
Deep Learning and Machine Learning Based Method for Crop Disease Detection and

Identification Using Autoencoder and Neural Network

Abdelouafi Boukhris1* , Antari Jilali1 , Hiba Asri2

1 Laboratory of Computer Systems Engineering, Mathematics and Applications (ISIMA), Polydisciplinary Faculty of

Taroudant, Ibnou Zohr University, Agadir B.P. 8106, Morocco
2 LISI Laboratory, Department of Computer Sciences, Faculty of Sciences Semlalia, Marrakech B.P. 2390, Morocco

Corresponding Author Email: abdelouafi.boukhris@edu.uiz.ac.ma

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380209 ABSTRACT

Received: 9 June 2023

Revised: 12 November 2023

Accepted: 21 November 2023

Available online: 24 April 2024

Crop diseases present a major threat to agricultural output, disrupting both the quantity and

quality of production. Disease diagnosis remains a challenge for farmers, primarily due to

limited knowledge and the need for specialized agricultural engineering expertise. To solve

these problems, a new technique named the Autoencoder Latent Space-Neural Network

(ALS-NN) was introduced in this study. It combines the strengths of autoencoders and

neural networks to find crop diseases. Data processing is the first step of the methodology,

and then data compression into a latent space follows. This compressed data serves as the

input for the neural network, facilitating efficient crop disease classification. This approach

capitalizes on the autoencoder's capacity for dimensionality reduction, data compression,

and encoding, which is particularly beneficial when handling high-dimensional data. The

reduced data dimensionality enables the neural network to process the information more

efficiently. The ALS-NN model, by compressing data, focuses on the crucial information

for the classification process, thereby enhancing computational speed and reducing the

number of trained parameters. This results in time efficiencies during disease detection

operations, mitigating the detrimental effects of diseases on crop yields. The integration of

autoencoders and neural networks forms a potent strategy for disease detection, leveraging

the autoencoders' capabilities for dimensionality reduction, anomaly detection, and feature

learning, coupled with the classification and generalization abilities of neural networks.

This hybrid approach can potentially lead to more precise, efficient, and interpretable

disease detection system. PlantVillage is used with 10 crop types. We used the first part of

autoencoder (The encoder) to compress images into Latent space; for classification, the

result is subsequently fed into a neural network. Our model (ALS-NN) achieved 90% for

test accuracy and 90% for validation accuracy.

Keywords:

neural network, autoencoder, latent space,

encoder, deep learning

1. INTRODUCTION

Crops are susceptible to various types of diseases which can

effectively reduce production and negatively affect the

agriculture economies. The problem of crop diseases is a

significant and ongoing challenge in agriculture worldwide.

Crop diseases can have catastrophic impacts on food

production, leading to decreased yields, economic losses for

farmers, and potential food shortages. These diseases are

caused by different pathogens, including fungi, bacteria,

viruses, and pests, which can infect a wide range of crops, from

staple grains like wheat and rice to fruits like apples and citrus.

Effective disease management is important to guarantee food

security and sustainable agricultural applications.

Morocco is an agricultural country and produces several

types of crops like tomato, potato, wheat, and pepper. That’s

why we worked on tree types of crops which are: Peppers,

Potatoes and Tomatoes, and eight types of diseases which are:

bacterial spot which affect pepper, potato early and light blight

and tomato diseases (target spot, mosaic virus, yellow leaf curl,

bacterial spot and early blight). To address these issues, we

must detect early and automatically crop diseases. Many

research works presented varied state-of-the-art systems for

crop diseases identification using machine learning and deep

learning algorithms. Nandhini and Ashokkumar [1] uses

DenseNet-121 for plant leaf disease identification, Shadin et

al. [2] use convolutional neural network and Inception V3

COVID-19 diagnosis from chest X-ray images, Khan et al. [3]

use SqueezeNet to classify diseases in citrus fruits and the

accuracy was 96%, Bharathi and Sonai [4] uses convolution

encoder method to detect leaf disease and the accuracy was

98%.

The state-of-the-art techniques are time consuming and use

a high trainable parameters number, so a machine with high

computational power is required. So, we need a novel model

which can reduce the training time significantly and the

number of training parameters.

The main contribution of our novel model is shown as

follows:

(1) Data processing: after loading data from PlantVillage

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 459-472

Journal homepage: http://iieta.org/journals/ria

459

https://orcid.org/0009-0004-8281-1639
https://orcid.org/0000-0003-3084-9753
https://orcid.org/0009-0008-8995-4105
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380209&domain=pdf

dataset, we resize all images and normalize them which can

accelerate the convergence rate and improve the robustness of

our proposed method.

(2) We built our variational autoencoder to encode the

prepared data by Encoder, which can represent our data in low

dimension called Latent Space or Bottleneck. This step

compresses our data to speed up the training of our network.

(1) We reshaped all compressed data to use them for our

neural network.

(2) The Encoder output serves as the input for our deep

neural network.

(3) Deep neural network identifies crop disease.

We used TensorFlow to build our model that could identify

crop disease with good accuracy using the dataset PlantVillage.

We have tree steps in our proposed model. The first step is data

processing, the PlantVillage dataset is preprocessed by

resizing images, cutting and normalization of data to improve

the model accuracy Khamparia et al. [5]. Second step, we built

our variational autoencoder to encode the dataset images and

project all images in Latent Space. The third step, we train our

neural network with the features extracted by our encoder. We

used Adam optimizer algorithm for training which can

enhance the learning efficiency of our model and leads to

faster convergence of loss function. For ten kinds of diseases

the model accuracy achieved 90% which demonstrates the

effectiveness of our proposed model.

2. RELATED WORK

Several methods have already been used to accurately

identify crop diseases through image classification. In all these

methods, they have used several image processing methods

like SVM, Neural Network (NN), K-mean algorithms and so

on.

Bharathi and Sonai proposed a system to detect crop leaf

disease using convolutional encoder architecture. They

combined variational autoencoder for data extraction and

convolutional neural networks for classification, this method

named V-Convolution encoder network reached an accuracy

of 98% after 150 epochs and with a convolution filter of 3*3.

Another work has been done by Khamparia et al. [5] where

they used a convolutional neural network based autoencoder

for crop leaf diseases detection, they have proposed hybrid

technique to detect leaf diseases combining CNN and

autoencoders. The dataset used contains 900 images. The

accuracy of this approach reached 97.5% after 100 epochs.

Using five CNN architectures, Sanga et al. [6] proposed a

banana disease identification system. They found that ResNet-

152 outperformed all other architectures and the accuracy was

99.2%.

Chohan et al. [7] used Inception and VGG-19 architecture

for plants disease identification using PlantVillage dataset.

They found that VGG-19 outperformed Inception V3 with

accuracy of 95% and 98% for testing and training respectively.

Mohameth et al. [8] combined various architectures to

detect plant disease. For features extraction they used CNN

architectures and for classification they employed k-Nearest

Neighbor and Support Vector Machine (SVM) classifiers. The

experiment shows that SVM and CNN combined reached an

accuracy of 98% which outperformed all others.

Another similar work, for plant disease identification, has

been done by Tiwari et al. [9] which combined various CNN

architectures for features extraction, such as VGG-16, VGG19

and Inception V3, and classifiers like NN, SVM, KNN and

Logistic Regression. After experiment, they observed that

combining Logistic Regression with VGG-19 reached an

accuracy of 97.8%.

