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In this study, we attempted to develop a robust and accurate near infrared spectroscopic 

model for nutrient content analysis in fermented Cocoa Pod Husk (CPH), a viable but 

underexploited byproduct in cocoa production with great potential for use in animal feed. 

Recognizing the necessity for sustainable feed options, precise nutrient profiling of CPH 

is critical for balanced diets and effective feed formulation. To achieve this, specific 

spectral pre-processing techniques, namely multiplicative scatter correction (MSC), 

Savitzky-Golay smoothing (SGs), and the first derivative (1st D) were purposefully 

chosen for their individual and combined abilities to correct for scattering effects, smooth 

out noise, and enhance spectral resolution, respectively. These methods significantly 

contribute to the model's superior performance by improving the quality of the spectral 

data input. Furthermore, Partial Least Squares Regression (PLSR) was selected over 

other multivariate algorithms due to its robustness in handling collinear and noisy data, 

making it well-suited for complex biological matrices such as fermented CPH. 

Employing the Unscrambler X 10.4 software, the PLSR model was rigorously assessed 

using a range of statistical tools to ensure validity, with notable precision in predicting 

key nutritional components. The findings not only confirm the model's excellence but 

also hold promising implications for the agriculture industry, particularly in the 

development of cost-effective, nutrient-rich animal feed solutions. By capitalizing on the 

compositional richness of CPH and refining NIRS modeling for its analysis, this study 

contributes to the enhanced utilization of agricultural byproducts and the sustainability 

of animal nutrition practices.  
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1. INTRODUCTION

As the world’s third largest cocoa (Theobroma cacao L.) 

producer, Indonesia has enormous potential for by-products 

such as fruit shells (pod husk). The use of cocoa pod husk is a 

strategic step toward increasing the availability of feed 

ingredients and reducing environmental pollution caused by 

improper cocoa pod shell disposal [1]. Cocoa pod husk, a by-

product of the plantations, can be used as animal feed. Cocoa 

pod husk is the by-product with the highest proportion 

produced. Each pod contains 67–76% shells, and every ton of 

the dry beans will yield 10 tons of wet cocoa husk [2]. The 

husk contains several nutrients that can be used as feed 

ingredients for poultry and ruminants [3], Typically, these 

husks are left to accumulate in the plantation areas, which can 

cause ecological imbalances by attracting pests, promoting 

disease, and affecting soil quality due to the slow 

decomposition of the fibrous material from the pod husk. 

Moreover, the traditional burning of husks, practiced in some 

areas, releases significant amounts of carbon dioxide and 

pollutants, exacerbating air quality issues and contributing to 

global warming. This environmental challenge coexists with 

the potential for husks to serve as a valuable feed resource, 

containing 5.9–9.1%, 22.6–35.7%, and 1.2–10% crude protein, 

fiber, fat, and minerals [4].  

The cocoa pod husk has a high nutritional value, but it also 

includes chemicals that may reduce the body’s ability to 

absorb nutrients. According to Laconi and Jayanegara [5], the 

cocoa pod husk fiber fraction has a dry (DM) and organic 

matter (OM) digestibility level of about 40% and is made up 

of Neutral Detergent Fiber (NDF), Acid Detergent Fiber 

(ADF), hemicellulose, cellulose, and lignin at 80.7%, 74.6%, 

6.0%, 35.3%, and 38.8%.  

Theobromine is also found in the husk of cocoa pods, where 

it can inhibit the growth of rumen microbes, reducing fiber 

digestion and causing diarrhea [6]. Considering the potential, 

nutrient composition, and limiting elements, processing is 

necessary to enhance the quality of a feed ingredient. This 

aims to increase nutritional content and digestibility while 

decreasing anti-nutritional compounds and extending shelf life. 

Furthermore, fermentation is one of the biological processing 

methods that can improve the nutritional quality and usability 
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of agricultural by-product feed ingredients [7]. Hidayat et al. 

[8] reported that the fermentation process on cocoa pod husk 

using lingzhi mushrooms (Ganoderma lucidum) at different 

concentrations and times can increase the protein content and 

digestibility of DM and OM. 

Fermentation represents a notable bio-processing avenue 

capable of enhancing the digestibility and nutritional value of 

agricultural by-products, including cocoa pod husks [7, 8]. 

