
Enhancing Maize Germplasm Selection for Genebanks: A Decision Support System 

Combining Shannon-Weaver Diversity Index and Machine Learning 

Adnan Adnan1* , Yaya Suryana1, Abdul Aziz1 , Taslim Rochmadi1, Arie Rakhman Hakim1 ,  

Andari Risliawati2 , Arifuddin Kasim2, Fahrodji Fahrodji1, Amrullah Kamaruddin1 , Wenny Oktaviani1, 

Laela Nuraini1 , Anugerah Fitri Amalia1 , Nizam Ghazali1, Adim Hadi1, Taufik Iqbal Ramdhani1,3 ,  

Puji Lestari4 , Willy Bayuardi Suwarno5 , Trikosoemaningtyas Trikosoemaningtyas5 , Sobir Sobir5

1 Research Center for Sustainable Production System and Life Cycle Assessment, Research Organization for Energy and 

Manufacture, National Research and Innovation Agency, South Tangerang 15314, Indonesia  
2 Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 

Cibinong Science Center, Bogor 16915, Indonesia 
3 Research Center for Artificial Intelligence and Cyber Security, Research Organization for Electronics and Informatics, 

National Research and Innovation Agency, South Tangerang 15314, Indonesia  
4 Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and 

Innovation Agency, Cibinong Science Center, Bogor 16915, Indonesia 
5 Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia 

Corresponding Author Email: adna002@brin.go.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ijdne.190229 ABSTRACT 

Received: 16 November 2023 

Revised: 8 March 2024 

Accepted: 13 March 2024 

Available online: 25 April 2024 

While core collections offer various advantages, achieving a balance between 

representing genetic diversity and ensuring the practical manageability of the entire 

genebank collection is crucial. This study investigated the utility of the Shannon-Weaver 

diversity index and machine learning as a support system for the acceptability of new 

maize accessions into the genebank collection. This study examined 1279 maize 

germplasm accessions from the Agricultural Genebank Indonesia. The maize germplasm 

collection was divided into two parts. The first part, namely subset A, contains 600 

accessions, which acted as original collections and were randomly selected for 

calculating the diversity values in each kernel character using the Shannon-Weaver 

diversity index. The second part, subset B, consisting of 679 accessions, was used to 

determine whether each accession was similar or different from subset A using an Excel 

macro-based application built by the authors. Principal component analysis (PCA) and 

Mahalanobis distances were used in the first step to identify outliers in data points with 

nine independent variables, namely kernel type, kernel color, presence of white cap, 

mottled type, kernel upper surface shape, kernel weight, kernel length, width, and 

thickness. Seventeen outlier samples, detected through PCA and Mahalanobis distances, 

were intentionally excluded from the dataset to ensure the integrity of subsequent 

machine learning analyses. The subset B was then divided into two parts to perform 

conventional and novel machine learning, i.e., linear discriminant analysis (LDA) and 

Tabnet. The results of this study show that the model's accuracy of LDA and TabNet 

were 89.36% and 86.4%, respectively. By integrating the Shannon-Weaver diversity 

index and machine learning methodologies, this research offers a comprehensive decision 

support system for guiding the acceptance of new maize accessions. The proposed system 

implies optimizing genebank strategies for the integrity and adaptability of maize 

germplasm collections.  
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1. INTRODUCTION

Maize (Zea mays L.) is one of the world's most important 

cereal crops, providing a staple food supply for millions of 

people and crucial feedstock for cattle [1]. The genetic 

diversity of maize contains a wide range of traits that 

contribute to its adaptability, yield, and nutritional quality [2]. 

Despite shifting climate conditions and changing customer 

preferences, managing and preserving this diversity is critical 

for protecting food security and sustainable agriculture 

practices [3]. 

The concept of a core collection developed as a strategic 

approach to representing a species' genetic diversity in a 

manageable element, making preservation and exploitation 

more practical. The structure of a collection influences its 

ability to facilitate breeding activities, germplasm exchange, 

and trait exploration. In a gene bank, a core collection is a 

subset of the entire germplasm collection that depicts a species' 
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genetic diversity in a more manageable arrangement [4]. 

