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1. INTRODUCTION 

Mechanism of relaxation and retardation parameters in the 

Oldroyd fluid model has attracted many researchers as it can 

study the visco-elastic fluid motion in more generalized way. 

The constitutive equation of Oldroyd fluid model (Oldroyd 

[1], [2]) is given by 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗   & (1 + 𝜆1

𝑑

𝑑𝑡
) 𝜏𝑖𝑗 = 2𝜇 (1 + 𝜆2

𝑑

𝑑𝑡
) 𝑒𝑖𝑗     

                                                                                       (1.1) 

 

Dey[3] and Dey and Khound[4] have investigated the 

effects of relaxation and retardation of visco-elasticity on 

governing fluid motion. Nigam and Singh [5] have derived 

the asymptotic solutions of the energy equation of heat-

transfer problem of fluid flow between two infinite parallel 

plates. Soundalgekar and Bhat [6] have investigated 

oscillatory channel flow and heat transfer. Hydro-magnetic 

Couette flow with heat transfer and Hall effects has been 

investigated by Soundalgekar et al. [7], Saoundalgekar and 

Uplekar [8] and Hossain and Rashid [9]. Raptis et al. [10], 

Raptis and Perdikis [11], Hassanien and Mansour [12] and 

Aldoss et al. [13]  have analysed hydro-magnetic flow 

problem through a porous medium. Vajravelu [14] have 

obtained an exact periodic solution of a hydromagnetic flow 

in a horizontal channel considering hydro-magnetic and 

hydrodynamic cases. Attia and Kotb [15] have discussed 

numerically the problem of steady flow bounded by two 

parallel infinite insulated horizontal plates and the heat 

transfer.  Hall current effects of unsteady Hartmann flow 

between two parallel porous plate of Newtonian and visco-

elastic fluid have been analysed by Attia([16] & [17]). 

Closed form solution of heat and mass transfer problem in 

elastico-viscous fluid past an impulsively started infinite 

vertical plate with Hall effect has been obtained by 

Choudhury and Jha[18]. Effect of oscillatory motion of 

visco-elastic fluid over an infinite stretching sheetthrough 

porous media in the presence of magnetic field with applied 

suction has been studied by Rajagopal et al. [19]. Radiative 

heat transfer in MHD oscillatory flow through porous 

medium bounded by two vertical porous plates has been 

analysed by Singh and Garg [20]. Singh [21] have 

investigated visco-elastic mixed convective MHD oscillatory 

flow through a porous medium filled in a vertical channel. 

Exact solution of MHD mixed convection periodic flow in a 

rotating vertical channel with heat radiation has been derived 

by Singh [22]. Singh and Pathak [23] have analysed the 

Effects of slip conditions and Hall current on an oscillatory 

convective flow in a rotating vertical porous channel with 

thermal radiation. Seth et al. ([24], [25]) have studied the 

effects of Hall current in presence of ramped temperature. 

Ahmed et al. [26] have investigated the effects of Hall 

current on MHD mass transfer flow in a rotating system. 

In various science and technology problems, separation 

process of binary mixture components has been used. In 
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chemical industry, problem of visco-elastic fluid flow with 

heat and mass transfer is often used to study polymer solution 

mixed with various organic compounds. Examples of 

multiple component electrically conducting fluids are molten 

fluid in earth’s crust, crude oil in petroleum etc [27]. In our 

study, we have assumed a binary mixture of visco-elastic 

fluid, where one of component is present in extremely small 

proportion.                                                                                                                                                                                            

The objective of this problem is to investigate the problem 

of oscillatory binary mixture flow of visco-elastic fluid with 

relaxation and retardation through a porous channel. Singh et 

al [28] have studied the hall current effects of visco-elastic 

fluid flow governed by second order fluid model though a 

porous medium with radiative heat transfer. The other 

physical properties like free convection (heat and mass 

transfer due to density differences) and first order chemical 

reaction also have been considered in this flow problem.  