Sibiya and Sumbwanyambe [10] use CNN for maize disease

classification, Türkoğlu and Hanbay [11] combined three

classifiers K-Nearest Neighbor, Extreme Learning Machine,

and Support Vector Machines with state-of-the-art model

(SqueezeNet, ResNet-50, ResNet-101, Inception-v3,

InceptionResNetv2, and GoogLeNet) for plant disease

recognition. Too et al. [12] presented a comparative study to

select the best deep learning model for crop disease detection.

Pardede et al. [13] combined Convolutional Autoencoder

(CAE) with SVM for corn and potato diseases identification.

They used CAE architecture for features extraction and SVM

for classification. Using PlantVillage dataset this proposed

work achieved an accuracy of 87.01% and 80.42% for potato

and corn diseases identification respectively. Ferentinos [14]

use five CNN architecture to detect plant disease. Table 1

summarizes various research work using PlantVillage dataset.

Table 1. Some of the proposed works by the authors.

Name Year Proposed Work Result

Nandhini and

Ashokkumar

[1]

2022 DenseNet-121

Shadin et al.

[2]
2021 CNN and InceptionV3

Khan et al. [3] 2021 SqueezeNet

Bharathi and

Sonai [4]
2022

variationalautoencoder

combined with CNN
98%

Khamparia et

al. [5]
2020 CNN+Autoencoder [15] 97.5 %

Sanga et al. [6] 2020 ResNet-152 99.2%

Chohan et al.

[7]
2020 VGG-19 98%

Mohameth et

al. [8]
2020

Combination of SVM and

ResNet-50.
98%

Tiwari et al.

[9]
2020

Combination of Logistic

Regression and VGG-19.
97.8%

Pardede et al.

[13]
2018

Convolutional Autoencoder

(CAE) combined with

SVM

87.01%

Most of these works mentioned above had a high training

time. That’s why we are motivated to strive towards building

a model that can reduce the training time and detect crop

disease with a good classification accuracy as much as

possible.

The significant advantage of ALS-NN is training time

reduction and the number of training parameters is also

reduced.

3. DATA PROCESSING

The first task of this step is loading data from the

PlantVillage dataset, we collected images of ten crop diseases

which are mostly affected diseases in Morocco. These are

Potato Early blight, Late blight, Tomato Target Spot, Tomato

mosaic virus, Tomato Yellow Leaf Curl Virus, Tomato

Bacterial spot, Tomato Early blight. Examples of our dataset

are displayed in Table 2 with disease name. The PlantVillage

comprises a total of 54,303 images of leaves, which are further

categorized into 38 different groups based on factors like the

460

plant species and the presence of diseases. The dataset is

usually organized into subfolders or directories, with each

subfolder representing a specific plant disease or plant type.

Within each subfolder, you will find images of plants

belonging to that category. For example, there might be

subfolders named "Tomato_Healthy,"

"Tomato_Early_Blight," "Potato_Late_Blight," and so on.

Here's a simplified example of how the dataset might be

structured:

PlantVillage_Dataset/

 Tomato_Healthy/

 image1.jpg

 image2.jpg

 ...

 Tomato_Early_Blight/

 image1.jpg

 image2.jpg

 ...

 Potato_Late_Blight/

 image1.jpg

 image2.jpg

 ...

 ...

The dimension of each image is 256*256 and all images are

typically stored in common image formats, such as JPEG or

PNG.

To speed up our model and achieve a good accuracy we

must process data. The first step in data processing is image

cropping without reducing images quality. Second step is

image resizing to have the desired size of our model which is

60x60 pixel. We also used some data augmentation techniques

like random flipping and horizontal and vertical translation.

After that we normalize the data to speed up the rate of

convergence and for similarity distribution of data. Figure 1

illustrates the steps of data processing.

Table 2. PlantVillage dataset samples.

Infected

Images
Disease Name

Tomato Early blight

Potato Late blight

Pepperbell Bacterial spot

Tomato Bacterial spot

Potato Early blight

Tomato Yellow Leaf

Figure 1. 4 Steps to process data

Figure 2 illustrates some data examples after cropping and

resizing images:

Figure 2. Leaf images after cropping and resizing operation

4. PROPOSED MODEL

We will discuss in this section the techniques used to design

our novel model. Section 4.1 offers a fundamental concept of

the Autoencoder and Neural Network. In section 4.2 we

detailed our hybrid system. Section 4.3 provides the

experimental setup to implement our novel system.

4.1 Algorithms used

This part outlines Vanilla Autoencoder and Deep Neural

Network architecture.

4.1.1 Autoencoder

Autoencoder is a deep learning algorithm used on feature

selection and extraction, based on unsupervised learning, and

uses backpropagation algorithms to learn the weight

parameters of the network. The output and input vectors have

the same dimensionality because the network reconstructs its

own inputs after training process. Figure 3 shows the pipeline

of an autoencoder:

Figure 3. Pipeline of an autoencoder

Autoencoder compress data into lower representation

named bottleneck or code and tries to reconstruct the output

from the bottleneck. An autoencoder have three components:

Encoder, code (or bottleneck or Latent-Space) and Decoder.

The objective of the Encoder is to compress data into low

dimension named code or Latent-Space (or bottleneck).

Encoder is a Neural Network which contains many layers; the

last layer is the bottleneck layer. We assume that we have N

layers; The equation bellow (1) shows the operation of each

Encoder layer:

461

(1)

For the ith Encoder layer:

Xei: is the input; Xei+1: the result; Wei: the weight; bei: the bias;

fei: the activation function.

In general, the Encoder can be represented by the

mathematical function bellow:

z=f(Wx+b) (2)

where, Z is the latent dimension (code), f is the activation

function, W and b are weight and bias respectively.

The decoder reconstructs the input based on latent space.

The input of the Decoder is the output of bottleneck layer

(code). The Decoder can be represented by the following

equation:

(3)

For the ith Decoder layer:

Xdi: the input; Xdi+1: the result; Wdi: the weight; bdi: the bias; fdi:

the activation function.

In general, the Decoder can be represented by the

mathematical function bellow:

x’=f’(W’z+b’) (4)

The difference between the reconstructed data XR and the

original data XO is called Reconstruction Loss (RL). To

minimize the RL, we used backpropagation algorithm to train

the autoencoder. To compute the RL, we can use two loss

functions which are BCE and MSE. The mathematical

equations for these two-loss functions shown in (5) and (6):

(5)

(6)

Vanilla autoencoder proposed by LeCun et al. [16] contain

only one hidden layer with a number of neurons less than the

number of neurons in the input and output layer. The hidden

layer is considered as a bottleneck layer which restricts and

minimizes the information that would be stored. The main goal

of Vanilla autoencoder is to learn how to develop a

compressed input at the Latent Space layer. Figure 4 bellow

illustrates the architecture of Vanilla autoencoder:

Figure 4. Architecture of vanilla autoencoder

Vanilla autoencoder:

A vanilla autoencoder, often referred to simply as an

"autoencoder," is a kind of artificial neural network employed

for unsupervised learning and dimensionality reduction. It's

called "vanilla" to distinguish it from more complex variations

like convolutional autoencoders or recurrent autoencoders.

Here's a breakdown of the components and purpose of a

vanilla autoencoder:

·Encoder: is the first part of the autoencoder. Encodes data

into a lower-dimensional representation. This lower-

dimensional representation is often referred to as the

"encoding" or "latent space.".

