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Among different recent technologies proposed for human face classification and 

recognition, solutions based on analyzing the 3D geometric facial features emerged as a 

promising academic and practical direction. Researchers have examined both holistic and 

local approaches to analyzing the 3D face regions to study the impact of facial features in 

real-life applications such as medical and security implementations. However, a few works 

have investigated the relevant impact of the extracted geometric features from the 

descriptive local regions of the human face on identifying human ethnicity. This work 

proposes a classifier to categorize individuals into their distinctive ethnic groups and deeply 

analyzes the facial feature variations to highlight the most descriptive parts and features of 

the human face in race classification. The proposed ML-based classifier is preceded by 

extracting the 3D facial features from 3D meshes using the recent SIFT and Geodesic 

distance calculations. In addition, it implements and discusses the initial important 

preprocessing steps including, cropping the frontal parts, correcting the head pose, selecting 

the suitable initial key points, aligning the 3D meshes, and implementing the suitable 

template-based 3D registration. The proposed NN race classifiers are built and evaluated 

using Headspace, a well-known multi-ethnic dataset, and achieved high accuracy (90% 

globally, and 100% for the mouth area) especially while using the SIFT features. 
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1. INTRODUCTION

Analyzing the human face has a long tradition starting from 

ancient populations basing on their observed descriptive facial 

attributes and using the natural ability of human visual system 

perception. However, the term “Facial morphology” is 

commonly used to describe studying the human facial form, 

shape, and structure. To analyze the facial details, many face 

recognition directions have been suggested and implemented 

for various medical and social purposes. Psychology, 

Neurology, in addition to sociology specialists in the 20th 

century highlighted essential questions about the human 

ability to identify faces. Visual assessment or facial 

appearance evaluation is the process of determining a human's 

identity or class according to his outward facial appearance. 

Anthropometric measurements are used to precisely measure 

the human face and recognize his identity. For example, skin 

tone, hair color, and eye color are prevalent traits examined 

visually with an acceptable degree of objectivity in human face 

perception procedures. However, 2D imaging faced 

difficulties and limitations due to many factors such as the 

resolution impact, the techniques of capturing, head pose 

variations, and illumination changes. The emergence of 3D 

imaging techniques such as Stereophotogrammetry and laser 

scanners, allows obtaining real 3D facial images including 

their natural color and texture details, in addition to the 

volumetric and depth information of the captured images. In 

addition to providing identity clues, the human face also 

conveys more demographic data such as reflecting their 

ethnicity, age, and gender (aka soft biometrics that influence 

applications of face recognition, security surveillance, and 

indexing facial data). Such research efforts led to a remarkable 

achievement in face attribute recognition using both 2D and 

3D models, especially with the growing Machine Learning 

(ML) and deep learning (DL) abilities.

An anatomical study Zhuang et al. [1] showed that

geometrical features also contain abundant information on soft 

biometrics. Early works such as Bertillon and McClaughry [2] 

created the first personal identification system for security 

identification using three groups of characteristics: (1) 

anthropometric, the measurements describe the height and 

length of the body parts, (2) morphological, the descriptors of 

the outer shape (such as anomalies of the fingers), and 

appearance (such as eye color), and (3) peculiar marks, the 

distinguishing signs seen on the body such as scars and moles. 

Heckathorn et al. [3] proposed a combination of personal 

characteristics or soft biometrics, such as race, gender, eye 

color, and several other obvious marks, to be utilized to 

accurately detect the identity. For instance, considerable 

differences in face dimensions, and lip distances among 

different ethnic groups of workers from the United States are 

concluded by Zhuang et al. [4]. These statistics showed that 
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African-American individuals have distinguishable face and 

lip lengths from other ethnic groups such as; Caucasians, and 

Hispanics. In addition, the Caucasian face width differs from 

both African Americans and Hispanics. Zhuang et al. [5] 

collected anthropometric measurements from the individuals' 

faces. The author observed that females can be distinguished 

from males by ten dimensionality features. Related to ethnic 

groups, the author observed that the face length feature has a 

significant impact on identifying the African-Americans and 

Hispanics races since they have longer faces than Caucasians. 

Han and Choi [6] showed that Africans and Americans have 

shallower and smaller noses compared to Caucasians by a 

length difference of approximately two mm. Rebar et al. [7] in 

2004, noticed that Caucasians can be distinguished by their 

long narrow faces for both males and females. Ballihi et al. [8] 

extracted radial curves and several specific geometrical 

circulars using the AdaBoost algorithm for gender 

classification on the FRGCv2 dataset. Another combination of 

3D faces’ geodesic path features is examined by Abbas et al. 

[9] to implement a gender classifier on fifteen-year-old 

individuals from the ALSPAC medical dataset. The author 

observed that the nose morphology highly impacts identifying 

the face, especially the paths on Cupid’s bow, nose ala, and the 

inner eye canthi. Recent research by Mohammad and Al-Ani 

[10] showed that attribute-based biometric systems such as 

ethnicity are strong supporters of explicit essential biometrics 

in face recognition applications. 

 

1.1 3D facial feature descriptors and feature extraction 

 

Typically, 3D face recognition systems include multiple 

steps starting with the initial capturing using devices such as; 

multiple cameras and laser scanners. The obtained raw faces 

are then preprocessed by detecting the face area, denoising, 

cropping, reconstructing the missing part and holes, aligning 

it with other faces, and correcting the 3D pose to easily match 

it with the targeted or templates. Noise always inevitably 

affects most 3D scans captured by different acquisition 

devices to some degree. The general first step of denoising is 

usually done by cropping the face region due to its ability to 

eliminate irrelevant face data such as neck area and hair 

mineral details. Then, to describe the 3D faces in lower 

memory space, the important and descriptive features such as 

edges, corners, Gabor features, HOG features, and more are 

detected and extracted to be saved in vectors and matrices. In 

addition, the interest points such as landmarking or key points 

are determined manually or automatically using key point 

detectors such as ICP, SIFT, and other types to facilitate 

extracting the local features, calculating distances between the 

interest points, and calculating the sizes of face traits. A 

postprocessing step is also done to select the most important 

features that can cause changing the class of the face while 

they are changing in addition to advanced dimensionality 

reduction to reduce the resulted feature vectors and matrices 

using statistical methods such as PCA. The final step in face 

recognition is to explore the similarity among faces and match 

the extracted features between templates and targeted faces 

from the unseen input or from specific datasets using the 

similarity measures and the abilities of machine learning and 

supervised classification approaches such as SVM and recent 

deep learning such as CNN and pre-trained networks. Several 

common main steps of 3D face recognition are summarized in 

Table 1.  

3D face recognition also can cope the uncontrolled 

illumination situations since it does not solely rely on pixel-

level brightness while comparing the faces. Automatic face 

segmentation is also one of the new advantages obtained by 

3D recognition since the image background can be typically 

synthesized separately in the reconstruction process. 

