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Symbiotic Radio (SR) is one of the techniques recognized by 6G for wireless 

communication networks performance enhancement. In this paper, SR is used to improve 

the performance of the Internet of Things (IoT) network by enabling IoT tags backscatter 

the neighbor smart phone primary signal rely on the None Orthogonal Multiple Access 

(NOMA) technique. Furthermore, Intelligent Reflecting Surfaces (IRS) are also proposed 

to enhance the channel Quality of Service (QoS); the service performance; between the IoT 

tags and the smartphones either using LTE or Wi-Fi network by smartly reconfiguring the 

signal propagation for performance improvement. We formulate an optimization problem 

to achieve the optimum location and phase shifts of the IRS, aiming to maximize the 

throughput of the IoT system. Proximal Policy Optimization (PPO) algorithm is introduced 

as a solution for this problem. The main idea of PPO is to minimize the divergence between 

the new and old policy while maximizing the expected reward. This is achieved by using a 

surrogate objective function that approximates the policy update. Simulation results 

demonstrate that the proposed algorithms can improve the total system data rate by an 

average of 40% above the system without using IRS and it also, improves the system 

capacity by 40% on average when compared to a system without the IRS scheme at smart 

phones 𝑝 =4 which serve tags 𝒯 =20. 
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1. INTRODUCTION

The applications of internet of things in sixth-generation 

(6G) are predicted to require high connectivity, high energy 

and spectral efficiency as a result of expected massive IoT 

devices where IoT will become more significant in the future 

that massive devices can connect to each other [1, 2]. 6G 

introduces various technologies to satisfy these requirement as 

artificial intelligence (AI), intelligent reflecting surfaces (IRS) 

and symbiotic radio (SR). Artificial intelligence (AI) can 

provide the wireless network by intelligent and automation 

where it simulates the human through processes and intelligent 

behaviors. AI is considered as a data analysis tool. where the 

machine learning models are implemented to take a correct 

decision automatically [3, 4]. Machine Learning (ML) 

Machine learning is an approach to building AI systems where 

ML algorithms have a variety of uses in wireless 

communication networks as it optimizes the network 

resources to improve its performance. ML methods involve 

supervised learning, unsupervised learning and deep 

reinforcement learning (DRL). DRL is a more popular 

algorithm than others where it involves training artificial 

agents to learn and make decisions in complex environments 

through interaction and feedback from the environment. There 

are several types of the DRL algorithms such as Deep Q-

Network (DQN) which contains deep neural networks with the 

Q-learning algorithm to learn a Q-function approximation.

DQN has been successful in solving complex tasks especially 

in wireless communication network and PPO, another type of 

DRL algorithm that aims to find an optimal policy by 

iteratively updating the parameters of the policy. It uses a 

surrogate objective function to guarantee stable and effective 

policy updates. PPO has gained popularity due to its simplicity, 

quick and sample efficiency, making It's appropriate for a 

variety of uses and also it performs well in the wireless 

communication networks so, we employ it in this paper. 

Overall, DRL algorithm can learn policies to make intelligent 

decisions on the wireless network performance as resource 

allocation, throughput, capacity and latency aiming to improve 

it [5, 6]. 

IRS, another technology represented in 6G, involves the use 

of passive surfaces to efficiently control and manipulate the 

radio signal. The IRS surface is configurable, spots on its 

surface can modify the wave that impinges on it where it is 

typically composed of multiple tiny passive reflective 

elements that are controlled to reflect the signal in a particular 

direction allowing IRS to enhance the communication channel 

between source and destination which improves the 

performance of the communication system [7-9].  

Symbiotic radio (SR) is a technology that supports passive 

Internet of things communication, where SR systems enable 

IoT tags to share transmitter, spectrum and receiver of a 

primary user by backscatter the signal between this primary 

user and MBS or Wi-Fi access point which increase the energy 
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efficiency and spectral efficiency of the system. At the primary 

signal receiver, the information signals of the primary user and 

IoT tags can be decoded depending on  the utilize of successive 

interference cancellation (SIC) where The receiver first used 

SIC to decode the primary signal. It then detects the 

backscattered signal from the tags after subtracting the 

primary signal. Recently, symbiotic radio-based machine 

learning has been applied to improve IoT system performance 

[10-12]. 