Another prevalent method, chemical treatment, has also been 

explored for its potential to alleviate the impact of anti-

nutritional factors and enhance feed ingredient quality. For 

instance, alkaline treatment has demonstrated effectiveness in 

reducing fiber content and improving protein digestibility in 

various agro-industrial by-products. Similarly, chemical 

treatments using alkalis or acids have been investigated in 

improving the digestibility and palatability of several feed 

resources. However, these processes often entail additional 

costs and can introduce certain environmental concerns related 

to waste disposal of chemical by-products. 

Mechanical processing, such as grinding or particle size 

reduction, can also play a role in enhancing the utilization of 

agro-industrial by-products by improving their handling 

properties, but its impact on nutrient bioavailability is limited 

in comparison to biological or chemical methods. 

While fermentation, either with chemical or mechanical 

treatments each have unique advantages and drawbacks, the 

emphasis in this study remains on the potential of fermentation 

as a biological processing method to enhance the nutritional 

value and usability of cocoa pod husk. The multifaceted nature 

of agricultural by-products necessitates the exploration of 

varied processing methods to ensure their effective 

contribution as valuable feed resources while addressing 

associated environmental and economic considerations. 

In the preparation of livestock rations, the nutritional 

content and digestibility of feed ingredients, including cocoa 

pod husk, should be considered. Laboratory testing is 

commonly used to determine the nutritional content of animal 

feed ingredients. Although most of these methods are reliable 

and frequently used to measure feed ingredient parameters, 

this technique takes a long time, making it less time-efficient 

[7]. Therefore, it is necessary to develop fast, non-destructive, 

and chemical-free methods to predict better feed ingredients’ 

qualitative and quantitative parameters or at least be as 

accurate as conventional methods. 

Near Infrared Reflectance Spectroscopy has evolved into a 

non-destructive method for analysis in various fields, 

including animal feed. NIRS can analyze quickly with easy 

sample preparation, an analytical technique that employs near-

infrared radiation from the electromagnetic spectrum [9]. The 

interaction of NIR rays with biological objects causes changes 

in the vibrational energy of each organic molecule, which are 

visible as a fingerprint or spectral pattern. It provides 

information about the object’s organic molecular bonds and 

chemical composition [10]. The main influence of each 

spectral pattern is determined by the object’s chemical 

composition, cell structure, and physical properties. 

Meanwhile, the NIR spectrum captured from biological 

objects represents the C-O, C-H, O-H, and N-H molecular 

bond responses [11]. The main information gathered from the 

interaction of near-infrared radiation with biological objects 

are materials’ physical, optical, and chemical properties [11].  

In practice, the NIRS method’s analysis of the nutritional 

quality of feed ingredients is conducted based on a model built 

from the initial calibration and validation results and the 

chemical analysis before being used continuously. The 

resulting spectrum has a significant impact on the 

development of NIRS models. Before applying advanced 

chemometric methods, noise in NIRS data modeling should be 

removed early. The presence of noise in the raw spectrum data 

affects the prediction accuracy and robustness of the model 

[12].  

In chemometrics, noise correction techniques are often 

chosen based on the best results. However, a specific 

correction can lead to non-optimal modeling because data 

previously processed with different correction techniques, that 

can carry complementary information. Spectrum correction in 

combination or hybrid mode allows for the most accurate 

NIRS model performance. According to the findings by 

Mishra et al. [13], combining different techniques could 

improve the performance of the NIRS model for predicting the 

moisture, fat, and protein content of meat. Therefore, this 

study aims to investigate the use of hybrid spectrum 

pretreatment method combined with the Partial Least Squares 

Regression (PLSR) algorithm as a reliable analytical method 

for measuring the nutritional quality parameters. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Cocoa pod husk sample 

 

A total of 48 samples of cocoa pod husk feed ingredients 

fermented with different fungi were used. Furthermore, 30 

samples were fermented using 3% white rot fungi 

(Phanerochaete chrysosporium) at 0, 7, 14, 21, and 28 days of 

fermentation, while others were fermented with 7% and 15% 

of lingzhi mushrooms (Ganoderma lucidum) at 15, 30, and 45 

days [8]. Fermentation conditions, can significantly impact the 

growth of fungi and the overall fermentation process. 

Understanding these factors is essential for comprehensively 

evaluating the outcomes of the fermentation process and its 

influence on the nutritional characteristics of the cocoa pod 

husk samples. 