·Bottleneck Layer: The bottleneck layer, which is part of

the encoder, is where the dimensionality reduction occurs. The

number of neurons is fewer than the number of neurons in the

input layer. This forces the network to capture the most

essential features of the input data while discarding less

important details.

· Decoder: The decoder is the second part of the

autoencoder. It takes the encoded data and attempts to recreate

the original input as closely as possible.

·Loss Function: calculates the dissimilarity between the

reconstructed output and the original input. The autoencoder

is trained to minimize this loss.

The primary purpose of a vanilla autoencoder is

dimensionality reduction and feature learning. By training the

network to compress and then reconstruct the data, it learns to

capture crucial features in the data. This can be useful in

various applications, such as:

· Data Compression: Autoencoders can be used to

compress data, reducing storage or transmission requirements.

· Anomaly Detection: When the reconstructed output

significantly deviates from the input, it can indicate anomalies

or outliers in the data.

·Feature Learning: Autoencoders extract features from

data, which can be useful in tasks like image denoising, text

generation, and more.

·Image and Signal Processing: Autoencoders are applied

in image and signal denoising, inpainting, and super-

resolution tasks.

·Preprocessing for Supervised Learning: Autoencoders

can be employed to preprocess data for subsequent supervised

learning tasks, improving the performance of classifiers or

regression models.

Overall, a vanilla autoencoder is a fundamental neural

network architecture used for representation learning,

dimensionality reduction, and various applications in

unsupervised learning scenarios.

This work deals with crop images, so we use Vanilla

autoencoder to get the compressed data representation before

the step of classification. This operation of data compression

reduces the number of extracted features which can

significantly reduce the training time of our hybrid system and

reduces the classification time.

4.1.2 Neural network

Deep learning models are trained on large volumes of data

involving numerous computations to perform predictions. Its

architecture mimics human brain structure. Deep learning

architecture contains a computational unit called “perceptron”

which receives signals and transfers the input to the output

signals. The perceptron stacks many layers which are essential

to understand the input data. The architecture of perceptron

462

https://www.sciencedirect.com/topics/computer-science/activation-function
https://www.sciencedirect.com/topics/computer-science/activation-function

mimics the structure of neurons in the brain, this architecture

is named artificial neural networks. Each perceptron

performed by the following steps: (1) weighted sum is

calculated: the inputs (x1,x2….xn) are multiplied by the

respective weight (w1,w2,…..wn) and summed at each node

plus a bias term b (2) activation function: before sending the

results to the next layer it convert the output into a wanted non-

linear format, the input of step 1 is passed to the activation

function (tan hyperbolic, sigmoid…).

Neural networks contain units which are organized into

input, hidden and output layers as shown in Figure 5. Shallow

networks contain one hidden layer, the nodes within each layer

are linked to nodes in neighboring layers. The computations in

steps 1 and 2 occur for all neurons in the neural network, we

talk about forward propagation. The results of forward

propagation are compared, by the output layer, to the truth

labels and adjust the weights if they have difference between

results (predicted values) and truth labels. This process is

called backpropagation, and the basics of this process can be

summarized in 5 steps: (1) the neural network tries to reduce

an objective function. (2) the network takes the derivative of

total error, i.e., difference between predicted values and actual.

This derivative is named gradient of the layer. (3) based on the

gradient obtained in step 2, the weights are updated using the

same gradient or a factor of it (called learning rate). (4) the

process is repeated for each layer (5) values of gradients from

previous layer can be used in next layer to make the gradient

computation more efficient.

Figure 5. Neural network architecture

Noted that after one pass forward propagation and

backpropagation the network layer’s weight is changed. The

Gradient minimizes the overall error, so parameters number

are converging to a low value and this convergence is named

gradient descent.

Deep neural networks contain several hidden layers. Deep

learning can be applied to various problems like classification,

NLP, pattern recognition, predictive analysis, etc. Deep

learning outperforms its predecessors.

The first model of deep learning was introduced in 1943 is

the McCulloch-Pitts [17]. Based on the neural networks, the

first computer model was created to mimic the neocortex of

human brain [18]. The theory of Hebbian, employed in

biological systems, was introduced [19] after the MCP model.

After that, Frank Rosenblatt was created the “perceptron” the

first electronic device in 1957 [19] based on MCP neuron.

There are two types of perceptron’s:

·Perceptron with single layer which can only works with

linear separation of data points (linearly separable patterns).

·Multilayer perceptron or know as feed forward neural

network which contain two or more layers with more

processing power.

In 1969, researchers indicate that neural networks couldn’t

learn a basic XOR function [20], this phase know as AI-winter

which AI didn’t get more interest and funding. At the end of

AI winter, a backpropagation algorithm was introduced in

1970 [21] by Werbos. Backpropagation learning algorithms

uses errors for training deep learning models, this technique

was applied to neural networks in 1980. The difference

between DNNs (deep neural networks) and earlier generation

of machine learning techniques is the Automated feature

extraction. In 1980 Kunihiko proposed the “neocognitron”

[22] a hierarchical and multilayered neural network which

inspired the convolutional neural networks, this network has

been used for Japanese handwritten character recognition. In

1986, the Recurrent neural networks (RNN) were proposed. In

1990, LeNet [23] is the earliest convolutional neural networks

which is trained and used to identify the handwritten digits in

MNIST data set. In 2006, Deep Belief Network (DBN) was

proposed by Hinton [24]. DBN is a deep generative network

composed of several layers of stochastic latent variables, DBN

is based on reinforcement learning and contains a stacked layer

of RBM (Restricted Boltzmann Machine).

In contrast with shallow learning model (which contain few

processing layers), deep learning contains deeper number of

processing layers. Shallow architectures can’t be used for non-

linear and complex functions.

Neural Network:

Often referred to as an artificial neural network (ANN),

inspired from the structure of the human brain is a

computational system. It is used for different tasks, such as

regression and classification of data. Neural networks (NN)

contain neurons organized in layers (input layer, one or more

hidden layers, output layer).

Here's an overview of the key components and concepts

related to NN:

1. Neurons (Nodes): Each neuron receives one or more

inputs, processes them, and produces an output. Nodes are

arranged into layers (input, output and one or more hidden

layers).

2. Weights and Biases: Neurons apply weights to their

inputs, and these weights determine the strength of the

connections between neurons. In addition, each neuron has a

bias term that can be adjusted to control its activation. Weight

and bias values are learned during the training process.

3. Activation Function: is applied to the input weighted sum

and biases to determine the neuron output; it can influence the

network's learning capacity and behavior. Common activation

functions include the sigmoid, ReLU (Rectified Linear Unit),

and tanh functions.

4. Feedforward Propagation: In feedforward propagation,

information travels through the network from the input to the

output layer. In each layer, units apply the activation function

to their inputs and pass the results to the next layer. This

process generates predictions or outputs.

5. Loss Function: Measures the difference between the

predicted output and the actual target values. The goal during

training is to minimize this loss, typically using optimization

techniques like gradient descent.

6. Backpropagation: updates the weights and biases in the

network to minimize the loss. It involves calculating the loss

gradients without modifying the model's parameters and

adjusting those parameters in the direction that reduces the loss.

7. Hidden Layers: Neural networks can have one or more

hidden layers. These layers contain neurons that capture and

transform features from the input data. Deep neural networks,

or deep learning models, have many hidden layers and are

463

capable of learning complex patterns.

8. Training Data: Neural networks require labeled training

data to learn the input and output relationships. The network

learns from this data by adjusting its weights and biases during

training.