Furthermore, None Orthogonal Multiple access (NOMA) is 

a techniques which used to increase the spectrum efficiency of 

wireless communication networks which enable more than one 

user to share the same spectrum at the same time therefore, the 

spectrum can be effectively utilized by using NOMA 

technique [13, 14] 

A. Related work 

Recent research studies discuss how to maximize the 

Internet of Things system's throughput. depending on 6G 

techniques. Liu et al. [15] established a SR model for multi-

users random access and using a coding algorithm to prevent 

the multiple reflected signals from interfering with one another 

which enhances the system performance. In the study of Liang 

et al. [11] SR is proposed aiming to improve the backscattering 

link between the primary and secondary user and getting 

highly reliable communications through joint decoding at the 

primary receiver. In the study by Long et al. [16], SR is used 

to aid passive Internet-of-Things (IoT) where the IoT device is 

parasitic on the primary user signal which minimize the power 

efficiency of the system. A symbiotic radio system's downlink 

rate was determined by analysing a NOMA technique for 

cellular system that was batched with it., which was then used 

to establish a formulation for the outage probability of the 

signal-to-interference and noise ratio [17]. In the study by 

Naeem et al. [18, 19], IRS have emerged as one of 6G solution 

which used to smartly control the wireless communication 

channel to enhance the spectrum and energy efficiency of the 

6G network. In the study by Al-Abbasi et al. [20], an IRS-rely 

on NOMA is proposed for a wireless network where the 

purpose of this paper is improving the performance of an IRS-

NOMA combination by optimizing the number of the IRS 

reflective elements then utilize a new approach of multiple -

IRS-NOMA to boost the received signal quality. In the study 

by Zhang et al. [21], a DRL algorithm is used to solve the 

problem of IoT system sum-rate maximization based on 

symbiotic radio technique where DRL takes an appropriate 

decision for the IoT device association. Bharadia et al. [22] 

used the SR scheme to support passive IoT devices and 

enhances the IoT system performance either using LTE or Wi-

Fi network. Furthermore, Double Deep Reinforcement Q-

Learning DDQL algorithm has been proposed to achieve the 

optimal IoT tags clusters aiming to improve the IoT system 

performance. All of the studies that we discuss indicate that 

researchers are interested in utilizing 6G technologies in order 

to meet IoT requirements such as reliability, power efficiency, 

throughput and capacity. 

B. Contribution 

Our goal in this work is enhancing the performance of the 

IoT network which is required for communication of IoT 

devices thus, SR technique is proposed by allow the IoT tags 

to backscatter the signal which is transmitted from the MBS or 

AP to smartphones where it is subsequently decoded at the 

smart phone. SR provide intelligent cooperation between the 

system devices which enhance the system performance. 

Furthermore, NOMA technique is used between the IoT tags 

which use the LTE network to enable multiple users to share 

the same time-frequency resource which increase the system 

spectral efficiency. Additionally, we focus on optimizing the 

IRS location and its reflectors phase shift aiming to enhance 

communication between IoT tags 𝒯 and the smart phones 𝒫. 

IRS improve the wireless communication systems by 

intelligently manipulating wireless signals in complex 

environments. Its ability to adaptively optimize signal 

reflections can contribute to enhanced performance, coverage, 

and capacity in various wireless communication scenarios. 

The proximal policy optimization algorithm is proposed as a 

solution to this problem where PPO is a reinforcement learning 

algorithm that can be applied to train policies in complex 

environments. In this case, it can be used to optimize the IRS 

location and the phase shift of the reflectors to maximize the 

communication performance between IoT tags and 

smartphones. These techniques and algorithm of our proposed 

scheme can contribute in improve the IoT system performance 

which is one of the 6G challenges. the main contributions of 

this work are: 

(1) We propose a symbiotic radio communication technique 

for the IoT tags, whether they use LTE or Wi-Fi network and 

a NOMA technique is also proposed for IoT devices that use 

the LTE network to increase the throughput of IoT system. 

(2) IRS system is proposed to enhance the communication 

between IoT tags and the smartphones. An optimization 

problem is formulated to increase the IoT system uplink total 

data rate. 

(3) Proximal policy optimization Algorithm has been 

applied to find a solution to this problem by achieving the 

optimum location and phase shift of the IRS. 

(4) The performance of our proposed scheme based IRS 

system is evaluated by simulation to demonstrate the increase 

in the system's total data rate in comparison to the system 

without using IRS and the system which using the DDQL 

algorithm for clustering. 