 

 

2. MATHEMATICAL FORMULATION 
 

An unsteady binary mixture flow of visco-elastic fluid 

characterized by Oldroyd model past a porous channel has 

been investigated. The channel is bounded by two infinite 

vertical plates separated by distance d. Here x-axis is taken 

along the length of the plates and z-axis is taken 

perpendicular to it. To stable the system, a magnetic field is 

applied along the transverse direction to the surface. 

Application of transverse magnetic field generates Lorentz 

force and Hall current. In the mixture, let C1 and C2 be the 

concentrations of lighter and heavier components 

respectively and C2= 1- C1. The motion of binary mixture is 

similar to normal fluid flow with velocity 𝑢′ =
𝑢1𝜌1+𝑢1𝜌1

𝜌1+𝜌2
 and 

density 𝜌 = 𝜌1 + 𝜌2, where 𝜌1, 𝜌2, 𝑢1 & 𝑢2 are densities and 

velocities of rarer and heavier components respectively.  

 

 
 

Figure 1. Geometry of the problem 

 

Momentum equation: 

 

(1 + 𝜆1
𝜕

𝜕𝑡′
)

𝜕𝑢′

𝜕𝑡′
= −

1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′
)

𝜕𝑝∗

𝜕𝑥′
+

1

𝜌

𝜕

𝜕𝑧′
[𝜇 (1 +

𝜆2
𝜕

𝜕𝑡′
)

𝜕𝑢′

𝜕𝑧′
] + (1 + 𝜆1

𝜕

𝜕𝑡′
) [𝜎𝐵0

2 (
𝑚𝑣′−𝑢′

1+𝑚2 ) −
𝜐𝑢′

𝑘′𝑝
+

𝑔𝛽(𝑇′ − 𝑇0) + 𝑔𝛽∗(𝐶′ − 𝐶0)]                                               (2.1) 

 

(1 + 𝜆1
𝜕

𝜕𝑡′)
𝜕𝑣′

𝜕𝑡′ = −
1

𝜌
(1 + 𝜆1

𝜕

𝜕𝑡′)
𝜕𝑝∗

𝜕𝑦′ +
1

𝜌

𝜕

𝜕𝑧′ [𝜇 (1 +

𝜆2
𝜕

𝜕𝑡′)
𝜕𝑣′

𝜕𝑧′] + (1 + 𝜆1
𝜕

𝜕𝑡′) [−𝜎𝐵0
2 (

𝑚𝑢′+𝑣′

1+𝑚2 ) −

𝜐𝑣′

𝑘′𝑝
]                                                                                           (2.2) 

    Energy equation: 

 

𝜌𝐶𝑝
𝜕𝑇′

𝜕𝑡′
= 𝑘

𝜕2𝑇′

𝜕𝑧′2 −
𝜕𝑞′

𝜕𝑧′
                                                           (2.3) 

 

For a optically thin fluid, the radiative heat transfer 

(Cogley et al. [29]) is given by,  
𝜕𝑞′

𝜕𝑧′
= 4𝛼2(𝑇′ − 𝑇0) , 

where, 𝛼2 = ∫ 𝐾𝜆𝑤

𝑑𝑒
𝜆′ℎ

𝑑𝑇
𝑑𝜆′

∞

0
, 𝐾𝜆𝑤  is absorption coefficient 

and 𝑒𝜆′ℎ is Plank’s function. 

Neglecting the pressure diffusion co-efficient and thermal 

diffusion coefficient, we get the energy equation for species 

concentration (𝐶1 = 𝐶′) in presence of first order chemical 

reaction (rate of reaction is proportional to concentration) as 

follows [22]: 

 
𝜕𝐶′

𝜕𝑡′
= 𝐷

𝜕2𝐶′

𝜕𝑧′2 − 𝑘1(𝐶′ − 𝐶0)                                                      (2.4) 

 

Here, 𝑝 ∗= 𝑝′ − 𝑝𝑠  pressure difference, 𝑝′  fluid pressure 

and  𝑝𝑠 fluid pressure at static case. 