9. Overfitting: Neural networks can be susceptible to

overfitting, which signifies they might exhibit strong

performance on the training data but poorly on unseen or new

data. Methods like dropout, regularization, and cross-

validation are used to mitigate overfitting.

10. Applications: Neural networks are used in image

recognition, autonomous vehicles, and many more. Different

network architectures and configurations are tailored to

specific tasks.

Table 3. Examples of methods using NN to detect crop disease.

Author Types of NN Diseases Accuracy

Ferentinos et al. [14] VGG 65.59%

Lee et al. [25] CNN 1269 tea disease images

Amara et al. [26] LeNet three kinds of banana diseases 99.71%

Wang et al. [27] VGG16, VGG19, GoogLeNet and ResNet50 apple leaf black rot 90.4% with VGG16

Fujita et al. [28] four-layer CNN cucumber diseases 82.3%

Abdulridha et al. [29] RBF, MLP Laurel wilt (Lw) disease 98%

Mohanty et al. [30] AlexNet and GoogleNet 99.35%

Neural networks are very popular in recent years, especially

deep neural networks, due to their capability to learn intricate

patterns and representations. They are at the core of many

breakthroughs in artificial intelligence and have transformed

industries such as healthcare, finance, and technology.

Table 3 illustrates the contributions of authors according to

different Neural Networks for plant disease identification.

4.2 Proposed work

We propose a new technique to detect crop disease

combining Autoencoder architecture and neural network. The

idea is to compress all images using the Encoder; the output is

called Latent space of autoencoder (or Bottleneck) which

contains all unique features extracted by the Encoder. The

Latent space represents data into low dimensional in vector

form. We then used neural network architecture for

classification; the input of this NN is the compressed data that

we have got by our Encoder. After training, our algorithm

achieves 90% accuracy which is a satisfactory outcome.

The entire tactic of crop disease classification is divided into

three steps: after data processing, the Encoder extracts features,

and we use neural network for classification.

4.2.1 Autoencoder for data compression

Figure 6. Autoencoder architecture

Autoencoder can extract a compressed representation of an

input. It’s used for dimensionality reduction which is an

approach to filter just the essential features of our crop data.

Autoencoder is an unsupervised neural network used for

automatic feature extraction from data. The autoencoder

architecture is illustrated in the Figure 6.

We have three parts of autoencoder: Encoder, Latent space

(Bottleneck) and Decoder. The encoder extracts essential

feature from data and Decoder attempt to rebuild the original

data based on compressed data in latent space vector. The

output of autoencoder is the same as input with some loss.

In this paper we use just the first part of Autoencoder:

Encoder and Latent space representation, the output is then

reshaped to be inputted into neural network. Our novel

proposed method has not been introduced in any previous

research study.

The experiment demonstrates that Neural Network is the

most effective classifier compared with other algorithms like

CNN [31].

The architecture of our approach is illustrated in the Figure

7 below:

Figure 7. Overview of our proposed method

464

4.2.2 Neural network for classification

The Encoder compress data into latent space vector that

contains all unique features from input data, we use then the

NN as classifier. The training steps is illustrated in Figure 8

below:

Figure 9 illustrates all steps of the proposed model.

We have three steps in the process of creating our novel

model: the first step is to process data; we crop and resize

images with size of 62*62 pixels. Resizing images can

significantly speed up the model training. Then Vanilla

autoencoder is created to minimize the dimensionality of data

from 256*256 to 32*32, so we get the compressed data. Our

autoencoder has three layers, we have used Adam optimizer

and MSE function. Figure 10 illustrates the architecture of

Vanilla autoencoder.

Figure 8. Training sequence of neural network classifier

Figure 9. Flowchart to explain our novel method

Figure 10. Architecture of Vanilla autoencoder

Table 4. Parameters used in NN.

 Neurons Input_Dimensions Weight Initializer Function

Layer number 1 10 8 Uniform Rectified linear unit

Layer number 2 6 - Uniform Rectified linear unit

Layer number 3 1 Uniform sigmoid

In this paper, we don’t use the Decoder of our autoencoder

which try reconstructing the original. The loss function is

mean squared error (MSE). The MSE formula is illustrated in

Eq. (7):

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖−𝑦�̃�

𝑛

𝑖=1

)² (7)

where, y is the input crop image and ỹ represent the

reconstructed image, while n is the number of crops images.

After the operation of dimensionality reduction made by

Vanilla autoencoder, the result of the Bottleneck layer serves

as the input of our Neural Network classifier.

Table above illustrates all parameters used in a NN.

4.3 PlantVillage dataset

In this paper, the dataset used is PlantVillage. We trained

our model for three types of crops: Potato, Pepper, and Tomato

and 8 types of crop diseases. Figure 11 illustrates examples of

PlantVillage crop images:

We extracted crop images from 10 folders of PlantVillage

dataset, the image size after extraction is 12080 and the

extracted labels was: ['Pepper-bell-Bacterial-spot', 'Pepper-

bell-healthy', 'Potato-Early-blight', 'Potato-Late-blight',

465

'Potato-healthy', 'Tomato-Bacterial-spot', 'Tomato-Early-

blight', 'Tomato-Target-Spot', 'Tomato-Yellow-Leaf-Curl-

Virus', 'Tomato_mosaic_virus']. The shape of our data is

12080*60*60*3 and 12080*10 for labels. 80% of the data is

used for training the model, while the remaining 20% is

reserved for testing. Thus, we have 9664 crop images for

training dataset and 2416 crop images for testing dataset.

Figure 11. Images from PlantVillage dataset

4.4 Platform requirement

In this paper we used Jupyter Notebook, TensorFlow and

Python version 3.8. The operating system used is windows 10

64 bits with a graphic card NVIDIA GEFORCE GTX and a

RAM capacity of 12 GO. We also used a Core i7 processor.

The optimizer used for Vanilla autoencoder is Adam [32]

and the loss function is MSE, we trained this algorithm with

batch size of 32 and only seven epochs. We trained Neural

network using binary cross-entropy (BCE) and Adam

optimizer with five epochs and batch size of 32.

The choice of the Adam optimizer algorithm for training

neural networks is a common and popular one for several

compelling reasons:

1. Adaptive Learning Rates: Adam, which stands for

"Adaptive Moment Estimation," adjusts the learning rate

during training for each parameter individually. This

adaptability is crucial because it helps the model converge

faster and more reliably. It dynamically scales the learning

rates based on the gradients of each parameter, ensuring that

small and large updates are made appropriately. Adam utilizes

estimations of both the first and second moments of the

gradient to adjust the weight learning rate dynamically. For a

random variable, the moment is calculated as follow:

𝑚𝑛 = 𝐸[𝑋𝑛] (8)

m: moment, X: random variable.

2. Momentum and RMSprop Combination: Momentum

helps the optimizer navigate through flat regions and

accelerates convergence, while RMSprop helps control the

learning rates for each parameter based on the magnitude of

recent gradients. The combination of these two techniques

often results in faster convergence and better optimization.

3. Low Memory Requirements: Adam maintains

exponentially moving averages of the gradients and squared

gradients, which requires relatively low memory compared to

some other optimization algorithms. This is advantageous

when dealing with large models or when training on hardware

with limited memory. To calculate the moments, Adam uses

exponentially moving averages based on the gradients

calculated from the current mini batch:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (9)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔²𝑡 (10)

m and v: moving averages.

g: the gradient.