This paper's reminder is structured as follows. In section ΙΙ 

we introduce the proposed system model including MBS, AP, 

IOT tags, the smartphones and IRS .in section ΙΙΙ The 

throughput maximization problem is formulated based on 

optimizing the IRS phase shifts and location. In section ΙV we 

explain the proximal policy optimization algorithm. In section 

V we detail the suggested algorithm. Section VI demonstrate 

the simulation results. Finally, this paper is concluded at 

section VIΙ. 

 

 

2. SYSTEM MODEL 

 

Consider an IRS-assisted a symbiotic radio communication 

system between 𝒯 IoT tags and 𝒫  smart phone which are 

represented by 𝒯 = {1,2, . … , t, . . . , 𝒯}  and 𝒫 =
{1,2, . … , 𝑝, …  𝒫} respectively, under coverage of micro base 

station MBS and Wi-Fi access point AP as shown in Figure 1. 

The downlink link primary signal of the smart phone from the 

MBS or the AP is backscattered by the IoT tags. The IoT tags 

modulates its information on the primary signal to be received 

at the smart phone using the SR communication system. IRS 

with its 𝒩 reflecting elements is used to assist in the 

communication between the IoT tags 𝒯 and the smart phones 

𝒫 where the tags reflect their signal to the IRS which can be 

received by the smart phone. The amplitude and phase shift of 

the  𝒩 reflecting elements are denoted by 𝛽𝑛𝜖[0,1]  and 

θn𝜖[0,2𝜋] respectively, the reflecting elements are represented 
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by n 𝜖{1, … , n, . . . , 𝒩} and the set of IRS horizontal location 

which is represented by the two-dimensional (2-D) coordinate 

of the IRS .For simplicity, we set 𝛽𝑛 = 1 . The optimum 

location and phase shift of IRS are the location and phase shift 

values which achieve the maximum total data rate of the system. 

NOMA technique is proposed to allow users to share the same 

spectrum resources, therefore increasing the system's spectral 

efficiency, which increases the system’s throughput. Each tag 

associates the nearest smart phone then, tags which are 

associated the same smartphone and use the LTE network can 

share the same subcarriers 𝒮 using NOMA technique which 

increase the spectral efficiency of the system then, the 

smartphone uses the SIC technique to detect the signal it has 

received. SIC starts by detecting the primary signal, subtracting 

this detected signal from the entire signal, the receiver then 

estimates backscattered signal of the tag. On the other hand, 

tags rely on orthogonal frequency division multiplexing 

(OFDM) technology for a Wi-Fi network transmission where 

all subcarriers on a channel are occupied by one user and sends 

a complete data packet. OFDM technique is distinguished by 

its ability to cope with severe channel conditions. The detected 

signal at the smart phone through LTE network can be 

calculated as: 

  

𝑦𝑡
𝐿(t) = ℎ𝐵𝑝𝐵(𝑡) + 𝜂𝑝𝑡ℎ𝐵𝑡(𝑔𝑡𝑝 +

ℎ𝑡𝐼 𝛩 ℎ𝐼𝑝 ) 𝑥(𝑡) 𝐵(𝑡)+ 𝑁0 
(1) 

 

where, B(t) denote the smartphone downlink primary signal 𝑝 

and x(t) denotes the information of the tags. ℎ𝐵𝑝  represents 

gain of the communication that exists between the smartphone 

𝑝  and the (MBS), ℎ𝐵𝑡  represents the gain of the 

communication channel between the tag t and the RF source 

(MBS), 𝑔𝑡𝑝 denotes the gain of the channel between the tag t 

and the smartphone 𝑝, ℎ𝑡𝐼 is the gain of the channel between 

the tag t and the IRS reflector, ℎ𝐼𝑝 is the gain of the channel 

between the IRS reflector and the smart phone 𝑝, 𝛩 represent 

the IRS reflector phase shift matrix, 𝑁0 is the additive white 

Gaussian noise AWGN and 𝜂  denotes the reflection 

coefficient. The Signal-to-Interference Noise Ratio SINR 

𝛾𝑡𝑝
𝐿 of the tag detected signal on the smart phone through the 

LTE network can be calculated as: 

 

𝛾𝑡𝑝
𝐿 =

𝜂𝑃𝐵𝑡ℎ𝐵𝑡(𝑔𝑡𝑝+ℎ𝑡𝐼   𝛩 ℎ𝐼𝑝  )

∑ 𝜂𝑃𝐵𝑡ℎ𝐵𝑡(𝑔𝑡𝑝+ℎ𝑡𝐼   𝛩 ℎ𝐼𝑝  )+𝑁0
𝑇𝑙𝑝−1

𝑖=1,𝑖≠𝑡

  (2) 

 

where,  𝑃𝐵𝑡  is the downlink RF signal power to tag. 