 

Table 1. Commonly phases in 3D face classification 

 
Seq. Phase Title Description 

1 Face Capturing 2D, 3D 

2 Preprocessing 
cropping, alignment, pose correction, 

landmarking, …  

3 
Obtaining 

Features 
Detection, extraction, description, … 

4 Postprocessing 
Dimensionality reduction, selection, 

normalization, PCA, … 

5 
Machine 

Learning 
SVM, NN, DT, …  

 

To simplify using the 3D features, another direction of 

research speeds up the features comparison by reducing the 3D 

features comparison into a 2D profile contour similarity 

measure between faces. Statistical approaches such as 

Principal Component Analysis (PCA), and Linear 

Discriminant Analysis (LDA), and that are have been used to 

decrease memory consumption by using a smaller-size 

descriptive feature. The well-known and most common PCA 

then has been extended to 3D feature reduction due to its high 

performance and simplicity with a limitation of image quality 

dependency [11]. A multimodal PCA approach is used by 

Tsalakanidou et al. [12] to enhance the recognition accuracy 

while implementing the proposed work in a 40-subject 

experiment. A comparing study by Chang et al. [13] used PCA 

analysis to extract 3D features over a long period and achieved 

near-optimal while using both 2D and 3D recognition. To 

solve the expression and head pose variation, many authors 

tried to describe the facial surface in a way that has more 

robustness for the isometric deformations caused by multiple 

expressions or head angles of the uncontrolled capturing 

environments. 

Furtherly, maintaining the Geodesic Distances across 3D 

facial surfaces was another important emerged enhancing in 

face recognition and classification. In 3D feature extraction, 

researchers also tried to define point sets or profiles of each 

3D face scan using surface-based global or local extraction 

algorithms from the initial whole 3D face features extracted by 

the traditional algorithms. Hybrid algorithms (using both local 

and global geometric surface information) also have been 

proposed with a limitation of complex defining of point sets. 

Geometrical approaches extract geometric features from 3D 

mesh form, including profiles, curvature, radial, iso level 

curves, 3D landmarks-based geodesic distance, symmetry 

properties, and correspondence vectors to describe the human 

face abstractly. The feature extraction step is often followed 

by the classification steps. In other words, the classification 

framework needs to extract facial features initially to build a 

good classifier including obtaining features such as 

demographic features, Gabor features, binary features, 

biologically inspired features, and local binary patterns, in 

addition to analyzing the extracted features using the abilities 

of statistical approaches and machine learning (SVM, LDA, 

PCA, random forest, and CNN deep learning). The main 

performance aspects of face descriptors include feature 

matching speed, discriminability power, and consumed 

memory. Researchers mentioned that the discriminative power 
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needs to be balanced by computation complexity and 

extraction speed. A survey by Bellavia and Colombo [14] 

concluded that local SIFT-like descriptors can significantly 

compress the length and the matching time through their 

proper schemes. 3D key points are interesting points in shape 

that are found using certain geometric data from the face’s 

surface.  

The three steps of the keypoints-based approaches are 

typically interest points detection, feature extraction (or 

description), and face features matching. The major expert 

directions to find the interesting point within the 3D face are 

the landmarks based on facial traits and the salient points on 

the facial surface. These salient key points strategies include 

those that use the well-known SIFT and their extensions. Eye 

corners and nose tips are two commonly used landmarks 

highlighted by researchers in local approaches due to their 

robustness to the expression variation. Several other Local 

Feature-based approaches are summarized in Figure 1. 

 
Figure 1. General steps in 3D face recognition 

 

1.1.1 SIFT-like local descriptors 

In region-based face recognition algorithms, landmarking is 

a key component of feature space manipulation. The success 

of feature extraction will be closely correlated with the 

precision of the landmarking. Scale Invariant Feature 

Transform (SIFT) was introduced to extract local features with 

an enhanced robustness to pose variations, it also showed a 

good capability in handling the partially occluded facial parts. 

The SIFT feature descriptor showed good robustness to 

uncontrolled illumination, uniform change in scaling and 

orientation, partial noise, and distortion. The SIFT compares 

the source image with different resolutions and with specific 

changes in the scale during computing descriptors, it avoids 

the traditional limitation of holistic face representations 

because it can select the features that are not affected by 

scaling, noise, and rotation. In addition to its use as a feature 

descriptor, SIFT can be considered a feature extraction method 

due to its ability to reduce the image description into a set of 

points used to detect similar patterns in other images. Thus, it 

is widely used in image matching and object detection. 

As described by Lowe [15], the process of extracting SIFT 

features involves four key steps: (1) selecting scale-space 

peaks, (2) localizing the keypoints, (3) assigning orientations, 

and (4) creating keypoint descriptors. Initially, interest points 

are detected by examining the image at various locations and 

scales. This is achieved by building a Gaussian pyramid and 

locating local peaks (known as keypoints) in a sequence of 

difference-of-Gaussian (DoG) images. In the subsequent step, 

potential keypoints are pinpointed with sub-pixel precision 

and discarded if deemed unreliable. Then defines the 

orientations per each point according to its local surrounding 

area. The assigned orientation(s), scale and local SIFT are also 

key point detectors due to their ability to detect the extreme 

points in different scale spaces, then calculate the directions 

around each key point according to the attributes of the facial 

features, to finally calculate the local feature descriptors.  

Patch-SIFT [16] is a SIFT extension example proposed to 

extract key point features in small patches. Mian et al. [17] 

identified the key points and calculated the tensor features 

around them, then used the features fusion at the decision level 

to obtain the SIFT key points from both the depth image and 

3D mesh. A 3D partial face matching is proposed by Berretti 

et al. [18] by extracting the features from specific spherical 

regions of different radiuses around each detected point. The 

author showed that the details in small regions of the face can 

be better captured while using a small spherical region radius. 

Although implementing the SIFT feature detector on 3D 

images that have depth information showed its sensitivity to 

significant pose variations, SIFT key points have been 

extracted directly from 3D mesh (Mesh-SIFT) to gain more 

robustness. Smeets et al. [19] used slant angles and histograms 

of shape index, in addition to Gaussian weight to construct the 

feature vector. Smeets’s results showed the Mish-SIFT 

robustness to the change in face expression, occluded and 

missing data, and outliers data with high recognition rates on 

both the FRGC v2 and the Bosphorus datasets. Lin et al. [20] 

calculated the third-order feature tensor per each detected 

salient point, and implemented the Voronoi diagram 

subdivision to augment the data to examine the intra and extra-

face similarity using the pre-trained ResNet network. This 

similarity-based approach detected the salient points on the 3D 

mesh with an accuracy of 99.71% and 96.2% on the Bosphorus 

and BU3DFE databases respectively. Berretti et al. [21] used 

SIFT to highlight the feature points of depth images and 

extract specific curves combining the detected points. The 

authors posed side scans from the UND dataset and frontal 

faces from FRGC v2.0 to examine the SIFT robustness against 

the pose variation and detect the identical faces between these 

two datasets that provided multiple pose scans for each 

individual. Zhang et al. [22] used the shape index extrema as 

interesting points on the face surface. The author proposed a 

scale change procedure to eliminate a set of unstable key 

points initially, then extracted the features. 

Darom and Keller [23] proposed a spin-based SIFT 

extension on the 3D mesh by measuring the vicinity of each 

detected keypoint using the depth map. The author enhanced 

the face rotation invariance by calculating the dominant angle 

using PCA. The resulting local features were experimentally 

robust to the scale variation and suitable for local matching of 

mesh segments. Additionally, proposed the local depth SIFT 
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(LD-SIFT) to allow extending the SIFT extraction efficiently 

to the 3D meshes, and augment an angle estimation scheme to 

make the LD-SIFT a rotation invariant descriptor. Shi et al. 