4. Consistent Performance: While no optimizer is

universally the best for every problem, Adam tends to provide

consistently good performance across a variety of tasks. It has

become a good choice in the deep learning community.

5. RESULT AND DISCUSSION

The first operation in our method is data processing, which

we crop and resize all dataset images. Then we feed the new

dataset in our autoencoder to compress data. After only 5

epochs, the loss of autoencoder reached 73 10-4; Figure 12

below shows the loss of our Encoder, while Figure 13

illustrates an overview of compressed data.

Figure 12. Training loss and validation loss for vanilla

autoencoder

The overview of the compressed images is show in Figure

13:

Figure 13. Compressed images by the encoder

Visualize latent space data:

To visualize latent space data, we can use T-SNE technique

to project our data into autoencoder Latent space. Figure 14

below shows the projection of our data into Latent space of

autoencoder:

466

Figure 14. Projection of data into latent space

T-SNE is a technique for dimensionality reduction

employed in machine learning and data visualization. It's

particularly useful for visualizing data in a lower-dimensional

space without losing important data.

Here's how T-SNE works:

1. High-Dimensional Input Data: t-SNE takes as input a

dataset with a high number of dimensions, such as data points

with many features.

2. Pairwise Similarities: It begins by computing pairwise

similarities between data points. Typically, t-SNE uses the

Gaussian distribution to measure the similarity between points,

with closer points having higher similarities.

3. Probabilities: These similarities are used to create

probability distributions over pairs of points. In the high-

dimensional space, the probability is based on the similarities

computed in step 2.

4. Minimizing Divergences: The T-SNE objective is to find

a mapping that minimizes the divergence between these two

probability distributions. This is achieved, in low-dimensional

space, using an optimization process that adjusts the positions

of the points.

5. Gradient Descent: is used in the low-dimensional space

to minimize the divergence between the two probability

distributions by adjusting the positions of the points.

6. Preservation of Structure: The optimization process

continues until the low-dimensional representation aligns well

with the high-dimensional data, saving the relationships and

the structure of data.

One key characteristic of t-SNE is that it tends to group

similar data points closely together in the low-dimensional

space, which makes it excellent for visualizing clusters or

patterns in the data. However, it's important to note that t-SNE

is not suitable for dimensionality reduction for other machine

learning tasks; it's primarily used for visualization.

Figure 15 below depicts the application of T-SNE on the

MNIST dataset. The MNIST dataset is known for containing

images of handwritten digits, making it a popular choice for

tasks such as digit classification. T-SNE is used as a technique

to visualize and cluster the data points within this dataset,

providing insights into the distribution and relationships

between different handwritten digits. Figure 15 illustrates T-

SNE on mnist dataset.

In summary, T-SNE is a powerful tool for visualizing data

by projecting it into a lower-dimensional area while preserving

the underlying structure and relationships, making it a valuable

technique for exploratory data analysis and pattern recognition.

The second step of our method is to build neural network

for binary classification. The Encoder output is the input of the

neural network with three layers. After five epochs our model

reached 90% and 89% for training and validation accuracy

respectively. Figure 16 and Figure 17 illustrates the accuracy

and the loss of our classifier respectively.

Figure 15. Illustration of T-SNE on mnist dataset

Figure 16. Training and validation accuracy

Figure 17. Representation of the neural network loss

6. COMPARISON OF OUR METHOD WITH OTHER

ARCHITECTURE

Based on training time, we will compare our method with

state-of-the-art methods such as CNN, Resnet152, and

VGG19. As we can see in Table 5, our proposed method

outperforms all other method and has training time less than

95 second unlike all compared methods.

467

Table 5. Benchmarks based on training time

Methods Training Time (per second) Number of Epochs Batch Size

Neural network model 22.014 5 30

Autoencoder model 30.81 7 30

The proposed method 52.824 - 30

CNN [33] 159.14 7 30

Resnet-152 [34] 1281 (21 minutes20 seconds) 7 30

VGG-19 [35] 8.77 7 30

AlexNet [36] 850 (14 minutes 10 seconds) 7 30

GoogLeNet (Inception V1) [37] 3716.42 (61.94 minutes) 7 30

Inception V 3 [38] 825.87 (14 minutes) 7 30

VGG 16 [39] 913.73 (15 minutes) 7 30

DenseNet121 [40] 791.99 (13 minutes) 7 30

SqueezeNet [41] 152.23 7 30

Table 5 illustrates the comparison of training time between

state-of-the-art methods and the proposed work (batch size=

30, epochs = 7).

As we can see in Table 5above, the proposed method ALS-

NN (Autoencoder Latent Space – Neural network) identifies

crop disease in less time than other works, after only 22.014

second the classifier neural network (NN) can identify

accurately crop disease after 5 epochs only while CNN and

ResNet-152 exceeds 100 seconds. So, our novel method

outperforms other works, and it is less time consuming.

The accuracy comparison is illustrated in Table 6. As

illustrated, our proposed technique outperforms all these

algorithms after only 5 epochs (batch size = 30, epochs = 7).

Table 6. Accuracy benchmark

Methods Accuracy Loss

The proposed model 0.90 0.3252

Resnet-152 0.89 0.32

AlexNet 0.90 0.0000e+00

GoogleNet (Inception V1) 0.90 Nan

Inception V 3 0.895 0.2988

VGG 16 0.9651 0.0890

DenseNet121 0.90 0.0000e+00

SqueezeNet 0.2078 2.13

CNN 0.87 0.2838

VGG-19 0.10 0.0000e+00

As illustrated in Table 6, the proposed method achieved 90%

testing accuracy which is more than Resnet-152, VGG and

CNN (with three layers). The validation accuracy of ALS-NN

method is 90% which is a good accuracy compared with other

techniques like VGG19 with validation accuracy 10%, and

ResNet-152 with validation accuracy 90%, and CNN with

validation accuracy 86% but after 7 epochs.

On the other hand, ALS-NN is trained using less parameters

compared with VGG, Resnet159 and CNN networks. Table 7

below shows a comparative study of our methods and other

techniques based on a number of trainable parameters.

As illustrated in Table 7, our method is trained with less

parameters compared with VGG, Resnet-152 and CNN with

less than 90 000 parameters for Vanilla autoencoder and only

163 parameters for NN classifier. To reach the same accuracy

as our method, Resnet-152 needs more than 8 million trained

parameters, so the proposed system outperformed the state-of-

the-art systems based on trained parameters.

Significance of Results:

Our proposed model can be used in the agriculture area to

speed up the process of crop disease identification which can

increase crop yield by identifying and addressing crop disease

promptly. So, farmers maintain healthier crops leading to

increased yield. This is vital for food production to address the

needs of an expanding global population. Our model can

enable precise and targeted treatment by identifying diseases

timely which can significantly reduce the need for chemical

pesticides and fungicides, leading to cost savings for farmers

and decreased environmental impact.

The use of ALS-NN can improve resource management

with accurate disease identification, so farmers can allocate

resources more efficiently. They can focus on the areas of their

fields that need attention, saving time and resources. By

reducing crop losses and optimizing resource use, our model

ALS-NN can lead to cost savings for farmers. This is

especially crucial for small-scale farmers and those in

developing regions like Morocco. Our model is a good tool for

farmers to tackle disease outbreaks effectively, maximize crop

yields, and contribute to global food security.