∑  𝜂𝑃𝐵𝑡ℎ𝐵𝑡  ( 𝑔𝑡𝑝 + ℎ𝑡𝐼 𝛩 ℎ𝐼𝑝 

𝑇𝑙𝑝−1

𝑖=1,𝑖≠𝑡
) indicate the interference 

produced by other 𝑇𝑙𝑃 − 1 tags that backscatter the same LTE 

downlink primary signal of smartphone 𝑡  on the same 

subcarriers 𝒮 (NOMA) [17, 21, 23]. The Shannon Model can 

be used to determine data each tag t ∈ T rate at the smartphone 

𝑝 ∈  𝒫 using the LTE network and sharing the same subcarriers 

S that each has bandwidth 𝓑 as: 

 

𝑅𝑡𝑝
𝐿 = 𝓑𝒮 log (1+ 𝛾𝑡𝑝

𝐿 ) (3) 

 

which is used to calculate the IoT system throughput as one of 

its performance metrics. In addition, The SINR 𝛾𝑡𝑝
𝑤𝑖of the tag 

information signal at the smart phone by using the Wi-Fi 

network can be calculated as: 

 

𝛾𝑡𝑝
𝑤𝑖 =

𝜂𝑝𝑤 ℎ𝑤𝑡(𝑔𝑡𝑝 +ℎ𝑡𝐼   𝛩 ℎ𝐼𝑝  )

∑ 𝜂𝑃𝑤𝑡ℎ𝑤𝑡(𝑔𝑡𝑝+ℎ𝑡𝐼   𝛩 ℎ𝐼𝑝  )+𝑁0
𝑇𝑤𝑝−1

𝑖=1,𝑖≠𝑡

  (4) 

 

 

Smart phone

Tag

Tag

MBS

Wi Fi

Smart phone

Tag

Tag

            IRS

 

 

Figure 1. IRS for IoT network 
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where, 𝑝𝑤 represents the WAP-transmitted signal power, ℎ𝑤𝑡  

represents the gain of the channel between the IoT tag 𝑡 and 

the WAP, ∑ 𝜂𝑃𝑤𝑡ℎ𝑤𝑡(𝑔𝑡𝑝 + ℎ𝑡𝐼   𝛩 ℎ𝐼𝑝  ) 
𝑇𝑤𝑝−1

𝑖=1,𝑖≠𝑡
indicate the 

interference produced by other 𝑇𝑤𝑝 − 1 tags that backscatter 

the same primary Wi-Fi signal between WAP and the 

smartphone 𝑝 [20, 22, 24]. Similarly, each tag t ∈ 𝒯 rate at the 

smartphone 𝑝 ∈  𝒫 can be calculated as: 

 

𝑅𝑡𝑝
𝑤𝑖= 𝓑 log (1+ 𝛾𝑡𝑝

𝑤𝑖) (5) 

 

 

3. PROBLEM FORMULATION 

 

In this section, a formulation of the system problem is 

provided to maximize the throughput of the IoT system by 

jointly optimizing IRS’ location and the phase shifts of its 

reflecting elements. This problem is represented by an 

optimization problem P, a proximal policy optimization (PPO) 

algorithm is proposed to solve this problem because of its 

simplicity, quickness and its capability to handle complex 

environments.  

 

P: max
𝒲,𝛩

 𝛴𝑝∈𝑃  𝑋𝑡𝑝  (𝛴𝑡=1

𝑇𝑙𝑝
𝑅𝑡𝑝

𝐿 + 𝛴𝑡=1

𝑇𝑤𝑝 𝑅𝑡𝑝 
𝑤𝑖 ) (6) 