The corresponding boundary conditions are as follows: 

 

𝑢′ = 0; 𝑣′ = 0; 𝑇′ = 𝑇0; 𝐶′ = 𝐶0;  𝑧′ = −
𝑑

2
 

𝑢′ = 0; 𝑣′ = 0; 𝑇′ = 𝑇0 + (𝑇𝑤 − 𝑇0)𝑒𝜔′𝑡′
; 

𝐶′ = 𝐶0 + (𝐶𝑤 − 𝐶0)𝑒𝜔′𝑡′
;  𝑧′ =

𝑑

2
                                   (2.5) 

 

 

3. METHOD OF SOLUTION 

 

The following non-dimensional quantities have been used 

into the equations from (2.1) to (2.4) to make them 

dimensionless. 

 

𝑥 =
𝑥′

𝑑
; 𝑦 =

𝑦′

𝑑
; 𝑧 =

𝑧′

𝑑
;  𝑢 =

𝑢′

𝑈
; 𝑣 =

𝑣′

𝑈
; 𝑡 =

𝑡′𝑈

𝑑
; 

𝑝 =
𝑝 ∗

𝜌𝑈2
; 𝜔 =

𝜔′𝑑

𝑈
; 𝑇 =

𝑇′ − 𝑇0

𝑇𝑤 − 𝑇0

;  𝐶 =
𝐶′ − 𝐶0

𝐶𝑤 − 𝐶0

; 𝑎 =
𝜆1𝑈

𝑑
; 

𝑏 =
𝜆2𝑈

𝑑
; 𝑀 =

𝜎𝐵0
2𝑑2

𝜐
; 

𝐺𝑟 =
𝑔𝛽𝑑2(𝑇𝑤−𝑇0)

𝜈𝑈
;  𝐺𝑚 =

𝑔𝛽∗𝑑2(𝐶𝑤−𝐶0)

𝜈𝑈
;  ℎ =

𝑑2𝑘1

𝐷
. 

𝑃𝑒 =
𝜌𝐶𝑝𝑈𝑑

𝑘
;  𝑁 =

2𝛼𝑑

√𝑘
; ℎ =

𝑑2𝑘

𝐷
; 𝑘𝑝 =

𝑘′𝑝

𝑑
; 𝑚 = 𝜔𝑒𝜏𝑒  

 

The dimensionless equations are as follows: 

 

𝑅𝑒 (
𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕2𝑢

𝜕𝑡2 ) = −𝑅𝑒 (1 + 𝑎
𝜕

𝜕𝑡
)

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑧2 + 𝑏
𝜕3𝑢

𝜕𝑧2𝜕𝑡
+

(1 + 𝑎
𝜕

𝜕𝑡
) [𝑀 (

𝑚𝑣−𝑢

1+𝑚2)  −
𝑢

𝑘𝑝
+ 𝐺𝑟𝑇 + 𝐺𝑚𝐶]                     (3.1) 

 

(
𝜕𝑣

𝜕𝑡
+ 𝑎

𝜕2𝑣

𝜕𝑡2) = −𝑅𝑒 (1 + 𝑎
𝜕

𝜕𝑡
)

𝜕𝑝

𝜕𝑦
+

𝜕2𝑣

𝜕𝑧2 + 𝑏
𝜕3𝑣

𝜕𝑧2𝜕𝑡
+

(1 + 𝑎
𝜕

𝜕𝑡
) [−𝑀 (

𝑚𝑢+𝑣

1+𝑚2) −
𝑣

𝑘𝑝
]                                          (3.2) 

 

𝑃𝑒
𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑧2 − 𝑁2𝑇                                                                   (3.3) 

 

𝑆𝑐
𝜕𝐶

𝜕𝑡
=

𝜕2𝐶

𝜕𝑧2 − ℎ𝐶                                                                       (3.4) 

 

Equations (3.1) and (3.2) can be combined into a single 

differential equation by assuming 𝐹 = 𝑢 + 𝑖𝑣 and we get,  
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𝑅𝑒 (1 + 𝑎
𝜕