[24] concluded that the SIFT-extracted feature points can be 

translated, and scaled and can show a rotation invariance too. 

The author also noted that the number and positions of these 

detected points are typically random, and don’t ensure that key 

points can be found in all face regions. Thus, the author 

proposed the ISIFT algorithm to enhance the robustness 

against facial expression variation. 

 

1.1.2 Histogram of oriented gradients (HOG) 

Using Histogram of Oriented Gradients (HOG) as a feature 

extractor on 3D facial meshes for face classification and 

recognition has shown promising results in various studies. 

HOG is a popular feature description commonly implemented 

in 2D models, but its adaptation to 3D facial meshes has 

demonstrated its potential in capturing distinctive facial 

characteristics. The advantages of using HOG in 3D facial 

mesh classification and recognition such as; its robustness to 

Pose Variations, and its efficient and simple implementation 

compared to other feature extraction methods. Thus, HOG is a 

suitable extraction for real-time and large-scale face 

classification and recognition tasks. Additionally, HOG allows 

focusing on capturing local shape information and texture 

patterns in a facial region, which makes it effective in 

highlighting distinctive features, such as edges, corners, and 

facial landmarks, which are crucial for accurate face 

classification and recognition. However, several challenges of 

using HOG for 3D facial mesh classification and recognition 

are also highlighted in academia such as vulnerability to 

occlusions due to its dependency on local gradient information, 

and its limited ability to capture global features due to its focus 

on capturing the local information. 

 

1.1.3 Geodesic distance 

The ability to extract facial curvature information from 3D 

imagery makes it easier to analyze the facial surface. In 3D 

face recognition and identification, image segmentation, and 

landmark localization, curvature information became a crucial 

part. The fact that the principle facial curvatures remain 

unchanged as the surface rotates or translates makes them 

extremely robust for feature space manipulation such as 

feature detection and extraction. Additionally, it has been 

demonstrated that principle curvature directions considerably 

improve identification performance because they have a strong 

potential to provide discriminative characteristics. Geodesic 

distance vector is a curve-based descriptor used as a shape 

descriptor that is invariant under the face shape isometric 

deformations. A geodesic distance matrix is a symmetric 

matrix whose elements (gi;j) are the geodesic distance 

between the points i and j. The GD vector associated with the 

points or landmarks will then be used as the shape descriptor 

for face classification and identification purposes. The 

geodesic path represents the shortest line between the 

reference point (or reference vertex on 3D mesh) which is 

usually considered as the nose tip, and another endpoint on the 

face surface. The algorithm visits all other endpoints and 

constructs a matrix of these calculated distances from the 

initial point. Then, it calculates the least distance from the start 

point to all other points. The resulting geodesic features matrix 

usually has a high dimensionality and needs to be reduced in 

size to allow easier analysis and machine learning phase in the 

next steps of face recognition and classification systems. With 

3D Mesh facial form, Geodesic is usually preceded by meshes’ 

preprocessing to clean and remove noise, outliers, and artifacts. 

In addition to some mesh smoothing, hole filling, and vertex 

alignment to ensure the quality of the data. Then, the Geodesic 

descriptor calculates the geodesic distance for each vertex on 

the face mesh using algorithms such as Dijkstra's algorithm or 

Fast Marching Method due to their ability to calculate the 

shortest path between specific pair of points of the facial mesh. 

Once the geodesic distance for each vertex is calculated, the 

facial curvature features can be extracted. A common 

approach to extracting the geodesic features is local features 

extraction in which the algorithm computes local geodesic 

descriptors around each vertex. This can be done by 

considering the geodesic distances of neighboring vertices 

within a certain radius. These descriptors capture local shape 

information and can be used for tasks like facial expression 

recognition or landmark detection. Considering the isometric 

deformation nature of human facial parts while expression is 

changed, based on the various surface components used in face 

matching, Zhao et al. [25] separated the methods into three 

categories: (1) Iso-metric surface method, which matches the 

face with the complete isometric surface. (2) The iso-geodesic 

stripes method, which matches faces using a set of uniformly 

widened iso-geodesic stripes. 3) The geodesic-based approach, 

also known as the iso-geodesic method, uses the geodesic 

curves as the facial feature for face matching. The 3D face 

representation such as triangle mesh allows the description of 

each point with its depth value over the mesh surface and the 

local variation on the facial surface has been extracted by 

selecting the rigid regions of the face to identify the 

individuals. This representation allows calculating multiple 

geometric attributes such as geodesic distances, facial shape 

angles, and Gaussian curvatures. Drira et al. [26] investigated 

the 3D geometric analysis of human nose shape under multiple 

expressions of faces from the FRGC dataset and measured the 

geodesic distances between nasal surface pairs (a set of their 

radial nasal curves are transformed into the shape space for 

comparing the faces and calculating their similarity level). The 

author showed that the geodesic-based recognition 

outperforms the baseline ICP algorithm while multiple facial 

expression was used. Kurtek and Drira [27] developed a 

framework on the BU-3DFE dataset for analyzing the elastic 

form of hemispherical surfaces and explored the impact of 

parameterization-invariant, and elastic Riemannian metrics. 

The scans have been registered, deformed, and compared in 

this work, in addition to calculating the covariance, the PCA 

components, and analyzing the face symmetry. Lee and Krim 

[28] measured the shortest distances from a reference to points 

lying on a specific surrounding curve using Geodesic. The 

author then measured the similarity after extracting the 

deformed curves and used the Fourier transform to reduce the 

dimensionality of the feature space. The author measured the 

geodesic circle via the closed curve around the nose tip and 

tracked the boundary of the upper and lower lips. Berretti et al. 

[29] partitioned the facial surface into eight iso-geodesic 

stripes, and arcs between pairs of iso-geodesic stripes, and 

calculated their weight to obtain the relative spatial 

displacement. 

 

1.2 Human Race identification based on face morphology 

 

Human Face explicitly provides information for evaluating 

implicit data such as age, race, and gender. Face recognition 

methods generally can be categorized into local and holistic 
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methods. Although many works are conducted using the 

holistic approach due to its simplicity, the local approach can 

be a more reliable and accurate recognition technique in 

applications focusing on specific parts of the human face. 

The human race classification emerged as one of the most 

prominent face classification directions due to its omni-

relevance with many social cognitive and specific perceptual 

tasks (emotion, belief, diseases, and more). The term “Race” 

is used to reflect the person’s physical appearance or 

characteristics regarding the main human categories of the 

population around the world. The population is categorized 

into seven large distinct populations or racial groups that are 

most commonly encountered and accepted racial groups. 

These seven main classes were the most accepted they 

represent more than 95% of the population. 