 
Subject to  

 
C1: 𝛾𝐵𝑝

𝐿 > 𝛾𝑡𝑝
𝐿  and 𝛾𝑤𝑝

𝑤𝑖> 𝛾𝑡𝑝
𝑤𝑖 , ∀ 𝑡 ∈  𝒯 and 𝑝 ∈ 𝒫  

C2: 𝛾𝐵𝑡
𝐿  , 𝛾𝐵𝑝

𝐿 >𝛾𝑡ℎ
𝐿  and 𝛾𝑤𝑡

𝑤𝑖 , 𝛾𝑤𝑝
𝑤𝑖 >𝛾𝑡ℎ

𝑤𝑖  ∀ 𝑡 ∈ 𝒯 and 𝑝 ∈ 𝒫  

C3: 𝑋𝑡𝑝 ={0, 1}  

 

Constraint C1 was used to grantee a perfect SIC where SIC 

starts by estimating the primary signal which has a greater 

SINR After that, the estimated signal is subtracted from the 

received signal by the receiver, and the backscattered signal of 

the tags is eventually detected. Constrain C2 was considered to 

guarantee the coverage of the IoT tags and the smartphones 

under the MBS or WAP network. Backscattering is indicated 

by the constrain C3 that, 𝑋𝑘𝑚  is a binary number which can 

either be 1 or 0. It is expected that by resolving this problem 

and getting the optimal IRS location and phase shifts which 

help in improving the communication channel between the IoT 

tags and smart phones, the performance of the IoT system will 

be greatly enhanced. 
 

             
 

4. PROXIMAL POLICY OPTIMIZATION 

ALGORITHM 

 

In recent years, several approaches to reinforcement 

learning using neural network function have been proposed as 

deep Q-learning, policy gradient methods and trust region 

policy optimization (TRPO). However, Q-learning is poorly 

understood and relatively complicated where it observes 

various activities in a buffer to learn and reply, then randomly 

selects a sample from the buffer experience to take a decision. 

The robustness of policy gradient methods is limited, and 

TRPO is relatively complex and incompatible with noise-

containing systems. PPO algorithm has the stability and 

reliability of TRPO however, it is simpler to implement than 

TRPO and it has better overall performance. PPO utilizes a 

slightly different method as compared to imposing a strict 

constraint, this algorithm limits the policy change in each 

iteration through the KL-divergence which determine the 

difference between two policies and utilize the advantage 

function rather than the expected reward because it lowers the 

estimation's variance. PPO has two variants to avoid the bad 

policy decision by constraining the change of the objective 

function in each iteration. The first variant is theoretical 

foundation of TRPO that encapsulates KL divergence as a soft 

penalty as explained in Eq. (7). 

 

max
 𝜃

ⅈ𝑚ⅈ𝑧𝑒 Êt [ 
𝜋𝜃(𝑎𝑡  | 𝑠𝑡   )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡  | 𝑠𝑡   )
 𝐴̂𝑡 −

β KL [𝜋𝜃𝑜𝑙𝑑
(. | 𝑠𝑡), 𝜋𝜃(. |𝑠𝑡)]]  

(7) 

 

𝐴̂𝑡 is the advantage estimator at time step t, β controls the 

penalty's weight, penalizing the goal in cases when the new 

policy deviates from the old one and it follows the fact that a 

certain surrogate objective aims to form a lower bound on the 

the policy performance by computing the maximum KL over 

the states [24]. In practice, this penalty is excessively 

restrictive, leading to only minimal updates that it is difficult 

to find a single value for β which can work for multiple 

problem settings. The second variant is Clipped PPO which 

we proposed in this paper. Clipped PPO simply restrict the 

policy's changing range by ε as shown in Eq. (8). 

 
𝐿𝐶𝐿𝐼𝑃( 𝜃) = Êt[ min (𝑟𝑡 ( 𝜃) 𝐴̂𝑡 − clip (𝑟𝑡( 𝜃), 1 − 𝜀 , 1 +

𝜀)𝐴̂𝑡)]  
(8) 

 

𝐿𝐶𝐿𝐼𝑃  refers to conservative policy iteration, 𝑟𝑡 ( 𝜃)denote 

the probability ratio where 𝑟𝑡 ( 𝜃) =  
𝜋𝜃(𝑎𝑡 | 𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡 )
 and the term 

clip (𝑟𝑡( 𝜃), 1 − 𝜀 , 1 + 𝜀)𝐴̂𝑡  adjusts the surrogate objective 

by clipping the probability ratio, which eliminates the 

incentive to move 𝑟𝑡  outside of the interval ( 1 − 𝜀 , 1 + 𝜀) 

where it takes the minimum value of the clipped and unclipped 

objective as shown in Figure 2. PPO can outperform the 

penalty-based variant and has a simpler implementation [25, 

26]. 