𝜕𝑡
) (

𝜕𝐹

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
+ 𝑖

𝜕𝑝

𝜕𝑦
) =

𝜕2𝐹

𝜕𝑧2 + 𝑏
𝜕3𝐹

𝜕𝑧2𝜕𝑡
+

(1 + 𝑎
𝜕

𝜕𝑡
) [

−𝑀𝐹(1+𝑖𝑚)

1+𝑚2 −
𝐹

𝑘𝑝
+ 𝐺𝑟𝑇 + 𝐺𝑚𝐶]                      (3.5) 

 

Following ([23][28]), the pressure gradient of the 

oscillatory flow is taken as 
𝜕𝑝

𝜕𝑥
= −𝐴𝑒𝑖𝜔𝑡 ,

𝜕𝑝

𝜕𝑦
= 0 

To solve the above equations from (3.3) to (3.5) the 

following boundary conditions are used 

 

𝑇 = 𝐶 =  𝐹 = 0; 𝑧 = −
1

2
 &  

 𝑇 =  𝐶 = 𝑒𝑖𝜔𝑡 , 𝐹 = 0;  𝑧 =
1

2
                                                  (3.6) 

 

To solve the above equations separation of variable 

method is used and the complex form of the solution 

corresponding to the boundary are taken as 

 

𝑇 = 𝑇1(𝑧)𝑒𝑖𝜔𝑡 , 𝐶 = 𝐶1(𝑧)𝑒𝑖𝜔𝑡 & 𝐹 = 𝑓0(𝑧)𝑒𝑖𝜔𝑡              (3.7) 

 

Using (3.7) into the equations and equating the like terms, 

we get 

 

𝑇1
′′ − (𝑁2 + 𝑖𝜔𝑃𝑒)𝑇1 = 0                                                (3.8) 

 

𝐶1
′′ − (ℎ + 𝑖𝜔𝑆𝑐)𝐶1 = 0                                                   (3.9) 

 

𝑓0
′′ + (𝐴7 + 𝑖𝐴8)𝑓0 = −(𝐴9 + 𝑖𝐴10)[𝐺𝑟{𝐵1𝑒(𝐴1𝑍+𝑖𝐴2𝑍) +

𝐵2𝑒(−𝐴1𝑍−𝑖𝐴2𝑍)} + 𝐺𝑀{𝐵3𝑒(𝐴3𝑍+𝑖𝐴4𝑍) + 𝐵4𝑒(−𝐴3𝑍−𝑖𝐴4𝑍)}] +
(𝐴11 + 𝑖𝐴12)𝑅𝑒                                                               (3.10) 

 

The relevant boundary conditions are as follows:  

 

𝑇1 = 𝐶1 = 𝑓0 = 0; 𝑧 = −
1

2
 &  𝑇1 =  𝐶1 = 1, 𝑓0 = 0;  𝑧 =

1

2
  

                                                                                     (3.11) 

 

Solution of the equations (3.8) to (3.10) corresponding to 

boundary conditions (3.11) are obtained but not presented 

here for the sake of brevity. 

 

 

4.  RESULTS AND DISCUSSIONS 
 

Figure 2 to 8 represent the velocity profiles against the 

displacement variable for primary and secondary flows for 

various values of flow parameters involved in the solution. 

The figures enable the fact that the effect of flow parameters 

is more prominent in the centre of the channel. It is seen that 

during the growth of relaxation parameter, fluid flows (both 

primary and secondary) have experience an increasing speed 

as it can be interpreted that during the growth of relaxation 

parameter (figure 2), stress relaxes more rapidly, and more 

energy can be stored, as a consequence speed increases. 

Retardation parameter (figure 3) is connected with creeping 

motion of visco-elastic fluid and increasing values of 

retardation parameter accelerates the fluid motion, as 

physically it is interpreted as the growth of retardation 

parameter reduces the creepiness of fluid flows (primary and 

secondary).  