While core collections provide several benefits, it is critical 

to attain a balance between depicting genetic variety and 

practical manageability of the whole collection in the 

genebank. Some constraints should be considered when 

adding more varieties to the genebank collection [5]. First, 

genebanks' storage space, budgets, and staff expertise are 

frequently limited. Continuously increasing the germplasm 

collection by incorporating the new accession may strain these 

resources and risk the overall effectiveness of genebank 

activities [6]. Second, an overabundance of the collection may 

degrade its representativeness. Adding too many accessions, 

particularly those closely related to present collection 

members, may impair the collection's ability to capture unique 

gene variations efficiently [7]. Third, the fundamental purpose 

of a core collection is to provide a valuable resource for 

researchers and breeders. Excessive expansion of the core 

collection may reduce its usability by adding unnecessary 

complexity or redundancy [8]. 

Expert judgment based on phenotypic traits and basic 

knowledge of genetic diversity has traditionally guided the 

decision of germplasm acquisition in the genebank. There is 

no approach that all experts agree on to determine a decision 

[5]. Various genebank institutions employ diverse 

methodologies to curate their collections. One approach 

involves screening collections for specific traits of interest, 

such as protein and lysine content in wheat [9]. Alternatively, 

evaluating accessions based on their breeding potential 

considers factors like color profiling and total polyphenolic 

content in sour cherry [10]. Optimization tools like Kullback-

Leibler divergence assist in efficient resource allocation and 

selecting accessions for genotyping [11]. Moreover, 

genebanks prioritize collection growth, considering national 

programs, stakeholder involvement, diversity scope, and 

available funding [12]. 

The Shannon-Weaver diversity index is one of the methods 

that has long been used in ecology to measure species diversity 

within a population. This index quantifies species richness and 

evenness, providing an intuitive measure of diversity. This 

index provides an alternate perspective for evaluating the 

contribution of new accessions to the collection by converting 

genetic diversity into a measurable value [13]. While the 

Shannon-Weaver diversity index offers advantages, it also has 

disadvantages when applied to the decision-making process of 

adding a new accession to a genebank's collection. Some 

drawbacks include sensitivity to abundance, incapability of 

genetic information reflection at the DNA level, lack of trait 

specificity, failure to address redundancy, and subjectivity in 

parameter selection. Thus, incorporating the Shannon-Weaver 

diversity index into the decision-making process of adding 

new accession to a genebank collection should be done 

cautiously [13]. 

However, there is an opportunity to improve the decision-

making process of germplasm acquisition into genebank 

collection in the era of data-driven insights and machine 

learning. Linear Discriminant Analysis (LDA), a conventional 

supervised machine learning method, emerges as a potential 

decision-support tool in this case. LDA, a powerful 

multivariate statistical technique, has found extensive use in 

pattern recognition, classification, and dimensionality 

reduction tasks [14, 15]. In the context of limiting the addition 

of collection, LDA has the potential to examine the 

discriminative capacity of new accessions by identifying the 

underlying factors contributing to their distinctiveness and 

similarity with existing collections. Using the genetic and 

phenotypic information associated with each accession, LDA 

can help differentiate valuable additions from those that may 

not contribute significantly to the genebank collection's 

representativeness [16, 17]. 

Another machine learning, TabNet, a novel method, 

represents an innovative deep learning structure designed for 

handling tabular data. Employing a sequential attention 

mechanism, TabNet selects relevant features at each decision 

step, ensuring the effective utilization of the model's capacity 

for the most meaningful attributes. Additionally, this instance-

level feature selection approach not only enhances the 

efficiency of the learning process but also facilitates a clearer 

understanding of decision-making by allowing visualization of 

the selection masks [18]. 

