 13.39 20.75 

 

 
(a) 

 
(b) 

 

Figure 10. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different the nature of the 

contacting surfaces: (a) surface roughness; (b) surface 

smooth 

 

Table 6. Relationship between parametric of the nature of the 

contacting surfaces: (a) surface roughness; (b) surface 

smooth (ζ) and Kinematic friction force (ξ*) 

 
Surface Roughness Surface Smooth 

Loading response 

ζ 1 3 6 0.1 0.3 0.6 

ξ 0.37 1.50 2.25 0.037 0.112 0.22 

Early mid stance 

ζ 1 3 6 0.1 0.3 0.6 

ζ 2.57 7.73 15.47 0.45 1.35 2.70 

ξ 

ζ 1 3 3 0.1 0.3 0.6 

ξ 6.98 15.95 22.04 1.69 2.39 4.19 
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Dimensional friction force (ξ*) as a function of the gait 

phase (ω) for different nature of the contacting surfaces (δ),the 

nature of the surface: Friction depends on the nature of the 

contacting surfaces, as rough surfaces will need more force to 

move them than if those surfaces are smooth, as the force of 

friction decreases with the increase in the smoothness of the 

body to a certain degree, but if it exceeds that degree, the 

friction actually increases between two surfaces They are very 

smooth due to the increased electrostatic forces between their 

molecules as shown in the Table 6 and Figure 10 . 

Dimensional friction force (𝜉*) as a function of the gait 

phase (ω) for regular velocity (𝑢 ). The lubricated liquid 

contains particles. The cohesion force between the particles 

increases with the increase in the flow velocity between the 

layers (superficial zone-middle zone-deep zone) and the 

walking stages, resulting in a high friction force of up to 

80%.as shown in Figures 11 and 12. The lubricated fluid 

contains particles that have a high percentage of viscosity 

depending on the pattern of movement. The flow of the fluid 

loaded with particles increases as the speed increases. The 

friction between the particles increases with it. The rate of 

friction is higher in (superficial zone). 

The force of friction does not depend on the area of 

contacting surfaces in moving objects, or on the relative 

velocity of those objects, but rather on the interconnecting 

forces arising between them, as shown in Figure 13. The force 

of friction is closely related to the phase of movement. In the 

phase (loading response), the flow of fluid increases through 

the porosity of the cartilage, which generates pressure between 

the layers that reduces friction. In the phase (early mid stance), 

the weight doubles and the flow of lubricants decreases, which 

makes the force of friction between the layers higher. In the 

phase (terminal), it increases in strength. Friction greatly 

affects the performance of the joint, and to reduce damage, we 

raise the fitness parameters, which are the focus of our study. 

 

 

 
 

Figure 11. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different velocity: (a) (ω=5-

23); (ω=35-55) 

 

 
 

Figure 12. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different cohesive force of 

particle 

 
 

Figure 13. Relationship between Kinematic friction force (ξ*) with gait phase (ω) (heel contact - loading response- early mid 

stance- terminal stance) 

 

Dimensional friction force (ξ*) as a function of the gait 

phase (ω) for regular velocity (β). Layer (superficial zone) is 

the most susceptible to kinetic friction due to the porosity size 

of the penetration of particles and a decrease in the thickness 

of the cartilage layers, which greatly affects the friction force, 

as shown in Figures 14 and 15. 
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Figure 14. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different porosity of layers 

 

 
 

Figure 15. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different film thickness 

 

Dimensional friction force (ξ*) as a function of the gait 

phase (ω) for weight of human (W). Body weight: An object 

moving over a horizontal surface exerts a force downward on 

that surface, as this force is equal to the weight of the body, as 

shown in Figure 16. 

 

 
 

Figure 16. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different weight of human 

 

 
 

Figure 17. Variation of dimensionless Kinematic friction 

force (ξ*) with gait phase (ω) for different flow force 

 

Dimensional friction force (ξ*) as a function of the gait 

phase (ω) for Kinematic friction force. The relationship 

between the kinetic friction force and the fluid flow force is a 

direct relationship, the greater the value of the fluid flow force, 

the greater the kinetic friction force, and the greater the body's 

resistance to movement, as shown in Figure 17. 

6. CONCLUSIONS 

 

In this paper, we investigate the flow of non-Newtonian 

fluids through the porous elastic layers of human articular 

cartilage and describe the impact of lubricating fluid flow on 

performance. In this research, we highlight (squeeze 

lubrication) the lubricated liquid and identify the most 

important parameters that affect the flow of the liquid and 

which are reflected in the movement mechanism, which 

represents an important element for performing daily 

activities. To accomplish these goals, the characteristics of 

lubrication through the cohesive force of particles, initial 

concentration, surface smoothness, vertical roughness, and 

human body weight are studied. These expressions are 

computed using the double ZZ transformation and are 

employed to describe numerous scientific problems. The 

current findings indicate that using single transforms to solve 

these equations is more difficult than using the double 

transform. In addition, both the theory and practise of 

lubrication are evident when hydrodynamic pressure is 

generated between distinct layers. This pressure contributes 

significantly to the kinematic force of friction between strata 

and particles. Kinetic friction between the layers is greatly 

affected by pressure, as high pressure generates high stress 

peaks that protect the layers and provide safety for the 

cartilage, and the opposite happens when pressure decreases. 

According to the analysis and computation of the results, the 

pressure and friction forces increase as the cycle time 

increases. Dynamic friction and pressure play a major role in 

the stages of walking. When the activities are recording, the 

applied pressure is increased. It is appropriate to learn the 

patterns of movement to reduce the harm, and the developed 

laws must define what combination of parameters influences 

on directions. It is possible to create doubles of ZZ 

applications and resolve coupled the differential equations and 

systems and PDEs with variable coefficients. The mentioned 

new double transform presents additional novelties 

comparable with the existing alternative methods as follows: 

The numerous advantages of our double ZZ sequence are that 

it can be used with a numerical iterative solution of nonlinear 

problems of PDEs. 
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NOMENCLATURE 

 

𝑈 Velocity particles of synovial fluid 

R The radius of curvature 

W Weight 

N Cohesive force of particles 

C0 Initial concentration 

C1 Final concentration 

β Porosity 

H Film thickness 

Sr Number 

Sl Stride length 

Rr Surface roughness 

Rs Surface smooth 

𝜇  Viscosity of fluid 

δ Nature of the contacting surfaces 

Lp Length of particles 
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