Table 7. Benchmark based on number of trainable parameters between ALS-NN and other works

Method
Number of Trainable

Parameters
Testing Accuracy Validation Accuracy

CNN 2,685,898 87% 86%

ALS-NN

(our method)

Autoencoder: 87,139

NN classifier: 163
90% 90%

VGG 19 263,169 10.01% 10%

Resnet-152 8,203,010 89.99% 90%

AlexNet 28,846,051 90% 90%

GoogLeNet (Inception V1) 90% 90%

Inception V 3 40,644,769 89.5% 90%

VGG 16 14,714,688 96 .51% -

DenseNet121 6,954,881 90% 90%

SqueezeNet 727,632 20.78% 21.98%

468

7. IOT FOR SMART AGRICULTURE

The Internet of things plays a significant role in smart

agriculture; IoT sensors can provide more information about

crops which can positively affect crop production by

monitoring environmental factors. Using IoT we can expect

an increase of production with low cost by monitoring

temperature, humidity, fertilizer, and soil efficiency.

Certainly, IoT has played a crucial role in smart agriculture,

enabling farmers to monitor and manage their operations more

efficiently. Here are some specific examples of how IoT has

been used in agriculture and the impact it has had:

1. Precision Agriculture: IoT sensors are used for data

collection (temperature or soil moisture…). This data helps

farmers to take precise decisions about irrigation and

fertilization.

2. Weather and Environmental Monitoring: Collect data like

precipitation, humidity, and temperature. This information is

vital for optimizing planting, irrigation management, and

mitigating weather-related risks.

3. Crop Health Monitoring: using drones with cameras and

IoT sensors. The data and captured images are analyzed to

identify signs of disease.

4. Automated Irrigation: the system of irrigation is

controlled based on IoT. This prevents over-irrigation,

conserves water, and reduces energy costs.

5. Supply Chain Management: IoT helps in tracking the

movement of crops and produce from farm to market. Sensors

on storage containers monitor temperature and humidity to

ensure perishable goods safety.

6. Livestock Feed Management: Smart feeders use IoT

technology to dispense the right amount of feed for animals,

reducing waste and ensuring optimal nutrition.

7. Farm Equipment Maintenance: IoT sensors on tractors

and other farming machinery monitor performance and send

alerts when maintenance is needed. This proactive approach

reduces downtime and improves operational efficiency.

8. Labor Efficiency: IoT can help with labor management

by tracking worker activity and optimizing work schedules

and assignments.

The impact of IoT in agriculture has been substantial:

·Increased Productivity: IoT enables data-driven decision-

making, resulting in higher crop yields, healthier livestock,

and more efficient resource use.

·Resource Conservation: IoT helps reduce water and

energy consumption by optimizing irrigation, reducing

wastage, and promoting sustainable practices.

·Cost Reduction: By improving efficiency, IoT lowers

operational costs, making farming more profitable.

·Sustainability: IoT supports sustainable agriculture by

minimizing the environmental impact of farming practices.

·Improved Quality and Safety of agricultural products.

·Risk Mitigation: Early disease detection and weather

monitoring allow farmers to take proactive measures, reducing

crop and livestock losses.

In summary, IoT has revolutionized agriculture by giving

farmers real-time information and control over various aspects

of their operations. The impact is evident in increased

productivity, resource efficiency, cost reduction, and overall

sustainability.

In this paper we can monitor temperature and humidity in

agriculture field through sensors using Raspberry Pi 3 model

B+. The camera is connected to Raspberry Pi to capture crop

images and use our proposed algorithm ALS-NN to identify

crop diseases.

7.1 Concept of IoT

Internet of things (IoT) describes a system where the world

is connected to Internet using several sensors. IoT is a vision

where all objects (vehicles, furniture, roads, etc..) are

controllable, locatable, and recognizable via the Internet.

Using IoT can improve accuracy, efficiency and economic

benefit and reduce human intervention [42].

7.1.1 Raspberry Pi

The Raspberry Pi is a compact single-board computer used

for small networking operations and computing. It’s one of the

important elements in the field of IoT. Using the Internet,

Raspberry Pi can connect remote location controlling devices

with automation system. In this paper we used Raspberry Pi

version 3 B+, it has quad-core has quad-core ARM Cortex-

A53 CPU of 900 MHz, and 1GB LPDDR2 SDRAM. It has 4

usb ports, Ethernet port, HDMI port, video camera interface,

display interface DCI, and SD card slot. Here are some reasons

why the Raspberry Pi 3 Model B+ might be chosen over other

options:

·Performance: It offers a significant boost in performance

compared to its predecessors.

·Built-in Wireless Connectivity: The Model B+ comes

with built-in dual-band Wi-Fi (2.4GHz and 5GHz) and

Bluetooth 4.2. This integrated wireless connectivity simplifies

connectivity and communication, which is important for many

IoT and networked projects.

·Availability and Community Support: The Raspberry Pi

3 Model B+ benefits from a large and active user community,

ensuring easy access to tutorials, documentation, and

community support. The availability of resources and

expertise is a major advantage for both beginners and

experienced users.

·Cost-Efficiency: Raspberry Pi boards are known for their

cost-effectiveness. The Model B+ offers a good balance of

performance and features for its price, making it an attractive

choice for projects with budget constraints.

·Compatibility: The Model B+ maintains compatibility

with many of the existing Raspberry Pi accessories, including

cases, power supplies, and HATs (Hardware Attached on Top).

This can save time and money when transitioning from a

previous Raspberry Pi model.

·GPIO Pins: It comes with a 40-pin GPIO header, which

is important for hardware and DIY projects that require

interfacing with sensors, motors, and other external

components.

· Energy Efficiency: It is relatively energy-efficient,

consuming only a modest amount of power. This can be

important for projects where power consumption is a

consideration.

·Operating System Support: The Model B+ enjoys wide

operating system support, including various flavors of Linux

and even Windows 10 IoT Core, making it versatile and

compatible with a variety of software applications.

7.1.2 Temperature sensor

DS18B20 temperature sensor is used to measure

temperature. Waterproof probe based on a DS18B20 allowing

469

temperature measurement from -55 to +125°C. It is connected

to a microcontroller via digital input.

7.1.3 Humidity sensor

This sensor measures the water content in soil and transfers

it to Raspberry Pi (our microcontroller) to act of switching

water pump on/off.

7.1.4 Power supply

Raspberry Pi 12.5W Micro USB Power Supply with 5.1V /

2.5A DC output.

7.1.5 Camera Raspberry Pi

A 5MP (5 Megapixels) camera for Raspberry Pi. Easy to

install, an ideal solution for designing a Webcam, IP Camera,

or CCTV Camera from the Raspberry Pi. It has a number of

pixels 2592*1944 with sensor size of 3.67*2.74 mm.

Temperature, humidity, and camera sensors are commonly

chosen for agricultural monitoring systems because they

provide critical data that can significantly impact crop and

livestock management. Here's why these specific sensors are

commonly used:

1. Temperature Sensors:

· Crop Health: Temperature affects plant growth and

development. Monitoring temperature helps farmers assess the

suitability of their environment for specific crops. Different

crops have specific temperature requirements for optimal

growth.

·Frost and Freeze Protection: Monitoring temperature is

essential to protect crops from frost and freezing temperatures.

When temperatures drop below critical levels, automated

systems can activate heaters or fans to safeguard crops.

· Energy Efficiency: Temperature data allows for the

efficient use of heating and cooling systems. This reduces

energy consumption and lowers operational costs.

2. Humidity Sensors:

· Irrigation Management: Humidity levels are closely

related to the need for irrigation. Monitoring humidity helps in

determining when and how much to irrigate. It prevents over-

or under-watering, promoting healthy crop growth.