This study aims to investigate and assess the utility of the 

Shannon-Weaver diversity index and machine learning as a 

decision support system on the acceptability of new maize 

accessions into the genebank collection. The importance of 

this study arises from the crucial need to achieve an ideal 

compromise between expanding the collection to include 

valuable genetic diversity and ensuring the collection remains 

focused, representational, and practical for a wide range of 

applications. To the best of the authors' knowledge, no 

publication has been published that discusses the development 

of a decision support system for acquiring new accessions into 

the maize collection in the genebank using the Shannon-

Weaver diversity index and machine learning. 

In introducing a novel integration of the Shannon-Weaver 

diversity index and machine learning, this research enhances 

precision in genebank management for maize accession 

selection. The proposed system is expected to offer a 

framework for optimizing accession strategies, ensuring the 

integrity and adaptability of maize germplasm collections. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Germplasm materials 

 

This study examined 1279 maize germplasm accessions 

from the Agricultural Genebank Indonesia. The production 

dates of the seed vary, ranging from 2006 to 2020. Nine kernel 

properties, consisting of five qualitative and four quantitative 

traits, were observed using a maize plant descriptor (IBPGR-

CIMMYT 1991) with minor modifications. According to the 

standard score, qualitative kernel characters, i.e., kernel type, 

kernel color, presence of white cap, mottled type, and kernel 

upper surface shape, were visually observed. Quantitative 

kernel characters, i.e., 1000-kernel weight, were calculated 

using the ISTA method, and kernel length, width, and 

thickness measurements were taken from 10 randomly chosen 

kernels from the seed storage across all accessions [19]. 

 

2.2 Shannon-Weaver diversity index 

 

The maize germplasm accessions dataset was divided into 

two parts. The first part, Subset A, comprises 600 accessions 

selected through a random process using the RAND() function 

in Excel. This subset serves as the original collection in this 

study and was utilized for calculating diversity values in each 

kernel character through the Shannon-Weaver diversity index 

(Eq. (1)). The average Shannon-Weaver diversity index (H') 

of the nine traits became the threshold value to determine 
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whether the new accession is similar or different compared to 

the original collection. 

 

𝐻′ =∑𝑝𝑖

𝑛

𝑖=0

log𝑒𝑝𝑖  (1) 

 

where, pi = frequency of phenotypic class data, n = number of 

class data. 

The second part of the data, consisting of 679 accessions 

(Subset B), was used to determine whether each accession was 

similar or different from the original collection using an Excel 

macro-based application built by the authors (Figure 1). The 

decision was determined in the description as follows. If H' of 

a new accession addition > H' of the original collection, the 

new accession was determined different and can be accepted 

as a new collection. Vice versa, if the H' of a new accession 

addition ≤ H' of the original collection, the new accession was 

determined similar and can be rejected to be acquired into the 

original collection. 

 

 
 

Figure 1. Maize germplasm acquisition assistance 

 

2.3 Outlier detection 

 

The Subset B dataset consists of 9 traits, i.e., kernel type, 

kernel color, presence of white cap, mottled type, kernel upper 

surface shape, 1000-kernel weight, kernel length, width, and 

thickness as independent variables, and decision parameters as 

dependent variables. Outlier detection was performed as 

follows.  

Principal component analysis (PCA) and Mahalanobis 

distances were used to identify outliers in data points with nine 

independent variables. Data that deviates from the 

Mahalanobis distance curve is regarded as an outlier. Outlier 

detection was performed utilizing the mt package with a 

specified confidence level of 0.975 for the Mahalanobis 

distances [20]. The data was zero-centered and scaled before 

the analysis to ensure accurate results. 

 

2.4 Machine learning 

 

Upon the successful removal of outliers, the Subset B 

dataset was randomly partitioned into two distinct segments to 

facilitate the machine learning process. The initial segment, 

constituting 70% of the dataset, was designated as the training 

data, allowing for the construction and development of the 

machine learning model. The latter segment, comprising 30% 

of the dataset, was the designated prediction dataset for 

validating the trained model's predictive capabilities. The 

machine learning procedure was conducted using R 

application version 4.2.2 in conjunction with the Rcmdr 

package [21, 22], ensuring a comprehensive and systematic 

approach to the data analysis within the defined research 

framework. The machine learning techniques employed in this 

study encompass both conventional and novel approaches, 

with linear discriminant analysis (LDA) representing the 

conventional method and TabNet serving as the innovative 

counterpart.  