 

enviroment

Reward

States Action

PPO updated policy

States

                 Controller
     ( Clipping or Unclipping)

 
 

Figure 2. PPO algorithm model 

 

 

5. PROPOSED PPO ALGORITHM FOR FINDING THE 

OPTIMUM IRS’ LOCATION AND THE PHASE 

SHIFTS 

 

Our objective is to determine the optimal location and phase 

shift of the IRS reflector to solve the system throughput 
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maximization problem. Initializing the clipping threshold 𝜀 

and the policy parameter 𝜃0 which is the set of parameters that 

define a policy function. Moreover, we initialize the 

environment which includes one MBS, one AP, 𝒯 

tags, 𝒫 smart phones. The input of the neural network at the 

initial state s0 is the IoT tags SINR (2), (4) depending on the 

initial location coordinates of the IRS and its initial reflecting 

elements phase shifts regardless of whether it uses the LTE or 

Wi-Fi network. Every time step t, the agent receives a reward 

from the environment consequent to the action 𝑎𝑡  that was 

sent by this agent to the environment depending on the 

objective function (8) after estimating the advantage 𝐴̂𝑡  and 

the probability ratio 𝑟𝑡 . PPO run to decide clipping or 

unclipping the policy then, the state changes to a new state 

st+1 with new IRS location coordinates and phase shifts where 

if the ratio 𝑟𝑡  moves outside the interval (1 − 𝜀 , 1 + 𝜀) it will 

be clipped (8). 

 

Algorithm 1: PPO algorithm for getting the optimum IRS 

location and phase shifts 

• Initialization: smart phones, IoT tags, IRS and coordinates of 

AP location.  

• Initializing the phase shift of the IRS elements. 

• Initialize the policy parameter 𝜃0, clipping threshold 𝜀 

• for episode = 1……; k do 
• for t = 1….. ; T do 

 

SINR for each tag will be calculated as a neural network 

input. 

Run policy 𝜋𝜃(𝑎𝑡  | 𝑠𝑡   ) 

   Estimate the advantages 𝐴̂𝑡 

    Select the IRS location and phase shifts action 𝑎𝑡  and 

observe the reward,the next state st+1 

• Training of PPO 

   The policy update is computed as: 𝜃𝑘+1  = arg max
       𝜃

  𝐿𝜃
𝐶𝐿𝐼𝑃 

  If  The polices deviate so far  

         𝑟𝑡( 𝜃) is clipped    

  end for 

  end for  

 

 

6. SIMULATION RESULTS 

 

In this section, the proposed scheme of IRS-based PPO 

algorithm performance is evaluated using parameters that 

listed in Table 1 [12, 27]. 

Figure 3 illustrate that the proposed scheme which uses the 

PPO algorithm to achieve the optimum location and phase 

shift of the IRS can success in improving the system data rate 

compared to the performance of system which uses the DDQL 

algorithm without IRS to achieve the optimum tags clusters 

and the system without using IRS. Optimum IRS location and 

phase shifts achieved by the PPO algorithm can improve the 

communication channel between IoT tags and smartphones. 

As explained in this figure, the suggested scheme increase the 

the data rate of the IoT system by 10% on average when 

compared to a system that uses DDQL_clustering algorithm 

and 24% above the system without IRS which is one of 6G 

challenge. The figure also explains that the system data rate 

increases when the tags number increases at  𝑝  =2 then, it 

decreases due to a rise in mutual interference between the tags 

which associates the same smart phone where using NOMA 

technique. 

Table 1. Simulation parameers 

 
Simulation Parameters Value 

The radius of the cell 500 m 

Bandwidth of IoT (LTE) 180 kHz 

The subcarriers’ number for 15 kHz/ 

subcarrier 

12 subcarriers 

AWGN -174 dBm/Hz 

 Max transmitting power (𝑃𝑚𝑎𝑥) at 

LTE 

23 dBm 

Number of frequency blocks  1 block 

The technology of Wi-Fi  802.11g 

Maximum transmitting power (𝑃𝑚𝑎𝑥)  

at Wi-Fi 

200 mW 

State s = {s1, . … . sk } {𝛾1, . … . 𝛾𝑘} 

Reward r R=𝐵 𝑙𝑜𝑔2(1 + γ)                  

Learning rate ν 5*10−5 

PPO clipping threshold (𝜀) 0.2 

Time step, Episode 500, 2000 

 