Specifically, temperature and humidity play a pivotal role 

in facilitating the growth of fungi and other microorganisms 

during the fermentation process. These parameters can 

influence the rate of fungal proliferation, metabolic activity, 

and subsequent biochemical changes within the substrate. 

Additionally, details regarding the substrate used for 

fermentation would offer insights into the nutritional and 

structural alterations that might occur during the process. 

 

2.2 Proximate analysis of nutritional contents 

 

The proximate results are useful reference data for 

calibration and validation in developing the NIRS model. 

Proximate analysis determines the quality of fermented cocoa 

pod feed ingredients, and the analysis testing begins with 

drying the sample at 60℃ for 24 hours. The sample was then 

mashed using cutter mills to 1 mm in size. The proximate 

analysis performed included Dry Matter (DM), Crude Protein 

(CP), Extract Ether (EE), Crude Fiber (CF), ash, and Nitrogen-

Free Extract (NFE). Tests for DM, CP, EE, CF, and ash were 

conducted according to AOAC International procedures [14]. 

Meanwhile, BETN is calculated using the following equation: 

NFE = 100%-(CP+EE+CF+ash).
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2.3 NIR spectra data acquisition 

 

The remaining proximate test sample (15 grams) was then 

used for NIRS testing, and the spectra data were acquired 

using a bench-top Nicolet-Antaris Method Development 

Sampling (MDS) system controlled remotely through an 

integrated software configuration (Thermo Fisher Scientific 

Inc., Madison, WI, USA). A workflow is set up to configure 

the tool to acquire the spectrum in a formatted diffuse 

reflectance (Log (1/R)) 32 times, and save the results in 

“*.CSV” format. The wavelength ranges from 1000 to 2500 

nm (10000 to 4000 cm-1) with an interval of about 0.02 nm, 

and the spectra were collected around 29-31℃. 

 

2.4 Calibration and validation models 

 

Calibration is a model that shows the level of correlation 

between the NIR spectra (X-variable) and chemical data (Y-

variable) in a collection of datasets. Before modeling, the 

features of the absorbance spectrum are examined by 

visualizing in graphical form. Projection Principal Component 

Analysis (PCA) combined with Hotelling’s T2 ellipse to 

visualize the data structure and identify patterns, trends, 

outliers in the spectrum, and other dominant features in the 

sample [10]. 

The collected NIR spectra contain sample component and 

interference information such as light scattering, baseline drift, 

and background noise, which can reduce the accuracy and 

stability of the model. Before developing the calibration model, 

several pretreatment methods, both specific and hybrid, were 

used, including Multiplicative Scatter Correction (MSC), 

Savitsky-Golay smoothing (SGs), first derivative (1st D), 

MSC+SGs, MSC+1st D, SGs+1st D, and MSC+SGs. 

Moreover, the spectrum pretreatment and development of the 

calibration model were conducted using The Unscrambler® X 

10.4 software (CAMO, Oslo, Norway). 

The PLSR algorithm was used to develop a model for the 

quantification analysis of the nutrient attributes of the 

fermented cocoa pod husk samples. To ensure the accuracy of 

the calibration model, it is necessary to carry out validation 

tests. The accuracy of the predictions from the calibration 

regression with the chemical composition was tested using the 

cross-validation method. Meanwhile, eight full cross-

validations with six random data segments are used to assess 

model performance and avoid data overfitting. Each of these 

random data segments is excluded from the calibration model 

but is used to test and measure the model during the cross-

validation. 

Several statistical parameters are used to evaluate the 

performance of the NIRS model, including the correlation 

coefficient (r), coefficient of determination (R2), Root-Mean-

Square Error (RMSE), and Residual Predictive Deviation 

Index (RPD). RPD is the ratio of SD to RMSE, and the index 

Range Error Ratio (RER) denotes the relationship between the 

composition. Finally, the number of Latent Variables (LV) is 

directly proportional to the estimation results [15, 16]. 

 

 

3. RESULTS AND DISCUSSIONS  

 

3.1 NIR spectral features of cocoa pod husk 

 

The absorbance features of the NIR spectrum of a fermented 

cocoa pod husk sample in the wavelength range of 1000–2500 

nm is shown in Figure 1. The NIR spectrum shows very 

complex information due to the vibration of the atomic bonds, 

such as C-H (aliphatic), C-H (aromatic), C-O (carboxyl), O-H 

(hydroxyl), and N-H (amines and amides) in the organic 

compounds, in response to the frequency of the radiation. 