 

2.4.1 Linear discriminant analysis 

The LDA model provided crucial outputs, including the 

coefficients of linear discriminants, a comprehensive 

confusion matrix, and the accuracy level. The first 

discriminant function (LD1), a pivotal linear combination 

derived from the nine identified traits, was visually 

represented through a boxplot to effectively evaluate the 

precision and efficacy of the developed LDA model. These 

analytical outcomes and visual representations are 

instrumental in understanding the discriminative abilities of 

the model and its potential applications within the studied 

domain. 

Linear discriminant analysis was conducted employing the 

MASS package [23], with the following formula: Decision = 

kernel type + kernel color + presence of white cap + mottled 

type + kernel upper surface shape + kernel weight + kernel 

length + width + thickness. Notably, the class proportion was 

maintained as equal, and the method relied on standard mean 

and variance estimators. Furthermore, insightful visualizations 

were created from the analysis results using the ggplot2 

package. 

 

2.4.2 TabNet 

The Subset B dataset underwent a normalization process 

before being utilized for training a TabNet model using the 

tabnet package [18]. The model was initialized with an epoch 

value of 100, a validation split ratio of 0.1, and a learning rate 

set to 5e-3. Subsequently, the trained model was applied to the 

prediction dataset for a comprehensive evaluation, 

encompassing key performance metrics such as accuracy, 

precision, recall, and the roc auc value. This thorough analysis 
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provides valuable insights into the model's predictive 

capabilities and potential for effective application within the 

study's context. 

 

 

3. RESULTS AND DISCUSSIONS 

 
3.1 Shannon-Weaver diversity index 

 
The diversity assessment of the Subset A collection, 

consisting of 600 randomly selected maize accessions, was 

conducted using the Shannon–Weaver diversity index (H′). 

Table 1 provides an overview of each trait's calculated 

Shannon Index values, with an average value of 1.945892, 

indicating substantial diversity within the collection. H' values 

range from 0 to 5, usually 1.5 to 3.5. Higher H' values indicate 

greater species diversity in a population. Conversely, a low H' 

value implies a lack of species variety [24]. 

In accordance with the present results, previous studies have 

demonstrated that the average H' value for the common maize 

type ranges from 1.83-2.02, while it ranges for popcorn maize 

type from 1.41-1.67. This previous study used sampling 

variables as follows: the identification of the landraces (name, 

cultivation time, and risk factors of loss), morphological 

characteristics of the kernel (type of endosperm, size, and 

color), geographical location (municipality, community, 

longitude, and latitude), use values and conservation. The 

variation in the Shannon index is related to the variability in 

the number of samples acquired from the different sampling 

methods [25]. 

 

Table 1. Shannon-Weaver diversity index (H′) of the original 

collection 

 
No. Traits H' 

1 Kernel type 0.758567 

2 Kernel colour 1.477076 

3 Whitecap 0.692792 

4 Mottled type 0.346548 

5 Upper shape surface shape 0.903054 

6 Kernel length 3.005305 

7 Kernel width 2.705407 

8 Kernel thickness 2.655456 

9 1000 seed weight 4.968826 

10 Average 1.945892 

 

Various maize accessions with an average H' value of 

1.945892 indicate a generally equal abundance of a balanced 

distribution of genetic resources that may benefit a broad range 

of breeding purposes, environmental issues, and consumer 

preferences (Table 1). As a result, subset A of the present study 

can serve as a source of genetic variation that may be 

strategically used for crop research and development. In this 

case, the Shannon–Weaver diversity index provides a 

foundation for subsequent analyses and decision-making 

processes. 