 

 
 

Figure 2. Several faces from large distinct groups [30] 

 

A commonly accepted racial categorization in Fu et al. [30] 

includes East Asian, African/African American, Native 

American/American Indian, Caucasian, Pacific Islander, 

Hispanic/Latino, and Asian Indian (See Figure 2). Literature 

shows that facial features with different relative positions have 

a close relationship with human ethnicity and facial landmarks 

and key points on specific positions of the face can reflect the 

positions of important descriptive areas and facial features that 

usually impact the resulting class of individuals. While 

automatic ethnicity classification is a useful starting point for 

facial analysis applications, most ethnicity classification 

techniques may necessitate a laborious feature extraction and 

model training procedure. Initially, psychologists approached 

the study of human face ethnicity and gender recognition from 

the standpoint of cognitive science. At that time, the 

characteristics of a person's face and the data they extracted, 

such as age, gender, and ethnicity, were referred to as soft 

biometric features. The term ‘ethnicity’ is identified as a soft 

biometric that describes belonging the individual to a 

particular social group having a common nationality, cultural 

tradition, or geographical factors. Thus, a group of humans 

contains people who have similar attributes such as language, 

religion, and nationality. The race classification might also 

categorize the population into smaller sub-ethnic groups such 

as; east Asian, Chinese, Korean, Japanese, and Indian. In 

addition to traditionally reported issues of face classification, 

many Issues and challenges are also reported in race 

recognition and classification and considered as challenging 

specific face trait recognition research areas. Issues such as; 

Intra-race, inter-race, and mixed-race are discussed in several 

works, and a few attempts are implemented by researchers to 

analyze the face variation across sub-ethnic groups (Turkish, 

Japanese, Spanish, …). Inter-race challenges of people 

belonging to two racial groups with a shared skin tone and 

mixed race challenges of People with average looks (such as; 

Native American, and Mexican-American are examples of 

race classification challenging issues [30]. However, the task 

of race classification might be partially enhanced by 

considering facial part information extraction and training the 

classifier on these extracted features and parts [31]. Gen 

Association with Regionalized Facial Features is reported by 

Richmond et al. [32] as described in Figure 3.  

 

 
 

Figure 3. Facial features reported by Richmond 
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Because there aren't many large-scale 3D face datasets it 

was once thought to be extremely difficult to train 

discriminative deep features for 3D face recognition in 

comparison to 2D face datasets. To address this issue scientists 

attempted to modify a small number of 3D face datasets for 

3D surface matching using the already-trained 2D face model. 

The proposed networks specifically designed for 3D face 

recognition and the recent capabilities of deep learning CNN 

encourage researchers to train massive volumes of 3D facial 

scans of identities more quickly and accurately. The recently 

proposed algorithms demonstrated excellent accuracy in both 

closed and open-world recognition scenarios based on the 3D 

datasets. The global approach component-based approach and 

hybrid approach - the three categories of feature extraction 

techniques for face recognition - are encountered once more in 

three-dimensional methods. Compared to 2D approaches, 3D 

race classification can provide better accuracy due to its 

robustness to the changing texture, skin tone, and appearance, 

in addition to its flexibility to correct the head pose and avoid 

the impacts of obstacles via 3D rotation. 

 

1.3 Deep learning in 3D facial traits recognition  

 

Many computer vision applications including 3D facial race 

recognition have been transformed by deep learning. 

Specifically useful for complex tasks like race classification 

from 3D facial data this technique uses multiple-layer neural 

networks to automatically learn relevant features from raw 

data. By allowing the model to learn hierarchical 

representations straight from the raw data, deep learning 

provides a considerable enhancement. The first step of the 

procedure could be data preprocessing which involves 

normalizing and formatting 3D face scans into the appropriate 

formats. 3D convolutional networks (3DCNNs) and CNNs 

approaches have been adapted to exploit the geometrical 

information found in 3D data in forms that hold the geometric 

information. The multi-layered models that extract features at 

various levels of abstraction gradually allow learning to 

distinguish between subtle yet discriminative features that 

may be difficult to identify using conventional techniques. 

This involves recording variances in the depth curvature and 

contours of the face that may be specific to various racial 

groups. The model becomes adept at recognizing patterns that 

are important for race classification, even when these patterns 

are not explicitly defined. Deep learning has been more 

successful in 3D facial race recognition thanks to the 

availability of large-scale datasets with a variety of 3D facial 

scans from different races. With the help of these datasets, 

models may be trained to identify a person's race from their 

facial traits and to generalize effectively to new data. Though 

incredibly successful, deep learning-based 3D facial race 

recognition is not without its difficulties. While 2D image 

datasets are more abundant annotated 3D facial datasets are 

still scarce. Thus, deep learning has allowed models to learn 

directly from raw data greatly improving the accuracy and 

dependability of 3D facial race recognition. This approach has 

proven effective in capturing intricate facial features that are 

critical for distinguishing races, and it continues to drive 

progress in the field of facial recognition technology. AlBdairi 

et al. [33] developed a DCNN-based 2D race recognition 

approach to determine the human race, the author used high-

performance devices to build a a face recognition system and 

proposed a technique called field-programmable gate arrays 

(FPGAs). The periocular area is analyzed for race and gender 

by Khellat-Kihel et al. [34] who proved that deep learning 

techniques in race prediction still require a large amount of 

labeled data, and accordingly proposed a DCNN-based 

predictor to solve several specific biometrics issues on the 

periocular part of the human faces. Periocular regions’ features 

are extracted from 2D faces using different pre-trained 

architectures such as Alex-net and ResNet-50. Fan et al. [35] 

compared five forms of 3D data including depth images, 

normal maps, point clouds, DAE, and HHA (obtained from 

FRGC v.2 and BU-3DFE datasets). The author proposed a data 

augmentation approach by synthesizing multi-view 3D faces 

using a DAE-based deep learning model. Xia et al. [36] 

proposed a correlation-based 3D facial shape model, and 

highlighted salient features extracted from three traits, and 

then used the RF algorithm for ethnicity estimation on the 

FRGC-v2 dataset. The study comes to a conclusion 

demonstrating ethnicity is considerably correlated in the 3D 

representation of the human face. 

 

1.4 3D face analysis for identifying the race, a literature 

review  

 

Lu et al. [37] used both registered range images (describe 

the surface shape) and intensity images for race classification 

(See Figure 4). The author used an SVM classifier to classify 

the faces and achieved 96.8% accuracy. A mixture of two 

frontal 3D face databases is used for evaluating the proposed 

schemes. Toderici et al. [38] suggested retrieving subjects 

from deformed 3D meshes (only global shape information) 

through a metric function (Harr wavelet and CW-SSIM, or 

structure similarity). 

The author proposes four classifiers: wavelet-based learning, 

multi-dimensional scaling (MDS), kernelized KNN, and KNN. 

The FRGC v2.0 dataset was used to test these classifiers, and 

they produced mean accuracy values of about 99 percent. 

Toderici et al. [38] showed that the estimated probabilities can 

serve as feature importance scores, and used Gauss-Markov 

posterior marginals to classify the Asian and White people 

from the BU-3DFE and FRGC v1 tables. To prove his idea, 

the author compared his achieved accuracy levels with the 

levels achieved by Ocegueda et al. [39]. Zhong et al. [40] 

combined the use of 3D shape and the Boosted Local Texture) 

to enhance the race-based classification. To extract the local 

texture, the author used the Oriented Gradient Maps (OGMs) 

to highlight ethnicity-related local texture and used Adaboost 

to add an associated weight for individuals. Experiments are 

carried out on the FRGC-v2 dataset to categorize Asians and 

non-Asians with an accuracy of 98.3%. 