The NIR spectral features of cocoa pod husk samples reflect 

their chemical composition and physical properties. When 

subjected to NIR spectroscopy, these samples exhibit unique 

absorption patterns and spectral characteristics across the NIR 

range typically 1000-2500 nm, providing valuable insights 

into their molecular composition. 

The NIR spectrum of cocoa pod husk samples displays key 

absorption bands that correspond to various chemical 

components, including but not limited to organic compounds, 

moisture content, protein, fiber, and fat. The interaction of NIR 

radiation with the molecular bonds within the samples results 

in distinctive absorption peaks, reflecting the presence and 

relative abundance of different chemical constituents. 

 

 
 

Figure 1. The absorbance features of a fermented cocoa pod 

husk's NIR spectrum 
 

The C-H, O-H, and N-H molecular bonds present in organic 

compounds generate characteristic absorption features within 

the NIR spectrum, contributing to the overall spectral pattern. 

These features can be analyzed to determine the levels of 

specific nutrients, assess the sample's structural properties, and 

provide information regarding its overall chemical 

composition. 

Furthermore, using PCA loading, it is possible to extract the 

wavelength characteristics. The highest or lowest peaks of the 

loading curve are considered significant variations in the data. 

In detail, Figure 2 shows the PCA loading curve of the raw 

NIR spectrum of the three principal components, namely, PC1, 

PC2, and PC3. 

 

 
 

Figure 2. The PCA loading curve of NIR raw spectrum 
 

As seen in Figure 2, there are peaks and valleys in the 

regions of 1216, 1400, 1731, 1930, 2200, and 2308 nm. 

Meanwhile, the absorbance peaks around 1216 and 1731 nm 
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are related to fat content. The peaks at 1216 nm and 1731 nm 

were the stretching vibration of the C–H bond in aliphatic 

hydrocarbon compounds and -CH2- bond in a group of fatty 

acids [17]. The absorption bands at 1400 nm (1400–1450 nm; 

O-H stretch first overtone) and 1930 nm (1920–1940 nm; a 

combination of O-H stretch and O-H deformation and O-H 

bend second overtone) are associated with the moisture 

content [9]. According to Liu et al. [18], the C–H bond of the 

aromatic ring affects the diffuse reflectance module in the 

range of 1374–1449 nm. The absorbance peak at 2200 nm 

correlates with the protein content and the wavelength of 

2046–2278 nm corresponds to the stretching of N–H 

molecules in amino acids [9, 19]. Furthermore, several 

molecular vibration modes are associated with the absorption 

peak around 2148 to 2200 nm, including the N–H bend second 

overtone, the C–H stretch and C=O stretch, the N–H in-plane 

bend, and the C–N stretch. Carbohydrates have also been 

investigated in the absorption band around 2308 nm, where the 

absorption peak occurs due to stretching C–H and C–C [20]. 

 

3.2 Principal component analysis (PCA) and outliers 

 

The PCA method was tasked to extract useful, relevant 

information while removing irrelevant ones, allowing similar 

cocoa pod husk samples to be closer together. In a multivariate 

data space (X matrix), PCA can identify the most significant 

direction of variability and primary phenomena in spectra data 

[21]. In PCA analysis, data sets are transformed into a smaller 

number of uncorrelated variables called Principal Components 

(PCs) [22]. According to the results, the PCA performed on 

the raw spectra data produced a good and clear trend of 

clusters or separation, as shown in Figure 3. Furthermore, the 

principal components contain information about the spectral 

and chemical composition of the relevant samples. It shows 

that the two topmost PCs can explain 99% of the variance 

information extracted from the 48 fermented cocoa pod husk 

samples. 

 

 
 

Figure 1. Score plot of PCA obtained for all samples under 

different fermentations 

 
Figure 3 depicts the two main clusters of cocoa pod husk 

samples and does not show any outlier data outside the ellipse 

line (Hotelling’s T2 ellipse) at a 95% confidence level. The 

clusters include various cocoa pod husks and the graphical 

plots offer relevant information to determine differences 

between samples fermented by Phanerochaete chrysosporium 

and Ganoderma lucidum. 