· Disease Prevention: Certain plant diseases thrive in

humid conditions. Monitoring humidity can help in disease

prediction and management. Farmers can take preventive

measures when humidity levels are conducive to disease

development.

· Storage and Preservation: In post-harvest storage,

humidity control is crucial to prevent spoilage and maintain

the quality of agricultural products. Sensors help maintain the

optimal storage environment.

3. Camera Sensors:

·Crop Health Assessment: Cameras capture images of

crops, allowing for visual assessment of their health and

growth. ALS-NN models can be used to analyze images for

crop disease identification.

· Pest and Weed Detection: Cameras can detect the

presence of pests and weeds, enabling farmers to take timely

action. This reduces the need for chemical treatments and

minimizes crop damage.

·Quality Control: Cameras in packing and processing

facilities help in quality control by ensuring that agricultural

products meet the desired standards. They can detect defects

and sort produce accordingly.

·Research and Data Collection: Images collected from

cameras can be valuable for research and historical data

analysis. They provide a visual record of the development and

health of crops over time.

These sensors are chosen to produce real-time information

that is critical for decision-making in agriculture. By

monitoring temperature, humidity, and using cameras for

visual data, farmers can improve crop management, minimize

risks, and optimize resource usage. These sensors are integral

to the shift towards data-driven precision agriculture, where

decisions are made based on accurate and timely information,

ultimately leading to better yields and sustainability in farming.

7.2 Proposed system model

To monitor crop healthiness, we used an intelligent system

with various sensors which can collect information from the

fields accurately. The camera connected to Raspberry Pi takes

pictures of crops and sends them to our proposed system ALS-

NN to identify crop disease.

Figure 18 below illustrate how we can identify crop disease

with camera of Raspberry Pi and our system:

Figure 18. Using camera Raspberry Pi and our proposed

method to identify crop disease

The Raspberry Pi microcontroller is the core component of

this system. It controls the working of each device connected

to it. The important device connected to Raspberry Pi is

camera with 5 Megapixels:

(1) A camera is fitted which will capture pictures of the crop.

(2) This image is sent to our system to be analyzed.

(3) After image processing, we used our proposed algorithm

ALS-NN to identify crop disease.

Figure 19. Blog diagram for smart agriculture

470

Figure 19 illustrates the block diagram of proposed system

model.

8. CONCLUSIONS

Crop disease identification is a challenging task, much

research used deep learning and neural network to identify

crop diseases. However, the downside of these methods is that

they are time consuming and trained with millions of

parameters which need performed computer. To address these

issues, the proposed method ALS-NN used two networks, the

first network is Vanilla autoencoder and Neural Network (NN).

The first network compress data using the Encoder and feeds

this output to the second network for classification. The

autoencoder reduces extracted features number, without losing

the important features, which also reduces the training time of

our system which is the main contribution of this paper. The

ALS-NN model works by compressing the data to utilize only

the most critical information during the classification process.

Vanilla Autoencoder is used for data compression by using the

Encoder which is the first half of Autoencoder. The encoder

takes high dimensional input data and transforms it into lower-

dimensional representation without losing the important

information. The encoder ultimately compresses data, and the

result is called bottleneck, which represents a compact and

informative representation of the original data. The

compressed data is classified using neural network. This

compression significantly speeds up the model and reduces the

parameters number which outperform the state-of-the-art

model. By combining Autoencoder and Neural Network [43]

technologies effectively, we achieve a fast model with fewer

parameters. As a result, disease detection operations are much

quicker, which helps mitigate the negative impact of these

plant diseases on crop yields.

Our system attained a testing accuracy of 90% and a

validation accuracy of 90%. This system uses a few numbers

of trained parameters (163 for Neural Network, 87139 for

autoencoder). The implementation of the ALS-NN model can

enhance resource management through precise disease

identification. This allows farmers to allocate their resources

more efficiently, as they can concentrate their efforts on the

specific field’s areas. This not only saves time but also

conserves valuable resources, resulting in more effective and

sustainable farming practices.

REFERENCES

[1] Nandhini, S., Ashokkumar, K. (2022). An automatic

plant leaf disease identification using DenseNet-121

architecture with a mutation-based henry gas solubility

optimization algorithm. Neural Computing and

Applications, 34: 5513–5534.

https://doi.org/10.1007/s00521-021-06714-z

[2] Shadin, N.S., Sanjana, S., Lisa, N.J. (2021). COVID-19

diagnosis from chest X-ray images using convolutional

neural network (CNN) and InceptionV3. In 2021

International Conference on Information Technology

(ICIT), Amman, Jordan, pp. 799-804.

https://doi.org/10.1109/ICIT52682.2021.9491752

[3] Khan, E., Rehman, M.Z.U., Ahmed, F., Khan, M.A.

(2021). Classification of diseases in citrus fruits using

SqueezeNet. In 2021 International Conference on

Applied and Engineering Mathematics (ICAEM), Taxila,

Pakistan, pp. 67-72.

https://doi.org/10.1109/ICAEM53552.2021.9547133

[4] Bharathi, I., Sonai, V. (2022). Image-based crop leaf

disease identification using convolution encoder

networks. In Machine Learning and Data Mining-Annual.

https://doi.org/10.5772/intechopen.106989

[5] Khamparia, A., Saini, G., Gupta, D., Khanna, A., Tiwari,

S., de Albuquerque, V.H.C. (2020). Seasonal crops

disease prediction and classification using deep

convolutional encoder network. Circuits, Systems, and

Signal Processing, 39: 818-836.

https://doi.org/10.1007/s00034-019-01041-0

[6] Sanga, S., Mero, V., Machuve, D., Mwanganda, D.

(2020). Mobile-based deep learning models for banana

diseases detection. arXiv preprint arXiv:2004.03718.

https://arxiv.org/abs/2004.03718

[7] Chohan, M., Khan, A., Chohan, R., Katpar, S.H., Mahar,

M.S. (2020). Plant disease detection using deep learning.

International Journal of Recent Technology and

Engineering, 9(1): 909-914.

https://doi.org/10.35940/ijrte.A2139.059120

[8] Mohameth, F., Bingcai, C., Sada, K.A. (2020). Plant

disease detection with deep learning and feature

extraction using plant village. Journal of Computer and

Communications, 8(6): 10-22.

https://doi.org/10.4236/jcc.2020.86002

[9] Tiwari, D., Ashish, M., Gangwar, N., Sharma, A., Patel,

S., Bhardwaj, S. (2020). Potato leaf diseases detection

using deep learning. In 2020 4th International

Conference on Intelligent Computing and Control

Systems (ICICCS), Madurai, India, pp. 461-466.

https://doi.org/10.1109/ICICCS48265.2020.9121067

[10] Sibiya, M., Sumbwanyambe, M. (2019). A

computational procedure for the recognition and

classification of maize leaf diseases out of healthy leaves

using convolutional neural networks. AgriEngineering,

1(1): 119-131.

https://doi.org/10.3390/agriengineering1010009

[11] Türkoğlu, M., Hanbay, D. (2019). Plant disease and pest

detection using deep learning-based features. Turkish

Journal of Electrical Engineering and Computer

Sciences, 27(3): 1636-1651. https://doi.org/10.3906/elk-

1809-181

[12] Too, E.C., Yujian, L., Njuki, S., Yingchun, L. (2019). A

comparative study of fine-tuning deep learning models

for plant disease identification. Computers and

Electronics in Agriculture, 161: 272-279.

https://doi.org/10.1016/j.compag.2018.03.032

[13] Pardede, H.F., Suryawati, E., Sustika, R., Zilvan, V.