 

 
 

Figure 4. Integration scheme of both range and intensity [35] 
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Table 2. Several existing face analysis works for race classification 

 

Author Features Classifier Dataset 
3D 

Representation 
Races Findings and Contribution 

Lu et al. 

[37] 
Global Intensity SVM UND and MSU 

Registered range 
and intensity 

images 

Asian,  

Non-Asian 

Range image modality is 

useful in race recognition. 

Ocegueda 

et al. [39] 

Harr Wavelet, and 

Similarity Measurements 

MDS, k-KNN, and 

wavelet. 
FRGC 2.0 Retrieved meshes 

Eastern, 
Western, 

Asian,  

Non-Asian 

Gender and race can be used 

in mesh retrieval. 

Toderici et 

al. [38] 
Probabilities as Features 

The linear classifier, 

LIBLINEAR 

FRGC and BU-

3DFE 
3D meshes 

European 

and Asian 

The mouth area is important 

in race recognition. 

Zhong et 
al. [40] 

Gabor Filters to Build a 

Learned Visual 

Codebook (LVC) 

K-means clustering FRGC v2 Range images 
Eastern, 
western 

Modeled the ethnicity 
categorization as a fuzzy 

problem and achieved a 

reasonable membership 
degree. 

Ding et al. 
[41] 

Combination of Holistic 

Shape and Texture using 
OGMs, Adaboost and 

Boosting 

Decision Tree 
FRGC v2, and 

BU-3DFE 
Range images 

Asian,  
Non-Asian 

Used OGMs to highlight local 

geometry, and observed that 
the eyes and nose areas are 

more discriminative. 

Lv et al. 

[42] 

Iso-Geodesic 

Measurements Between 

Specific Landmarks on 

Nose Region 

Clustering according 

the nose 
measurements. 

 

FRGC2.0 and 
Bosphorus3D 

Range images 
Asian and 

White 

the nose is the most 

discriminative region for race. 

Sovizi et 

al. [43] 
Geodesic Distance 

the similarity of the 
geodesic distance 

vectors of the 3D 

faces 

SHREC08 

database 
3D mesh Caucasian 

proposed two landmarking 

methods (ICP and 

topological) and explore the 
effect GD vector size and 

landmark positions. 

 

Zhong et al. [40] computed the visual codes for the eastern 

and western individuals using Gabor features and the learned 

visual codebook (LVC) method. Next, the merging and 

mapping distances were measured (by calculating the max 

distance function). The author suggested a "membership 

function" in the second level to determine the membership 

degree of the western and eastern groups for the faces taken 

from the FGRC v2 dataset.  

Berretti et al. [29] modeled the three-dimensional faces of 

multiple stripes centered at the tip of the nose, in which most 

of the points of each stripe remain within the same stripe even 

when the facial expression changes. Nine stripes, each 

measuring one centimeter in width, were employed by the 

author to distinguish between various individuals. The author 

additionally divided each stripe into three sections—lower (L), 

upper-left (UL), and upper-right (UR)—concerning the 

coordinates of the nose tip to account for the expression 

deformation. This work implemented the suggested measuring 

on the FRGC-v2 dataset (measuring the spatial displacement 

between iso-geodesic stripes) and the SHREC 2008 dataset 

(measuring the inter-stripe and intra-stripe 3DWW) distances 

using the 3D Weighted Walkthroughs (3DWW) approach. 

Several existing related works are summarized in (Table 2) 

with their findings and the supported races. 

 

1.5 Problem statement and the contribution 

 

Although existing race classification works tried different 

approaches to extract the face features, insufficient research 

efforts have been proposed with a focus on analyzing the 3D 

mesh form for identifying the human race. The size limitation 

of the publicly available 3D facial datasets in a mesh form, the 

unfair racial distribution, capturing cost, and privacy aspects, 

are factors that negatively impacted this research direction. 

The data limitation forced a need for proposing efficient 

extractions of geometric and shape features from the well-

known mesh representation, and for building accurate race 

classifiers that can cope with the limited data training 

challenge.  

The context of this work is to analyze the shape of the 3D 

facial scans of real individuals after extracting four types of 

3D facial features implemented on different facial areas. It 

focuses on the mesh representation of 3D faces due to its shape 

details and geometrical surface information, and due to the 

limitations of traditional 3D representation such as depth 

images and z-coordinate approximations. The texture analysis, 

the 3D representations that had limitations in flexibility and in 

describing the surface geometry, and the reconstructed 

synthesis faces, are out of the scope of this work. The 3D face 

analysis of this work is extended to compare the used feature 

extractions for race classification due to its challenging fine 

and salient variation in facial details. This work is also aided 

by several experimental and knowledge-based secondary 

phases of preprocessing and 3D mesh registration that have a 

direct impact on the extraction and classification results. In 

addition, Deep Learning is used in this work for automatically 

landmarking and extracting the distance-based features 

according to specific interest key points on the facial mesh. 

The results of this work highlight suitable feature extraction 

for race classification by several important extractions, these 

comparing results also highlight the facial areas and traits that 

could highly impact identifying the human race by the face 

shape details. 

 

 

2. THE PROPOSED METHODOLOGY FOR 3D 

FACIAL RACE RECOGNITION 

 

In this work, five distinct phases are meticulously executed. 

The initial phase was characterized by an exhaustive survey of 

existing 3D facial datasets, conducted to identify the most 

appropriate dataset in mesh format, encompassing individuals 

of various racial populations. Headspace, a dataset that comes 

precisely aligned with the core goal is used in this work. 

Subsequently, in the second phase, the preprocessing of the 

selected 3D facial data (.obj files in triangular mesh form) took 
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center stage. This phase includes the precise cropping of 

frontal facial parts from each head complete head mesh as a 

critical step in isolating the target features. 

Moreover, we undertook a rigorous cleaning and filtering 

process to eliminate the noise and ensure the purity and 

oriented triangular facets of the 3D faces. These steps of 

cropping and filtering were complemented by 3D mesh 

registration techniques, which harmonized the vertices and 

aligned the meshes, standardizing the data for the subsequent 

phase of feature extraction. The third phase places the feature 

extraction process at the core of this proposed work, in which 

we harnessed a spectrum of robust descriptors, including HOG, 

PCA, SIFT, and geodesic distance. These descriptors were 

thoughtfully employed to effectively capture and represent 

intricate details and attributes of the 3D facial meshes. They 

provided a multidimensional perspective, allowing for well 

understanding of the dataset's intricacies. In the fourth phase, 

our attention turned towards features post-processing, a 

critical endeavor in which we made use of various statistical 

techniques such as; the PCA, the median, the average, and the 

standard deviation, which are applied to enhance describing 

the extracted features in a reduced size.  