3.3 Calibration model for the nutritional attributes 

 

NIRS requires a dataset from actual laboratory 

measurements (wet chemical analysis) for the calibration 

process before developing robust prediction models for 

measuring the nutritional attributes of fermented cocoa pod 

husk. Table 1 shows the statistical nutritional content of 

fermented cocoa pod husk, which was used for the calibration 

dataset. 
 

Table 1. The statistical nutritional content of fermented CPH 
 

Parameters (%) Min. Max. Mean SD CV 

Dry matter 51.1 90.6 75.7 16.9 22.4 

Crude protein 5.6 14.2 10.3 2.9 28.3 

Crude fiber 28.5 41.2 33.9 3.9 11.5 

Extract ether 0.2 2.0 1.0 0.4 42.7 

Ash 9.1 13.7 11.0 1.4 12.6 

NFE 37.3 51.8 43.8 3.3 7.6 

 

A PLSR analysis was applied to the datasets to develop 

prediction models and the algorithm can reduce the data by 

forming a new Primary Component (PC), which keeps 

chemical content information to facilitate prediction as 

presented in Table 2. 

The superiority of combined pre-treatment methods, such as 

MSC+SGs+1st D, over specific methods, such as MSC, SGs, 

or 1st D alone, could indeed be due to a synergistic effect 

arising from the complementary nature of these techniques. To 

elucidate this, the authors could hypothesize potential reasons 

based on the observed data and the known effects of these 

pretreatment methods. 

One possible hypothesis is that the combined pre-treatment 

methods address different sources of variation and spectral 

distortions more comprehensively than singular techniques. 

For example, while MSC corrects for scatter effects, SGs 

addresses baseline drift, and 1st D enhances spectral resolution. 

By combining these techniques, it is likely that a broader range 

of spectral distortions and noise components are effectively 

mitigated, leading to a more accurate and robust spectral 

dataset. 

Furthermore, the combinatory approach could potentially 

amplify the beneficial effects of each individual pre-treatment 

method, resulting in an enhanced overall correction of spectral 

interference and noise. This may lead to improved model 

performance and prediction accuracy due to a more refined 

and distortion-free spectral dataset. 

Another hypothesis could be related to the preservation of 

relevant information during the pre-processing stage. 

Combined pre-treatment methods may better retain essential 

spectral features linked to the variations in nutritional content 

and chemical composition, thus providing a more 

comprehensive and informative dataset for subsequent 

modeling. 

The findings regarding the NIRS models have significant 

practical implications for the industry, particularly within the 

context of feed ingredient analysis and production. First, these 

models offer a rapid, non-destructive, and cost-effective 

method for assessing nutrient content in fermented cocoa pod 

husk and potentially other feed ingredients, which could 

streamline quality control processes and provide real-time, 

accurate data for decision-making. Additionally, their 

integration can decrease analysis time, reduce the need for 

extensive sample preparation, and lead to enhanced 

operational efficiency.  
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Furthermore, the ability to rapidly monitor and assess 

nutrient content in feed ingredients allows for more precise 

and timely adjustments to formulations, enabling better-

balanced diets for animals and potentially improving overall 

nutritional outcomes. NIRS prediction models performances 

for all studied parameters are presented in Figure 4. These 

models could be integrated into routine quality control 

procedures for frequent and thorough monitoring of nutrient 

content in feed ingredients, allowing real-time validation and 

verification of incoming feed ingredient quality, ultimately 

leading to more efficient production processes and improved 

decision-making. However, ongoing calibration maintenance 

and ensuring sample representativeness are key areas that need 

to be carefully managed, along with the need for confirmation 

through traditional laboratory methods for niche or specific 

parameters. 
 

 

 

 
 

Figure 4. Scatter plots of PLSR calibration with the best result for all nutritional parameters 
 

In general, the model has different capabilities for 

estimating the nutritional parameters of fermented cocoa pod 

husk. Pre-treatment of raw spectra data affects the reliability 

of predictions. This is shown by the increasing R2 value, the 

RMSE, which appears to be getting smaller, as well as RPD 

and RER. Generally, the hybrid pretreatment method can 

reduce the physical differences between samples caused by 

scattering to eliminate additive and multiplicative effects and 

resulting in a more optimal spectrum. Combined pretreatment 

methods are more effective than specific methods at showing 

hidden information and reducing noise. A comprehensive 

comparison of the PLSR model with three specific methods 

and four different combinations showed that the combined 

pretreatment of MSC+SGs+1st D with factor LV 6 was the 

best model for dry matter parameters (R2 = 0.99, RMSE = 1.45, 

RPD = 11.68, and RER = 27.22). In contrast, the pretreatment 

method combining MSC+SGs with factor LV 5 generated the 

best PLSR model for crude protein parameters (R2 = 0.81, 

RMSE = 1.23, RPD = 2.37, and RER = 6.93).  