Application of transverse magnetic field generates  a  force  

 

field known as Lorentz force, the combination of Lorentz 

force and viscosity makes the system thicker and as a result 

speed slows down. This physical phenomenon is clearly seen 

in our result [figure 4]. During the growth of M (magnetic 

parameter) by 27.27% (from M=2.2 to 2.8), there is a fall in 

magnitude of velocity by 91% (approximately) at the central 

portion of the channel. The Hall current parameter also has a 

negative impact on the motion (figure 5) as it decelerates the 

fluid motion by 99.36% (approximately) at the central 

portion of channel during the enhancement of m by 60% 

only. Thus the influence of m (Hall current parameter) on 

fluid motion is greater than M (magnetic parameter). 

Another force which guides the fluid motion is the 

pressure gradient and its effect on fluid motion is shown by 

figure 6 and 7 and it is seen that as magnitude of pressure 

gradient increases by 300%, maximum increment of speed of 

primary flow is observed as 62.5% (approximately) and 

speed of secondary fluid motion is increased by 66.67%. 

Formation of viscous drag of governing fluid motion at the 

surface is very useful in aerodynamics as the wings of 

aeroplane are constructed in such a manner that shearing 

stress should be less. In our study we have shown the effects 

(figure 8 to 12) of visco-elastic parameters, magnetic 

parameter, Hall current parameter, pressure gradient and 

chemical reaction on shearing stress or viscous drag at z= -

1/2 in the time period [0, 20]. The oscillating nature of 

shearing stress with respect to time is clearly seen from the 

figures. Figures 8 and 9 depict the nature of shearing stress 

formed by primary and secondary fluid motion during 

Newtonian fluid (a=0, b=0) and visco-elastic fluid (a =1.35, 

b=3.5). It is noticed that during the motion of visco-elastic 

fluid, the amplitude of variation of shearing stress is 

increased by 39% (approximately) in compare Newtonian 

fluid. It is due to the presence creepiness of friction and 

resistance forces in visco-elastic fluid motion. During the 

oscillatory nature of shearing stress, phase difference is seen 

between Newtonian fluid and visco-elastic fluid. 

Effects of pressure gradient on shearing stresses are 

represented by figure 10 and it tells that during the growth in 

magnitude of pressure gradient (A) by 300% there is a fall by 

19% (approximately) in shearing stress it shows the power of 

pressure gradient is dominant over frictional force. A fall in 

shearing stress by 8% and 25% respectively have been 

noticed during the growth of magnetic parameter by 27.27% 

(figure 11) and Hall current parameter by 60% (figure 12).  

 

 

5. CONCLUSION 

 

Some of the important points from the above study are 

highlighted as below: 

 To control the fluid motion, magnetic parameter or 

Hall current parameter may be increased. 

 Speed of fluid motion experiences an increasing 

trend with pressure gradient. 

 Growth of pressure gradient, magnetic parameter, 

Hall current parameter and chemical reaction parameter helps 

to reduce the strength of shearing stress at the surface. 

 Amplitude of the shearing stress of visco-elastic 

fluid motion is higher than the shearing stress formed due to 

the motion of Newtonian fluid. 
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6. GRAPHS 

 

 
 

Figure 2. Primary velocity against z for 𝜔=0.01, M=2, 

Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, Sc=2, 𝑘𝑝=0.2, m=1,  

t=0.1 

 

 
 

Figure 3. Secondary velocity against z for 𝜔=0.01, M=2, 

Re=0.3, Pe=8, N=8, 𝐺𝑚=4, Gr=7, h=0.5, Sc=2, 𝑘𝑝=0.2, 

m=1, t=0.1 

 
 

Figure 4. Primary velocity against z for a=1.35, b=3.5, 

𝜔=0.01, A= - 0.1, Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, 

Sc=2, 𝑘𝑝=0.2, m=1, t=0.1 

 
 

Figure 5. Primary velocity against z for a=1.35, b=3.5, 

𝜔=0.01, A= - 0.5, M=2, Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, 

h=0.5, Sc=2, 𝑘𝑝=0.2, t=0.1 

 

 
 

Figure 6. Primary velocity against z for a=1.35, b=3.5, 

𝜔=0.01, M=2, Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, 

Sc=2, 𝑘𝑝=0.2, m=1, t=0.1. 