While the decision rule based on the Shannon-Weaver index 

and the average H' value serves as a valuable tool for accession 

selection, it is essential to acknowledge potential limitations 

associated with this approach. One notable limitation is the 

sensitivity of the threshold to variations in germplasm 

characteristics. The average H' value may not capture subtle 

nuances in diversity patterns, potentially leading to the 

inclusion or exclusion of accessions based on an overarching 

criterion. Moreover, the Shannon-Weaver diversity index is 

often used for a single parameter in its conventional 

application [26]. 

This raises considerations about its applicability to 

multidimensional datasets, where interactions among various 

traits might not be fully captured. The effectiveness of this 

approach could also be influenced by the scale and distribution 

of diversity within the germplasm collection. Variability in 

traits or genetic markers might affect the generalizability of 

the threshold, making it crucial to consider the context and 

specific objectives of the genebank carefully. 

 

3.2 Outliers detection 

 

Principal Component Analysis (PCA) and Mahalanobis 

distances were conducted as a preliminary step before 

proceeding with machine learning. The purpose of PCA and 

Mahalanobis distances was to detect any outliers in the dataset 

that could affect the accuracy and robustness of subsequent 

analyses. In this context, outliers are data points that differ 

significantly from the general pattern represented by most of 

the data [27]. 

 

 
 

Figure 2. The outliers detection using principal component 

analysis 
The red ellipse was the Mahalanobis distance curve. The outliers were 

samples that were located outside of the red ellipse. 

 

The total variation explained by the first two principal 

components, PC1 and PC2, was 47.22% of the total variance 

in the original dataset (Figure 2). The total value of 47.22% 

indicates that nearly half of the variability in the original 

dataset is captured in PC1 and PC2. PC1 and PC2 provide a 

valuable basis for visualizing variations within data by 

accounting for almost half of the variance. As a result, any 

trends, clusters, or groups revealed in a scatter plot, or PCA 

plot based on these components are likely to correlate closely 

with the most significant characteristics of the dataset [28]. 

The results of PCA and Mahalanobis distances revealed the 

presence of 17 outlier samples (number 9, 32, 123, 169, 173, 

213, 232, 271, 281, 286, 313, 315, 377, 554, 580, 653, 674), 

depicted visually outside the bounds of the red ellipses in 

Figure 2. These ellipses are graphical representations of the 

statistical distribution of the data, with points beyond the 

ellipse boundary lines indicating probable outliers. 

Identifying these outliers is critical because they can 

significantly impact subsequent analyses, potentially resulting 

in skewed or incorrect results. Outliers can occur because of 
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measurement errors, data entry errors, or exceptional traits that 

do not match most of the dataset. While removing outliers 

improves analysis quality, it is critical to recognize that outlier 

detection and removal might impact the general composition 

of the dataset. As a result, while employing outlier removal 

techniques, researchers must exercise caution and 

transparency, ensuring that the rationale and methodology are 

properly stated [28]. 

The identified outlier samples were purposely removed 

from the dataset to maintain the integrity and reliability of 

subsequent machine learning. Machine learning can then be 

performed on a dataset more representative of the underlying 

genetic and phenotypic variability in maize accessions. 

 

3.3 Linear discriminant analysis 

 

Table 2 shows the coefficients of linear discriminant 

produced by the LDA on the exclude-identified outliers 

dataset. The highest negative coefficient in the mottled type 

indicates a substantial negative impact on the decision. This 

trait seems to be a significant determinant. The upper shape 

surface shape is the following trait with the highest coefficient 

value. A positive coefficient indicates that the upper surface 

shape of the kernels is aligned with the decision class. 