The predictive performance for dry matter and crude protein 

parameters is considered very good, with accurate quantitative 

analysis capabilities and good generalization abilities. 

According to Saeys et al. [23], models with RPD values less 

than 1.5 should not be used to make predictions, RPD values 

1.5–2.0 can distinguish between high and low values, and 

models with RPD 2.0–2.5 can be used to make quantitative 

prediction estimates.  

Meanwhile, the RPD values of 2.0–2.5 and above 3.0 can 

be used for good and very good predictions. The RER index 

can act as an additional criterion when evaluating the use of 
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each prediction model. RER is considered the statistical 

indicator with the greatest weight in determining the accuracy 

of the NIRS calibration model. RER values in the range 4–8 

indicate the probability of discerning between high and low 

data values in samples, while 8–12 represent the probability of 

predicting quantitative data [24]. 

The optimal model for predicting crude fiber and extract 

ether is also obtained by applying the data pretreatment 

technique using MSC+SGs+1st D. The R2 values for the 

parameters crude fiber and fat are 0.79 and 0.76, respectively. 

The PLS model only has good category performance with 

basic quantitative predictive and good generalization abilities. 

The R2 value indicates the percentage of variance in Y 

accounted for by the X variable.  

According to Karoui et al. [25], the R2 value between 0.50 

and 0.65 indicates that X’s variance accounts for more than 

50% of Y, allowing discrimination between high and low 

concentrations. Meanwhile, R2 values between 0.60 to 0.81 

and 0.80 to 0.90 indicate an approximate quantitative and good 

prediction. A calibration model with an R2 value greater than 

0.91 is considered reliable. 

The PLS model, built based on raw data and various 

pretreatment algorithms, showed poor performance for 

predicting ash contents, with values of R2 = 0.18, RPD = 1.13, 

and RER = 3.83 fixed, and the ash content of a material is 

closely related to minerals. The mineral composition of the 

feed is not detected by NIRS because its structure has no 

organic bonds. 

 

Table 1. The statistical parameters of PLSR calibration develoved with diferent pretreatment methods 