 

 
 

Figure 7. Secondary velocity against z for 𝜔=0.01, M=2, 

Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, Sc=2, 𝑘𝑝=0.2, m=1,  

t=0.1 
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Figure 8. Shearing stress due to primary flow at 𝑧 = −
1

2
 for 

𝜔=0.01, M=2, Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, 

Sc=2, 𝑘𝑝=0.2, m=1 against t 

 

 
 

Figure 9. Shearing stress due to secondary flow 𝑧 = −
1

2
 for 

𝜔=0.01, M=2, Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, 

Sc=2, 𝑘𝑝=0.2, m=1 against t 

 

 
 

Figure 10. Shearing stress for primary and secondary flows 

at 𝑧 = −
1

2
 for a=1.35, b=3.5, 𝜔=0.01, M=2, Re=0.3, Pe=8, 

N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, Sc=2, 𝑘𝑝=0.2, m=1 against t. 

 

 
 

Figure 11. Shearing stress for primary and secondary flows 

at 𝑧 = −
1

2
 for 𝜔=0.01, a=1.35, b=3.5, Re=0.3, Pe=8, N=8, 

𝐺𝑚=4, 𝐺𝑟=7, h=0.5, Sc=2, 𝑘𝑝=0.2, m=1 against t 

 

 
 

Figure 12. Shearing stress for primary and secondary 

flows 𝑧 = −
1

2
 for a=1.35, b=3.5, 𝜔=0.01,A=0.5, M=2, 

Re=0.3, Pe=8, N=8, 𝐺𝑚=4, 𝐺𝑟=7, h=0.5, Sc=2, 𝑘𝑝=0.2 
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NOMENCLATURE 

 

𝑢′& 𝑣′  are velocity of fluid (LT-1), 𝑥′, 𝑦′& 𝑧′  are 

displacement variable (L), 𝑡′  be time (T), 𝑝′ fluid pressure 

(ML-1T-2), ps fluid pressure at static case (ML-1T-2), 

pdimensionless fluid  pressure difference, d distance between 

two plates (L), 𝑇′ temperature of fluid (K), 𝐶′ concentration 

of rarer component (MolL-3), Cp specific heat of fluid at 

constant pressure (L2T-1K-1), k thermal conducitivity (MLT-
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3I2), B0 magnetic field strength (MT2I-1), x, y and z are 

dimensionless displacement variable, u & v dimensionless 

velocity of fluid, t dimensionless time, T dimensionless 

temperature of fluid, C dimensionless concentration, Re 

Reynolds number, M magnetic parameter, Gr Grashof 

number for heat transfer, Gm Grashoff number for mass 

transfer, N radiation parameter, Sh dimensionless shearing 

stress, T0 temperature of fluid at static case (K), Tw mean 

temperature of fluid at z = - 0.5 (K), C0 concentration of rarer 

component at static case (MolL-3),Cw  mean concentration of 

rarer component at z= -0.5 (MolL-3), A amplitude of pressure 

gradient, a dimensionless relaxation time, b dimensionless 

retardation time, m Hall cureent parameter, k1 chemical 

reaction parameter (T-1), h dimensionless reaction parameter, 

kp dimensionless permeability parameter, D molecular 

diffusivity,( L2T-1), 𝑘′𝑝  permeability parameter (L2), 𝜌 

density of fluid, (ML-3), 𝜈  Kinematic viscosity (L2T-1), 𝜎 

electrical conductivity (L-3M-1T3I2),  𝜆1  relaxation time 

parameter  (T), 𝜆2  retardation time parameter (T), 𝜔′ 
frequency of oscillation, (T-1), 𝜔 dimensionless frequency, β 

co-efficient of volume expansion due to heat (K-1), β* co-

efficient of volume expansion due to concentration, Mol-1L3, 

τij viscous stress (ML-1T-2), 𝜂0 dynamic viscosity (ML-1T-1), 

U mean flow velocity(LT-1), g acceleration due to 

gravity(LT-2), Pe peclet number, 𝜔𝑒  electron frequency(T-1), 

𝜏𝑒 electron collision time(T). 
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