 

 
 

Figure 5. The proposed phases of 3D facial race 

classification 

 

In the final phase, machine learning-based classification is 

built, and trained on the Headspace dataset, making use of the 

provided race labels to categorize individuals into their 

respective racial groups. The performance of this classifier 

according to its accuracy and validation measures is explored 

to prove its effectiveness in identifying the human race based 

on their 3D facial parts’ geometry. The achieved high-

accuracy results offer invaluable insights into the system's 

potential for future real-world applications and race-based 

implementation of computer vision technologies. The 

proposed phases of this work are described in Figure 5. 

 

2.1 Dataset and preprocessing 

 

In this work, the Headspace Liverpool-York Headspace 

Model (LYHM) [44] a multiple-race dataset is used to 

investigate the impact of the face trait geometrical shape on 

identifying the human race without using more complex 

texture information of the facial regions. The Headspace 

dataset includes 3D models of human heads (shape and texture 

information) introduced by a collaboration between the 

Craniofacial Unit at Liverpool’s Alder Hey Children’s 

Hospital and the Computer Science Department of York 

University. Using a 3dMD five-camera system, a high-

resolution texture image and a 3D triangular surface consisting 

of approximately 180K vertices connected into 360K triangles 

were generated for every subject [45]. This dataset consists of 

full human head 3D images (OBJs) of 1519 subjects (~1212 

subjects after exclusion), in addition to their texture 

information that is stored as bitmap (BMP) files. The subjects 

are wearing tight-fitting latex caps to reduce the effect of 

hairstyles and show the shape of the cranium (See Figure 6). 

 

 
 

Figure 6. The latex cap used in Headspace data 

 

Headspace data allows the possibility of multiple images 

per subject and uses Five five-digit strings as a subject 

identifier and twelve-digit string as an image identifier. The 

authors depend on a balanced number of males and females 

and further exclude several 3D faces due to poor conditions 

such as; improper fitting of latex cap, hair bulge under it, 

unintended captured noise, or missing partial areas of the 3D 

scan. The dataset is provided with subject-based and capture-

based metadata. Each face of the data is described using 15 

attributes that are mentioned inside a separate text file. Gender, 

stated ethnic group, age, eye and hair color, beard and 

mustache descriptors (none, low, medium, high), and a 

spectacles flag are among the subject information. A quality 

descriptor (free text, such as "data spike right upper lip"), a 

hair bulge flag (hair bulge under latex cap distorting the 

apparent cranial shape), a cap artifact flag (due to poor fitting, 

the cap has a ridge at its apex), a cranial hole flag (a missing 

part in the data scan at the cranium), and an under chin hole 

flag (missing part under chin) are all included in the capture 

information. The Vertices and Faces of each 3D facial mesh 

are described with their corresponding x,y, and z coordinates 

in addition to the norm information of each vertex. The race 

label is mentioned in a text file attached with each facial scan, 

the racial groups of this data include (1012 scans of White-

British, 48 of White-European, 43 of White-Irish, 22 of White-

Welsh, 15 Chinese, and smaller numbers of several other sub-

races. The training set used in this work contains three races 

(White, Asian, and African) limited by the least number of 

them. 

 

 
 

Figure 7. A Headspace scan and its cropped face area 
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The used faces are cropped using “MeshEditor”, a public 

GitHub code by Harry Matthews to crop the frontal Face 

Region from the 3D facial mesh data. The extracted frontal 

face region contains the relevant facial features and eliminates 

any irrelevant information, such as hair, neck, or ears, which 

could otherwise interfere with the classification process. The 

meshes’ poses are corrected, and the frontal view of each 3D 

face is extracted (See Figure 7) to be ready for the next 

preprocessing step. 

 

2.2 3D registration to map the facial meshes 

 

Then, to align and fit each 3D facial mesh to other meshes 

(to align the targets to a template), a 3D registration step is 

implemented to find the best possible transformation that maps 

one mesh onto the other, and ensures that corresponding points 

on both meshes are aligned. This alignment is essential for 

various applications, including 3D face recognition and 

classification, facial expression analysis, and facial animation. 

In this phase, we implement the deformation procedure 

proposed by Amberg et al. [46] to extend the ICP over 

nonrigid registration while keeping its original advantages. 

This framework could allow different regularizations due to its 

adjustable parameter (decreasing stiffness weights used in 

deforming the template towards the target gradually. 

 

 
(a)                     (b)                   (c) 

 

Figure 8. The 3D registration on Headspace data 

(a)Template, (b)Target, (c)The result 

 

ICP is then implemented in this approach to find the optimal 

deformation among the others created iteratively via 

calculation of the correspondences by a nearest-point search. 

This implementation works well over the 3D facial meshes of 

the Head Space dataset, giving each vertex an affine 

transformation and minimizing the difference in the 

transformation of neighboring vertices. especially while 

choosing a template of an approximate similar number of 

vertices with the average number of the targeted meshes. A 

template, a sample target, and the resulting deformation are 

shown in Figure 8, the human perception comparison shows 

clearly how this algorithm kept the details of the target mesh 

and modified the number of vertices to be ready for the next 

steps of feature extraction and classification. Implementing 

this registration procedure while using a template of a vertice 

number that extensively differs from that of targets is also 

examined. However, the results show that it yields higher 

distorted facial traits due to a higher difference in vertices 

number between the template and the target. Another proposed 

registration procedure in the study by Audenaert et al. [47] is 

also investigated in this work and showed a degraded quality 

and distorted facial traits on Head Space data as shown in 

Figure 9. 

 
(a)                     (b)                   (c)  

 

Figure 9. The impact of inappropriate registration 

 

2.3 Extracting the descriptive features from 3D faces 

 

The extractions in this work are 3D feature extractions 

extended from several well-known approaches proposed in the 

literature. due to their essential advantages mentioned in the 

literature, in addition to the experimental enhancement in 

classification accuracy achieved in this work, we extend these 

feature extractions to 3D mesh scans of real facial data of 

Headspace. The LD-SIFT is a SIFT extension specified for 

mesh representation with high robustness to pose variations, 

uniform change in scaling and orientation, and partial noise. A 

HOG extension called the 3D Voxel HOG algorithm originally 

implemented on furniture and handcraft edges, has been 

extended to facial data due to its robustness to pose variations, 

and discriminating feature representation. Aided by deep 

learning automatic landmarking, Geodesic distance is used as 

the third feature extraction due to its ability to capture the 

curvature information and 3D dimension of the mesh areas.  

After the initial steps of preprocessing such as denoising 

and cropping to remove the irrelevant details, and registration 

to align the vertices and unify their number, the important and 

descriptive features need to be extracted and represented 

efficiently. Features such as; edges, corners, Gabor features, 

HOG features are detected, extracted, and saved in numerical 

vectors or matrices. In addition, the interest point (i.e., 

landmarking, keypoints) is determined manually or 

automatically using keypoints detectors such as; ICP, SIFT, 

and other types to facilitate extracting the local features. In this 

work, Scale Invariant Feature Transform (SIFT) is used to 

extract local features due to its pose variations and scaling 

robustness, and its capability of handling the partially 

occluded facial parts and uncontrolled illumination conditions 

Thus, SIFT can cope with the traditional limitation of holistic-

based face representations by selecting features that are not 

affected by scaling, noise, and rotation. The SIFT allows 

obtaining facial features in the small regions of the human face. 

In this phase, SIFT is Implemented directly on 3D mesh Head 

Space data, and the procedure proposed by Darom and Keller 

[48] is borrowed to obtain the local features of each 3D Face. 