 

Table 2. Coefficients of linear discriminants 

 

Traits LD1 
Confidence Intervals 

2.50% 97.50% 

Kernel type 0.1238 -0.1100 0.4999 

Kernel colour 0.0716 0.0044 0.4421 

Whitecap 0.1198 -0.1734 0.3075 

Mottled type -1.2002 -1.1460 -0.7044 

Upper shape surface shape 0.5764 -0.0203 0.6223 

Kernel length -0.0071 -0.4537 0.3226 

Kernel width -0.0235 -0.5104 0.1694 

Kernel thickness -0.044 -0.5247 -0.0117 

1000 seed weight 0.0038 -0.2111 0.5465 

 

Following the LDA model, the bootstrap confidence 

intervals for the LD1 coefficients offer valuable insights into 

predictor variables' robustness and statistical significance in 

predicting group distinctions (Table 2). In general, if the 

confidence interval includes zero, it implies that the 

corresponding variable may not be statistically significant in 

predicting the group differences represented by LD1. On the 

other hand, if the interval does not include zero, it suggests that 

the variable is likely to be statistically significant in explaining 

the variation in LD1. For example, the true effect of kernel 

type is likely to be within the range covered by the 95% 

confidence interval for the coefficient of kernel type, which is 

between -0.1100 and 0.4999. If this interval includes zero, it 

suggests potential non-significance. Conversely, the interval 

for mottled type (-1.14600-0.7044) does not encompass zero, 

implying a statistically significant negative impact on LD1. 

 

Table 3. Confusion matrix 

 
 Different Similar 

Different 3 2 

Similar 19 174 

 

The obtained confusion matrix achieved by the LDA model 

is presented in Table 3. The matrix contrasts the model's 

predictions with the actual classes across different and similar 

categories. True positives (TP) and true negatives (TN) are 

occurrences that were accurately classified in their respective 

classifications, with 3 and 174 cases, respectively. The model, 

however, tended to false positive (FP) and false negative (FN) 

errors, incorrectly categorizing two occurrences as similar 

when they were different and incorrectly classifying 19 

occurrences as different when they belonged to a similar group. 

The model's accuracy, calculated as (TP + TN) divided by the 

total cases, was 89.36%, generally considered promising. 

The LDA model reveals insightful information regarding 

the prior probabilities of group assignments. The provided 

probabilities indicate the likelihood of an observation 

belonging to each group before incorporating any information 

derived from the predictor variables. Specifically, the analysis 

reveals a prior probability of approximately 14.01% for the 

different group and 85.99% for the similar group. These 

probabilities represent the inherent distribution of 

observations in the training dataset across the identified groups. 

The assessment of whether a Linear Discriminant Analysis 

(LDA) accuracy is good or bad is influenced by several factors, 

including the research's context, scope, and objective. No 

accepted criteria indicate an excellent or lousy accuracy 

because it varies greatly depending on multiple factors. 

Generally, accuracy above 80% is considered good [29-32]. 

As a result, the LDA model, which has an accuracy of 89.36%, 

can be considered a decision support system for adding new 

accessions to the maize germplasm collection. 

 

 
 

Figure 3. Boxplot of the linear discriminant value of the 

decision (The black circle is considered outlier data) 

 

LDA, a decision support system for adding new additions to 

the maize germplasm collection, is supported by differences in 

similar and different decision distribution data (Figure 3). 

Figure 3 shows that LD1 values of the similar decision are in 

the positive data range, whereas different decision values are 

in the negative data range. 

The black circles represent outliers with the negative value 

of LD1 (Figure 3). Based on Figure 3, negative values of LD1 

should be considered as decision different, which is decided to 

be accepted into the collection. These findings further support 

the concept that LDA can be used as an accurate decision-

support system. The accumulation of different and outlier data 

yields 21, accounting for 10.6%. This percentage corresponds 

to the average size for core collection development, which is 

10%, which is considered to represent the entire collection [33, 

34]. Previous research on maize core collection development 
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at the same genebank reported that a similar number (11.7%) 

had retained the entire collection's maximum diversity [35]. 

 

3.4 TabNet 

 

The findings derived from the supervised training model, 

conducted over 100 epochs, have been visually illustrated in 

Figure 4(a). Notably, the analysis reveals a discernible trend 

wherein the model begins to exhibit signs of overfitting 

subsequent to epoch 25, coinciding with the point at which the 

validation-set loss attains its minimum value. Drawing from 

these crucial observations, the authors made an informed 

decision to opt for the intrinsic features of the model at epoch 

25 (Figure 4(b)). 