 
Parameters Pretreatment LVs r R2 RMSE RPD RER 

Dry matter 

Raw 4 0.99 0.98 2.15 7.88 18.36 

MSC 3 0.99 0.98 2.22 7.63 17.78 

SGs 4 0.99 0.98 2.16 7.84 18.27 

1st D 2 0.99 0.98 2.16 7.84 18.27 

MSC+SGs 5 0.99 0.99 1.50 11.29 26.31 

MSC+1st D 4 0.99 0.99 1.61 10.52 24.52 

SGs+1st D 3 0.99 0.99 1.64 10.33 24.07 

MSC+SGs+1st D 6 0.99 0.99 1.45 11.68 27.22 

Crude protein 

Raw 4 0.89 0.80 1.26 2.32 6.77 

MSC 3 0.89 0.79 1.31 2.23 6.51 

SGs 4 0.89 0.80 1.26 2.32 6.77 

1st D 2 0.89 0.79 1.30 2.25 6.56 

MSC+SGs 5 0.90 0.81 1.23 2.37 6.93 

MSC+1st D 4 0.90 0.81 1.25 2.34 6.82 

SGs+1st D 3 0.89 0.80 1.26 2.32 6.77 

MSC+SGs+1st D 6 0.90 0.81 1.24 2.35 6.88 

Crude fiber 

Raw 4 0.78 0.60 2.40 1.62 5.29 

MSC 3 0.75 0.57 2.50 1.55 5.08 

SGs 4 0.78 0.60 2.40 1.62 5.29 

1st D 2 0.73 0.54 2.58 1.50 4.92 

MSC+SGs 5 0.78 0.61 2.36 1.64 5.38 

MSC+1st D 4 0.77 0.60 2.41 1.61 5.27 

SGs+1st D 3 0.77 0.59 2.43 1.60 5.22 

MSC+SGs+1st D 6 0.79 0.63 2.31 1.68 5.49 

Extract ether 

Raw 4 0.75 0.56 0.28 1.57 6.29 

MSC 3 0.73 0.54 0.29 1.52 6.07 

SGs 4 0.75 0.56 0.28 1.57 6.29 

1st D 2 0.72 0.52 0.30 1.47 5.87 

MSC+SGs 5 0.74 0.56 0.28 1.57 6.29 

MSC+1st D 4 0.73 0.54 0.29 1.52 6.07 

SGs+1st D 3 0.74 0.54 0.29 1.52 6.07 

MSC+SGs+1st D 6 0.76 0.58 0.28 1.57 6.29 

Ash 

Raw 4 0.43 0.18 1.22 1.13 3.83 

MSC 3 0.43 0.18 1.22 1.13 3.83 

SGs 4 0.43 0.18 1.22 1.13 3.83 

1st D 2 0.43 0.18 1.22 1.13 3.83 

MSC+SGs 5 0.43 0.18 1.22 1.13 3.83 

MSC+1st D 4 0.43 0.18 1.22 1.13 3.83 

SGs+1st D 3 0.43 0.18 1.22 1.13 3.83 

MSC+SGs+1st D 6 0.43 0.18 1.22 1.13 3.83 

Nitrogen-free 

extract 

Raw 10 0.33 0.11 3.09 1.07 4.68 

MSC 10 0.37 0.13 3.05 1.09 4.74 

SGs 10 0.33 0.11 3.10 1.07 4.67 

1st D 10 0.43 0.18 2.96 1.12 4.89 

MSC+SGs 10 0.36 0.13 3.06 1.08 4.73 

MSC+1st D 10 0.43 0.18 2.96 1.12 4.89 

SGs+1st D 10 0.44 0.19 1.22 2.72 11.86 

MSC+SGs+1st D 10 0.43 0.18 2.96 1.12 4.89 
MSC: multiplicative scatter correction, SGs: savitzky-golay smoothing, 1st D: first derivative, LVs: latent variables, r: koefisien korelasi, R2: koefisien 

determinasi, RMSE: root mean square error, RPD: residual predictive deviation index, RER: range error ration. 
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However, minerals are predictable when they belong to 

organic complexes or are due to mineral-induced changes in 

the absorbance region of the water spectrum [26]. The PLS 

calibration model for predicting NFE content also shows poor 

performance. Table 2 shows that the results of the PLS 

calibration in the raw and pretreatment data did not indicate 

any significant changes.  

The value obtained from the results for the NFE content did 

not meet the standard (low R2 value), even though the LV 

number was increased to 10 factors. However, among the 

pretreatment methods in Table 2, the SGs+1st D combination 

reported a higher calibration value than other methods, namely 

R2 = 0.19, RMSE = 1.22, RPD = 2.72, and RER = 11.86. R2 

values between 0.75 and 1.00 indicate an acceptable 

calibration equation. Even though the acceptable calibration 

ranges from 0.75 to 1.00, the model with a value of R2 between 

0.30 and 0.75 is considered useful for differentiating between 

low, medium, and high concentrations. Meanwhile, when the 

value is less than 0.30, the calibration model is considered 

useless [27, 28]. 

 

 
4. CONCLUSIONS  

 
The study demonstrates that a combination of Near Infrared 

Reflectance Spectroscopy (NIRS) and chemometrics can 

effectively and simultaneously assess the nutritional attributes 

of fermented cocoa pod husk. Through the application of 

various pretreatment methods, the reliability of the model 

construction can be significantly enhanced. The combined 

pretreatment method showed superior performance in 

increasing model reliability compared to specific 

pretreatments, as demonstrated in the models' assessment for 

dry matter content (MSC+SGs+1st D), crude protein 

(MSC+SGs), crude fiber content (MSC+SGs+1st D), and 

extract ether (MSc+SGs+1st D), as well as ash content and 

NFE. 

The explicit practical implications of these findings for the 

industry can be summarized as follows: integrating these 

models into existing quality control processes stands to 

enhance efficiency, improve decision-making, and streamline 

feed formulation, ultimately leading to cost reductions and 

increased accuracy in feed production. However, it's important 

to acknowledge potential limitations like the need for ongoing 

calibration maintenance and ensuring sample 

representativeness. By discussing these potential implications, 

the conclusion can provide a more comprehensive and 

actionable insight into the practical benefits and limitations 

associated with these models. 
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