The author of implemented SIFT on Google 3D Warehouse 

data that is consisted of different categories of general images. 

We borrowed this procedure to implement of real 3D facial 

meshes of Headspace, the resulting numerical array size 

proportional to the vertices’ resolution of the 3D mesh 

representation. Experimentally, a Headspace 3D facial mesh 

of (18215) vertices yielded approximately a (1 ×1104) size 

features array. The extracted features’ vectors are then reduced 

in dimensionality using statistical representations like PCA to 

allow efficient machine learning in the next training and 

classification steps. The second scenario of feature extraction 
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in this work is done using the HOG feature extractor on 

Headspace data to obtain the pros of its robustness to pose 

variations, simplicity in computation, its ability to capture the 

local shape information of the facial region and traits, and its 

low dimensionality of the resulting feature space. The 

effectiveness of implementing HOG as a feature extractor is 

affected by the feature representation nature and the chosen 

type of parameters, such as the size of the histogram cells and 

the number of orientation bins. Thus, selecting appropriate 

parameters is crucial to achieving optimal performance while 

using HOG in 3D face analysis. For each vertex in the mesh 

described as v(x, y, z), the gradient information is calculated 

to capture the information about local shape variations. Then, 

the 3D facial mesh is divided into fixed-size small cells (local 

regions) and the gradients of the neighboring vertices are 

analyzed to compute their orientations. The orientation is then 

quantized into a fixed number of bins, typically by dividing 

the 360 degrees of rotation into equal intervals. Each cells 

histogram as well as each bins gradient orientations are 

computed. The local gradient orientation distribution within 

the cell is well-represented by this histogram. Subsequently 

adjacent cells are categorized into blocks and the histograms 

within each block are combined to generate a combined 

histogram that depicts the local structure. The final feature 

vector is formed by concatenating all the histograms from 

different blocks or cells to summarize the spatial distribution 

of local gradients throughout the 3D facial mesh. 

Mathematically, the HOG feature extraction can be 

represented as follows: Let (M) be the 3D facial mesh with (V) 

vertices, and for each vertex (vi ∈  M), let Gi represent the 

gradient at vertex vi. Divide the mesh into cells Cj, and within 

each cell, calculate the histogram of gradients Hj with K 

orientation bins.  The concatenated histograms from all cells 

and blocks from the final feature vector (F). The HOG feature 

extraction can be expressed as (F=[H1, H2, ..., HN]), where (N) 

is the total number of histograms from all cells and blocks. The 

resulting feature vector (F) can then be used as input for 

various machine learning algorithms in 3D facial mesh 

classification, recognition, or other related tasks. In this work, 

we extend the HOG algorithm proposed by Dupre et al. [49] to 

be implemented as a feature extractor on Headspace data using 

MATLAB R2022b. This 3D Voxel HOG descriptor is made 

especially to be appropriate for local feature recognition while 

taking the density of an object into account. The normalized 

combination of gradient vectors from a specified number of 

pixels is used by the conventional HOG. However, this 3D 

Voxel HOG uses voxels and 2D histograms for adapting the 

3D models. It is initiated by separating the voxel volume into 

feature spaces (f) containing some cubic 3D cells (c), which in 

turn is contain voxels (v). A filter mask [-1; 0; 1] is applied to 

the neighboring voxels of each selected voxel within a cell (in 

all three dimensions) to calculate the gradient vector (g). After 

determining the gradient vector's magnitude, particular angles 

are used to express the vector's orientation. Furthermore, each 

voxel (w) has a defined weight that is used to scale its 

contribution to the 2D histogram of that cell. The voxels inside 

each cell are then binned into a 2D histogram (h) based on their 

angles once these values have been determined. The 3D 

VHOG allows obtaining the faces of a mesh in addition to the 

information of the area within it, which decreases the impact 

of artifacts. In addition, the density of an object is also 

considered by the 3DVHOG to support accurate medical 

imaging, since it builds one 2D histogram (visualized in 3D) 

per cell. This histogram allows for visualization of the empty 

and full gap within the 3D mesh. In summary, using HOG as 

a feature extractor on 3D facial meshes for face classification 

and recognition offers significant advantages, such as 

robustness to pose variations, efficiency, and discriminative 

feature representation.  

For more investigation into the relation between facial 

features and human ethnicity, the Geodesic distance is also 

used in the third scenario as a feature extraction to calculate 

the distances between the interest points on the facial mesh. 

Specific landmarks have been assigned to the HeadSpace 3D 

scans using a deep learning-based pre-trained network [49] on 

BU-3DFE and DTU datasets. A Specific Matlab code is 

designed to map the landmarks indices with the vertices 

coordinates of the 3D mesh. The resulting landmarks on a 

HeadSpace sample are shown in Figure 10. 

 

 
 

Figure 10. Landmarking the HeadSpace data 

 

The Geodesic Distance allows extracting facial curvature 

information from 3D imagery efficiently while the principle 

facial curvatures remain unchanged as the surface rotates, 

translates, and changes in scales. Each curve-based descriptor 

represents the minimum Geodesic distance that separates the 

facial points i and j (the reference vertex and the end vertex on 

the facial surface) such as Dijkstra's algorithm or Fast 

Marching Method. A sample of extracting the Geodesic 

features globally from a Headspace facial mesh of (93829) 

vertex using the Fast Marching algorithm is shown in Figure 

11. Similarly to the Dijkstra algorithm, Fast Marching [50] 

calculates the shortest paths on graphs. Using a gradient 

descent of the distance function D. These computations are 

done in a “mex” file to fasten the distance calculations. A 

distance map from multiple start points using an arbitrary 

isotropic metric is then created to compute geodesic paths 

from any point that joins the closest starting point. The 

calculated shortest geodesic distances finally allow extracting 

the information of the facial curvature (extracting the geodesic 

feature).  

A common approach to extracting the geodesic features is 

to compute local geodesic descriptors around the nose tip. The 

resulting geodesic features matrix then is represented with a 

suitable format for further analysis and next machine learning 

tasks according to the specific required task and the nature of 

the used data. The resulting geodesic features matrix usually 

has a high dimensionality and needs to be reduced in size to 

allow easier analysis and machine learning phase in the next 

steps of face recognition and classification systems. 

Additionally, a local feature experiment is done to extract 

the SIFT features from a cropped local part of each facial scan. 

This knowledge-based selection of the mouth area as a local 

part was according to the conclusions of several existing 
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related works. The classifier is then trained on these Mouth-

SIFT features to predict the individual ethnicity. 

 
 

Figure 11. The geodesic paths on a facial scan 

 

2.4 Building the race classifier 

 

A neural network model often is trained using 

backpropagation, and optimization methods like stochastic 

gradient descent (SGD) or its variations are used in 

backpropagation to train neural networks (NN). Iterative 

training of the weights and biases enables the network to learn 

how to classify faces. Several factors influence the accuracy 

of neural network classification, such as the network 

architecture including the number of neurons per layer, and the 

number of layers, the activation functions selected, learning 

rate, batch size, and regularization strategies like L2 and 

dropout regularization. Five-fold cross-validation is 

implemented to evaluate the NN race classifier performance.   