Illustrated in Figure 5(a) are the pivotal parameters 

contributing to the construction of the model, specifically 

emphasizing the upper shape surface shape and kernel width. 

The mask distribution across the upper shape surface shape, as 

depicted in Figure 5(b), exhibits a notably even dispersion 

compared to the distribution observed for kernel width. 

However, it is noteworthy that the kernel width demonstrates 

a significantly higher mask value in select samples, as denoted 

by its lighter color.  

This observation underscores the comparable significance 

of the importance value associated with both the upper shape 

surface shape and the kernel width. It highlights the pivotal 

role played by the distribution and value of the mask, 

emphasizing their contribution to the determination of the 

overall importance of parameter value within the framework 

of the model (Figure 5(a) and (b)). 

 

 
 

Figure 4. The model with supervised training (a) epoch=100, (b) epoch=25 
 

 
 

Figure 5. Intrinsic explainability feature (a) Importance value (b) Mask aggregate value 

 

Table 4. Confusion matrix 

 
 Different Similar 

Different 3 0 

Similar 27 168 

 

The presented confusion matrix in Table 4 illustrates the 

model's performance in distinguishing between instances 

categorized as different and similar. The model accurately 

classified three samples as different and 168 as similar, 

signifying a strong predictive capability in identifying similar 

samples. 

The absence of false negatives in the results suggests that 

the model effectively avoided misclassifying any samples of 

different as similar, underscoring its adeptness in mitigating 

false negative errors (Table 4). These findings highlight the 

model's reliability in accurately categorizing samples, 

demonstrating its efficacy in decision-making and its potential 
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for dependable performance in differentiating between the 

specified categories. However, the presence of 27 false 

positives, as indicated by samples incorrectly classified as 

similar when they were different, underscores a notable 

limitation within the model's sensitivity to specific 

classification categories (Table 4). These findings emphasize 

the necessity for further investigation to enhance the model's 

discriminative abilities, particularly in minimizing false 

positive errors and improving its overall classification 

accuracy. 

Table 5 provides an overview of the model's performance 

metrics, including accuracy, precision, recall, and roc auc, 

obtained at epoch 25. The recorded accuracy of 86.40% 

indicates a high overall correctness in the model's predictions. 

The precision value of 100% underscores the model's 

proficiency in accurately identifying positive samples. 

However, the comparatively lower recall value of 10.00% 

highlights a challenge in capturing the complete set of actual 

positive instances. 

 
Table 5. Performance 

 
Parameter Performance 

accuracy 0.864 

precision 1.000 

recall 0.100 

roc_auc 0.460 

 
Furthermore, the roc auc value of 46.0% indicates the 

model's moderate to low discriminative ability in 

distinguishing between positive and negative classes. The low 

roc auc value is likely attributed to class imbalance, as 

evidenced by the disparities in the Shannon-Weaver diversity 

index (H’) values across traits in Table 1. 

Class imbalance in machine learning occurs when there is 

an unequal distribution of training samples among different 

classes. This imbalance can result in biased models, where the 

majority class dominates the training process, leading to an 

inadequate representation of the minority class. Such 

imbalance poses challenges, fostering unfairness among 

classes and compromising the model's generalization ability. 

The impact is particularly significant in applications like 

healthcare, where biased models can hinder accurate 

diagnoses [36, 37]. 

 

3.5 Comparison between machine learning model 

 

Linear Discriminant Analysis (LDA) and TabNet models as 

decision support systems for acquiring new maize accessions 

revealed distinctive insights into their respective predictive 

capabilities within the maize germplasm collection. Despite 

showcasing an impressive accuracy of 89.36%, the application 

of LDA encountered limitations in effectively differentiating 

between different and similar categories, as evident from the 

confusion matrix in Table 3. Conversely, the TabNet model, 

as depicted in Table 4, demonstrated robustness in identifying 

samples classified as similar, although it exhibited a constraint 

in effectively recognizing samples categorized as different. 