 
 

Figure 3. The data rate of the system vs. Number of tags at 

𝑝 =2 

 

 
 

Figure 4. The system data rate vs. The smart phones number 

at 𝒯 =20 

 

Figure 4 illustrates our proposed algorithm performance for 

different numbers of smartphones at a constant number of tags 
𝒯 =20 where our proposed algorithm exceeds the system 

performance by utilizing DDQL_clustering algorithm and the 

system without using IRS by 25%,40% respectively at 𝑝 =4. 
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Additionally, we find that the total system data rate is increased 

when increases the number of smart phones due to decreasing 

in the number of tags which associates the same smartphone 

on the same resources and that causes a less tag’s mutual 

interference. Furthermore, we note that the total system data 

rate has increased slightly after smart phones number  𝑝=4 as a 

result of  the association of no more than two tags per smart 

phone so, we can consider 𝑝=4 is a recommended number of 

smartphones for each 𝒯 =20 number of tags. 

Figure 5 shows how the probability of a system outage is 

affected by adding more tags where the outage probability here 

is that the percentage of tags whose achievable data rate is less 

than a required reference rate which is set to be 5 Mb/S. As 

explained in this figure that our proposed algorithm 

successfully decreases the system outage probability than the 

system which using DDQL_clustering algorithm which works 

to get the IoT tags optimum clusters based on each cluster 

achieved total data rate to maximize the IoT system data rate 

[12]. It also, succeeded in decreasing the outage probability 

than the system without using IRS which may face obstacles 

through the channel between IoT tags and smartphones. 
 

 

 
 

Figure 5. Outage probability vs. Number of tags at 𝑝 =2 

 

 
 

Figure 6. The system capacity vs. the smart phones number 

IRS at its optimum location and phase shift can significantly 

enhance the communication between tags and the smart phone 

and avoid any obstacle which increase the achieved tag data 

rate more than DDQL_clustering algorithm and system 

without using IRS.  

Figure 6 explains the IoT system capacity verus the 

smartphones number at of 10 Mb/s data rate per IoT tag which 

is explained in Table 2 and considering the tags number is 𝒯 

=20. The figure demonstrates that when the number of smart 

phones increases, the system capacity increases due to fewer 

tags backscattering their signals on each smart phone which 

decreases the mutual interference and increase the system 

capacity. Furthermore, we observe the effect of using the IRS 

on the system capacity compared to system without using the 

IRS where our proposed scheme depending on the IRS can 

increase the system capacity at a lower number of smart 

phones for example, at 𝑝 =4 it can improve the capacity of the 

system on average by 40% above the system without utilizing 

the IRS scheme. 

 

Table 2. The IoT system capacity vs. the smart phones 

number 
 

Smart Phones Number (𝓜) 2 4 6 8 

The IoT system capacity using the 

proposed algorithm 
10 18 20 20 

The IoT system capacity without using IRS 7 13 17 17 

 

 

7. CONCLUSION 

 

In this paper a symbiotic radio technology (SR) is suggested 

for Internet of things (IoT) network to support the passive IoT 

tags and improve the performance of the uplink transmission 

of IoT system which is one of 6G challenges for IoT systems. 

SR enables the IoT tags to backscatter its neighbor smart 

phones’ signals. Furthermore, we use the intelligent reflecting 

surfaces (IRS) to enhance the channels and avoid any obstacles 

between the IoT tags and smart phones either uses LTE or Wi-

Fi network. Getting The optimal IRS phase shifts and location 

by formulating an optimization problem in order to maximize 

the total system data rate. Proximal policy optimization (PPO) 

algorithm is employed to get a solution for this problem. The 

simulation results show that the suggested scheme success in 

increasing the total system data rate by 10% on average when 

compared to a system that uses the Double Deep Q-learning 

(DDQL) algorithm and 24% above the system without IRS at 

𝑝 =2. additionally, the proposed scheme improve the capacity 

of the system by 45% above the system without IRS at 𝑝 =2. 

Finally, this proposed scheme can enhance the performance of 

IoT networks which is necessary for IoT applications relying 

on 6G technologies and by using one of the machine learning 

algorithms. Improving IoT performance is a critical need for 

our world to be able to connect everything intelligently. 

Therefore, it is recommended that future researchers work on 

enhancing the other aspects of IoT network such as latency, 

power consumption, and reliability. 
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