(2018). Unsupervised convolutional autoencoder-based

feature learning for automatic detection of plant diseases.

In 2018 International Conference on Computer, Control,

Informatics and its Applications (IC3INA), Tangerang,

Indonesia, pp. 158-162.

https://doi.org/10.1109/IC3INA.2018.8629518

[14] Ferentinos, K.P. (2018). Deep learning models for plant

disease detection and diagnosis. Computers and

Electronics in Agriculture, 145: 311-318.

https://doi.org/10.1016/j.compag.2018.01.009.

[15] Napte, K., Mahajan, A. (2022). Deep learning based liver

segmentation: A review. Revue d'Intelligence

Artificielle, 36(6): 979-984.

https://doi.org/10.18280/ria.360620

471

[16] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521: 436–444.

https://doi.org/10.1038/nature14539

[17] McCulloch, W.S., Pitts, W. (1943). A logical calculus of

the ideas immanent in nervous activity. Bulletin of

Mathematical Biophysics 5, 4: 115-133.

[18] Schmidhuber, J. (2015). Deep learning in neural

networks: An overview. Neural Networks, 61: 85-117.

https://doi.org/10.1016/j.neunet.2014.09.003.

[19] Rosenblatt, F. (1958). The perceptron: A probabilistic

model for information storage and organization in the

brain. Psychological Review, 65(6): 386-408.

https://psycnet.apa.org/doi/10.1037/h0042519.

[20] Minsky, M., Papert, S.A. (1969). Perceptrons: An

introduction to computational geometry, expanded

edition. Cambridge, MA, USA: MIT Press, p. 258.

[21] Werbos, P. (1974). Beyond regression: New tools for

prediction and analysis in the behavioral sciences. PhD

thesis, Committee on Applied Mathematics, Harvard

University, Cambridge, MA.

[22] Fukushima, K. (1980). Neocognitron: A self-organizing

neural network model for a mechanism of pattern

recognition unaffected by shift in position. Biological

Cybernetics, 36(4): 193-202.

https://doi.org/10.1007/BF00344251.

[23] Yu, N., Jiao, P., Zheng, Y. (2015). Handwritten digits

recognition base on improved LeNet5. In the 27th

Chinese Control and Decision conference (2015 CCDC),

Qingdao, China, pp. 4871-4875.

https://doi.org/10.1109/CCDC.2015.7162796

[24] Hinton, G.E. (2009). Deep belief networks. Scholarpedia,

4(5): 5947.

[25] Lee, S.H., Wu, C.C., Chen, S.F. (2018). Development of

image recognition and classification algorithm for tea

leaf diseases using convolutional neural network. In

2018 ASABE Annual International Meeting (p. 1).

American Society of Agricultural and Biological

Engineers. https://doi.org/10.13031/aim.201801254

[26] Amara, J., Bouaziz, B., Algergawy, A. (2017). A deep

learning-based approach for banana leaf diseases

classification. Datenbanksysteme für Business,

Technologie und Web (BTW 2017)-Workshopband.

[27] Wang, G., Sun, Y., Wang, J. (2017). Automatic image-

based plant disease severity estimation using deep

learning. Computational Intelligence and Neuroscience,

2017: 2917536. https://doi.org/10.1155/2017/2917536

[28] Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi,

H. (2016). Basic investigation on a robust and practical

plant diagnostic system. In 2016 15th IEEE International

Conference on Machine Learning and Applications

(ICMLA), Anaheim, CA, USA, pp. 989-992.

https://doi.org/10.1109/ICMLA.2016.0178

[29] Abdulridha, J., Ehsani, R., De Castro, A. (2016).

Detection and differentiation between laurel wilt disease,

phytophthora disease, and salinity damage using a

hyperspectral sensing technique. Agriculture, 6(4): 56.

https://doi.org/10.3390/agriculture6040056

[30] Mohanty, S.P., Hughes, D.P., Salathé, M. (2016). Using

deep learning for image-based plant disease detection.

Frontiers in Plant Science, 7: 1419.

https://doi.org/10.3389/fpls.2016.01419

[31] Patil, A., Rane, M. (2021). Convolutional neural

networks: an overview and its applications in pattern

recognition. Information and Communication

Technology for Intelligent Systems: Proceedings of

ICTIS 2020, 1: 21-30. https://doi.org/10.1007/978-981-

15-7078-0_3

[32] Kingma, D.P., Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

https://arxiv.org/abs/1412.6980.

[33] Soufi, O., Belouadha, F.Z. (2022). Study of deep

learning-based models for single image super-resolution.

Revue d'Intelligence Artificielle, 36(6): 939-952.

https://doi.org/10.18280/ria.360616

[34] Shafiq, M., Gu, Z. (2022). Deep residual learning for

image recognition: A survey. Applied Sciences, 12(18):

8972. https://doi.org/10.3390/app12188972

[35] Nguyen, T.H., Nguyen, T.N., Ngo, B.V. (2022). A VGG-

19 model with transfer learning and image segmentation

for classification of tomato leaf disease. AgriEngineering,

4(4): 871-887.

https://doi.org/10.3390/agriengineering4040056

[36] Chen, H.C., Widodo, A.M., Wisnujati, A., Rahaman, M.,

Lin, J.C.W., Chen, L., Weng, C. E. (2022). AlexNet

convolutional neural network for disease detection and

classification of tomato leaf. Electronics, 11(6): 951.

https://doi.org/10.3390/electronics11060951

[37] Sharma, S., Kumar, H. (2022). Detection and

classification of plant diseases by Alexnet and

GoogleNet deep learning architecture. International

Journal of Scientific Research & Engineering Trends,

8(1): 218-223.

[38] Jenipher, V.N., Radhika, S. (2022). An automated

system for detecting rice crop disease using CNN

inception V3 transfer learning algorithm. In 2022 Second

International Conference on Artificial Intelligence and

Smart Energy (ICAIS), Coimbatore, India, pp. 88-94.

https://doi.org/10.1109/ICAIS53314.2022.9742999

[39] Thakur, P.S., Sheorey, T., Ojha, A. (2023). VGG-ICNN:

A lightweight CNN model for crop disease identification.

Multimedia Tools and Applications, 82(1): 497-520.

https://doi.org/10.1007/s11042-022-13144-z

[40] Dubey, N., Bhagat, E., Rana, S., Pathak, K. (2022). A

novel approach to detect plant disease using DenseNet-

121 neural network. In Smart Trends in Computing and

Communications: Proceedings of SmartCom 2022, pp.

63-74. https://doi.org/10.1007/978-981-16-9967-2_7

[41] Setiawan, W., Ghofur, A., Rachman, F.H., Rulaningtyas,

R. (2021). Deep convolutional neural network alexnet

and squeezenet for maize leaf diseases image

classification. Kinetik: Game Technology, Information

System, Computer Network, Computing, Electronics,

and Control. https://doi.org/10.22219/kinetik.v6i4.1335

[42] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, USA, pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[43] Lachouri, C.E., Mansouri, K., Lafifi, M.M. (2022).

Greenhouse climate modeling using fuzzy neural

network machine learning technique. Revue

d'Intelligence Artificielle, 36(6): 925-930.

https://doi.org/10.18280/ria.360614

472