On the other hand, to train the SVM classifier, the best 

hyperplanes for classifying the data are identified. This is 

accomplished by using a kernel function for non-linear 

separation to optimize the margin between the classes. The 

regularization parameter, kernel-specific parameters, and the 

kernel function all affect the classification accuracy. The SVM 

finds the hyperplane that can maximize the distance between 

any class and the hyperplane, given multiple points that belong 

to a pair of distinct classes. This hyperplane allows separating 

the largest possible fractions of points of each class on the 

same separate side. 

 Because it is reliable, accurate, and efficient even with 

limited training data, supervised learning in this work employs 

SVM with a linear kernel. After extracting the feature 

descriptors from 3D facial meshes, the features have been 

classified using SVM into multiple classes (racial groups used 

in this work). The classifier performance has been evaluated 

using 5-fold cross-validation. The observations have been 

divided into k subsets. Every time, a test set is created from 

one of the k subsets, and a training set is created by combining 

the remaining subsets. The average accuracy throughout the k 

trials is then determined. 

The SVM maps the input sample to a high-dimensional 

feature space in trials for locating the optimal hyperplanes and 

decreasing the classification error. The largest margin between 

the two classes is the best hyperplane for the SVM. The margin 

means the maximal width of the slab parallel to the 

hyperplanes that have no interior data points and the support 

vectors are the width constraint of that margin. The classifiers 

have trained over numerical form features resulting from using 

different feature extraction such as; SIFT, HOG, and Geodesic. 

The numerical form of features also decreases the privacy and 

ethical concerns within intelligent systems, particularly when 

data is collected without informed consent which is more 

suitable for human data such as explicit facial details and 

implicit ethnicity information, since such information might 

raise ethical and privacy issues. 

These representations are then organized and combined into 

abstract sets of facial information. In the race classification 

task, the network is architecture to have an input layer that 

matches the dimensionality of the numeric features and an 

output layer with units corresponding to the number of classes 

or race categories aimed to be classified. The intermediate 

layers (also known as hidden layers), can be customized based 

on the complexity of the required tasks and the considered 

facial details. Once the network has been designed, training 

involves feeding the feature data into the network and 

adjusting the model's internal parameters (weights and biases) 

to minimize the prediction errors. The used network is defined 

with a specific input layer and a specific number of features 

according to the fed input set. This network's input layer is 

likewise set up to use Z-score normalization to normalize the 

data. Then a fully linked layer with an output size of 50 is 

added, a batch normalization layer, and a ReLU layer in that 

order. Another completely connected layer is set up with an 

output size equal to the number of classes (the racial groups 

utilized in each experiment) for the final classification.  

MATLAB R2022b application is used to implement deep 

learning functions and the network is trained to recognize 

patterns of the numerical features that are associated with 

different race categories. In order to train a network using 

categorical features, the names of all the categorical input 

variables are specified in a string array, and the categorical 

features are transformed to numeric by converting the 

categorical predictors to categorical using the "Convertvars" 

function. Then, a specific function is used to loop over the 

categorical input variables by which for each variable; the 

categorical values are converted to one-hot encoded vectors 

using the “one-hot-encode” function, and then the one-hot 

vectors are added to the table using another function. To 

ensure that the model is generalized well, the features set is 

divided into three parts: a training set of (70%), a validation 

set of (15%), and a testing set of (15%). The training set is used 

to update the model's parameters during training. Every epoch 

the data is shuffled and mini-batches of size 16 are used to 

train the network. Next by providing validation data the 

network accuracy is tracked during training. During training 

the validation set is used to monitor the models performance 

and adjust hyperparameters. The testing set evaluates how well 

the model predicts outcomes based on hypothetical data. 

Additionally, depending on the results of the evaluation, fine-

tuning is also done via adjusting hyperparameters like learning 

rates, batch sizes, or the number of hidden layers.  

 

 

3. RESULTS AND DISCUSSION 

 

The proposed classifiers of this work are trained on the 

extracted features in the previous phase and evaluated 

according to their accuracy and validation calculations of the 

used ML classifier. The collected SIFT features from the 

cropped frontal face are used to train the NN and SVM 

classifiers. The experiment is run using a single Core-i7 CPU, 

16 G of random-access memory, and a Windows 10 operating 

system. Three main racial categories have been used; African, 

Chinese, and White. In the second and third experiments, the 

HOG and Geodesic features have been extracted from the 

cropped face area for classifying the same three races. 

Additionally, a local feature-based experiment is investigated 
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to measure the classification performance while training the 

algorithm on just cropped mouth parts of Headspace facial 

scans to explore the feasibility of using the mouth area in 

identifying the race. The Mouth-SIFT features showed a high 

accuracy (100%) in addition to decreasing the feature space 

size. Comparing the obtained results showed that the use of the 

SIFT features on the complete facial area of the Headspace 

dataset outperforms both the HOG and Geodesic performance 

with an accuracy of 90%. While the HOG-based classification 

achieved the least accuracy (70%) in distinguishing the three 

used classes. A comparison of the achieved NN classifier 

accuracy of the used extractions is shown in Figure 12. The 

results of the SVM classifier are shown in Figure 13. For 

further evaluation, the confusion matrix parameters have been 

used to evaluate the positive and negative errors of the actual 

and the predicted class labels as shown in Figure 14.  

 

 
 

Figure 12. Comparing the achieved NN classifier accuracies 

 

 
 

Figure 13. Comparing the achieved SVM classifier 

accuracies 

 

 
 

Figure 14. Confusion matrix parameters of the NN classifier 

 

Extraction of the SIFT features from the cropped mouth 

area enhanced the prediction accuracy in addition to reducing 

the memory consumption by reducing the consumed time and 

the search area of the used extraction and reducing the size of 

the resulting feature vectors. The high performance of 3D 

SIFT was consistent with the literature of traditional 2D works 

that highlight SIFT's ability to capture the local facial details 

with high robustness against noise and scale variation. In 

addition, SIFT descriptors outperform the HOG and Geodesic 

in the feature vectors’ size due to their role in reducing the 

image description into a relatively acceptable size set of points 

used later to measure the similarity in the patterns of other 

scans in the dataset. 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

This work proved the high performance of implementing 

the SIFT as a feature descriptor on 3D facial scans. In addition, 

it highlighted the mouth area as one of the most descriptive 

areas within the human 3D facial scans in identifying human 

ethnicity. The limitation of this work came from the limitation 

in the available 3D mesh datasets especially the availability of 

African race 3D scans. This constrained the implementation of 

the proposed feature extraction and race classification on three 

racial groups due to the unfairly distributed samples of races. 

Combining two available facial mesh datasets of Asians and 

Europeans can be useful to solve this limitation. However, the 

inconsistent data representation such as representing the norm 

of vertices and faces, and indexing the vertices can be a 

challenging task in extracting the features and automatic 

approaches of landmarking and cropping. In the future, this 

work is aimed to be extended to explore more 3D datasets with 

fair numbers of each group or combine Asian data with the 

Headspace to increase the training set size. In addition, it aims 

to implement the proposed classifier on the eyes and nose 

areas to investigate the correlation with the predicted racial 

class. 
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