The TabNet model showed a moderate accuracy of 86.4%, 

alongside a precision of 100% and a relatively lower recall 

value of 10.0%, emphasizing its proficiency in correctly 

identifying positive samples but encountering challenges in 

comprehensively capturing the entire set of positive samples.  

Further scrutiny into the intrinsic explainability features 

revealed significant associations between the upper shape 

surface shape and the kernel width in the TabNet model, as 

highlighted in Figure 5. In contrast, the LDA model, detailed 

in Table 2, emphasized the considerable impact of traits such 

as mottled type and upper shape surface shape on the decision-

making process. While both models offered valuable insights 

into the characterization of maize accessions, the TabNet 

model exhibited a notable capacity to capture intrinsic 

complexities within the dataset. In contrast, the LDA model 

underscored the significance of specific traits in the decision-

making process, albeit with certain limitations in classification 

accuracy.  

Considering trade-offs, TabNet may offer computational 

efficiency for handling complex patterns, while LDA is 

computationally less demanding as a linear model. LDA 

provides straightforward interpretability, whereas TabNet's 

complex architecture may pose challenges. Ease of use favors 

LDA as a traditional method, while TabNet may require more 

expertise and resources. Ultimately, the choice should align 

with specific application requirements. 

Linear discriminant analysis has found widespread 

application within the agricultural sector, notably in decision 

support systems. For instance, its utility was demonstrated in 

identifying fusarium head blight in winter wheat ears. 

Traditionally, disease assessment methods heavily relied on 

subjective visual inspections carried out by farmers or 

pathologists in the field. However, such visual ratings are 

inherently subjective, leading to potential error variations 

based on the evaluator's expertise. Leveraging LDA, this study 

achieved an accuracy of 77.1%, 85.7%, and 62.9% for the side, 

front, and erect angles, respectively, in spectral analysis and 

image processing [38]. 

TabNet is increasingly being recognized as a valuable asset 

in agricultural decision-making processes. Its effectiveness is 

evident in constructing crop classification models, as 

exemplified in a recent study. The incorporation of channel 

attention into the TabNet method notably enhanced its 

performance, particularly in crop classification and extraction 

within the cultivated land area of Inner Mongolia. The model's 

derived crop planting area strongly complies with the 

corresponding statistical data, highlighting the efficacy of the 

proposed classification approach for accurate and refined crop 

extraction across expansive agricultural regions [39]. 

 

 

4. CONCLUSIONS 

 

In conclusion, this study aimed to investigate and assess the 

utility of the Shannon-Weaver diversity index and machine 

learning as a decision support system for determining the 

acceptability of new maize accessions into the genebank 

collection. The developed machine learning model, utilizing 

both Linear Discriminant Analysis (LDA) and TabNet, 

demonstrated high accuracies of 89.36% and 86.4%, 

respectively. The utilization of Linear Discriminant Analysis 

(LDA), a conventional and established method, facilitates an 

extensive investigation into the role of distinct traits in the 

decision-making process within maize germplasm collections. 

In contrast, the adoption of TabNet, a cutting-edge deep 

learning architecture, facilitated the intricate analysis of 

complex patterns and intrinsic feature distributions, thereby 

enabling a more nuanced understanding of the dataset. The 

proposed system, integrating established and advanced 

techniques, holds significant implications for the broader 
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scientific community involved in genebank management by 

offering a framework to optimize accession strategies, 

ensuring the integrity and adaptability of maize germplasm 

collections. The model's accuracy is limited by its reliance on 

the Shannon index to assess diversity within the input database 

to develop the machine learning model. To establish a robust 

decision support system for acquiring new accessions into 

genebank collections, future research should focus on 

alternative methods for determining similarity or different, 

beyond the Shannon–Weaver diversity index. Exploring 

methods such as Principal Component Analysis (PCA) and 

comparing their effectiveness in conjunction with machine 

learning approaches could enhance the understanding and 

accuracy of accession selection strategies. 
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