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This study aims to improve the control of robotic knee flexion during walking, with a 

particular emphasis on enhancing mobility and rehabilitation for patients with mobility 

problems. The objective is to develop a high-performance controller by integrating the 

Desired Optimal Controller (DOC)-based Multivariable Model Reference Adaptive 

Control (MRAC) algorithm with sophisticated optimization techniques. This study notably 

combines the Whale Optimization Algorithm (WOA) with a novel approach called 

Combined WOA-KHO to precisely optimize controller parameters. The technique provides 

a thorough explanation of the construction of the DOC-based MRAC algorithm, which 

employs a second-order transfer function for the reference model. This study emphasizes 

the inclusion of adaptive gains, the structural characteristics of the best controller, and the 

implementation of a deep neural network (DNN)-PID control system utilizing a Multi-

Layer Feed-Forward Neural Network (MLFNN). In addition, this text elaborates on the 

optimization strategies, namely the employment of the Whale Optimization Algorithm 

(WOA) and the Combined WOA-KHO algorithm. The simulation results clearly 

demonstrate the gradual improvement of the system's performance, providing evidence for 

the effectiveness of the suggested DOC-based MRAC algorithm and the optimization 

approaches. An extensive examination of the system's response characteristics, such as 

settling time, rising time, and steady-state error, is performed using several simulations. A 

performance comparison is implemented between three optimization algorithms: Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and WOA. The study finds that using 

all three algorithms together significantly improved the gait control of a robotic knee 

system, outperforming the results obtained from traditional algorithm. 
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1. INTRODUCTION

Recently, there is a surge in robotics research focused on 

observing how humans move, abnormal walking patterns, and 

developing models and limb structures that mimic human 

capabilities [1]. As growing in the number of people suffering 

from limb loss due to accidents, illnesses, injuries, and 

disasters, there is a growing urgency to find techniques to 

retrieve their physical abilities. This is important for ensuring 

their well-being and ability to lead independent lives [2]. The 

robotic knee prosthesis is an important part to help people 

walk. It operates by controlling the position of the lower leg, 

generating the necessary knee force, and reducing movement 

during the leg swing. This helps to stabilize the lower limb and 

allows for walking [2].  

Globally, about 1.1 billion people suffer from disability and 

technology that helps people with disabilities can improve 

their lives significantly. It helps them to be more independent 

and involved in society [3]. Exoskeletons are designed to help 

walking implement diverse control strategies on lower limbs. 

Powered lower-limb orthotic devices, commonly referred to as 

powered exoskeletons, are widely recognized as rehabilitation 

and gait assistance tools [4]. 

To enable the functionality of a robotic knee prosthesis, a 

prosthesis controller module receives sensor readings from 

joint encoders, force sensors, and an inertial measurement unit. 

It utilizes this information to transmit commands to the 

prosthesis device, such as the desired motor position or torque 

[5]. The integration of physical hardware, software control 

algorithms, and user interaction poses several challenges in 

effectively assisting individuals with impaired locomotion 

using robotic devices. Overcoming these challenges involves 

enabling users to employ various gait patterns and developing 

robust evaluation methods to assess the effectiveness and 

performance of assistive devices [6]. 

Following femoral amputation, numerous active prostheses 

have been developed to rehabilitate gait function, capable of 

producing and controlling knee torque. Various strategies have 

been proposed to control active femoral prostheses. For 

instance, Rifaï et al. [7] presented an adaptive control approach 
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for knee joint orthosis considering a user's effort, Chevalier et 

al. [8] discussed a theoretical model for shank movement 

around the knee joint and employed two design techniques, 

model-based design, and auto-tuning, to design a PID 

controller for controlling the shank angle.  

Furthermore, Rifaï et al. [7] developed an adaptive sliding 

mode controller based on super-twisting for knee joint orthosis. 

Their approach incorporated a human-driven model, Bkekri et 

al. [9] proposed a sliding mode controller based on the theory 

of Lyapunov stability.  

Considering a mathematical model of a nonlinear system 

combining human shank dynamics and knee joint orthosis, 

Kohli et al. [10] designed a feedback linearization controller. 

Khalaf et al. [11] proposed a design and control method by 

experimentally evaluating the regenerated energy across a 

femoral prosthesis during the swinging phase of a gait cycle.  

In recent years, researchers have shown great interest in 

nature-inspired algorithms. Swarm intelligence (SI) 

algorithms have gained prominence. These algorithms 

emulate the operation of natural systems, such as animal or 

plant behavior, to develop effective optimization techniques 

plants [12, 13]. Particle swarm optimization (PSO) [14], 

artificial bee colony algorithm (ABC) [15], ant colony 

optimization (ACO) [16], grey wolf optimization (GWO) [17], 

krill herd algorithm (KHA) [18], brainstorm optimization 

(BSO) [19], and whale optimization algorithm (WOA) [20] are 

all examples of popular SI algorithms. 

The Whale Optimization Algorithm (WOA) [20] is a new 

kind of optimization algorithm. The natural hunting 

techniques of humpback whales served as inspiration for this 

algorithm. WOA uses three operators—"encircle prey," 

"research prey," and "attack prey"—to track down its meals. 

WOA has undergone significant change. These studies can be 

broken down into two broad categories. Using the WOA to 

solve real-world problems is one of them. The other is to 

implement measures that enhance WOA's functionality [21]. 

Another swarm intelligence search algorithm inspired by 

the coordinated foraging behavior of krill is known as the 

"Krill Herd" (KH) algorithm [18]. Individual krill navigate a 

three-dimensional region in search of nearby food and a dense 

herd, as part of a population-based strategy involving a very 

large number of krill. With KH as an optimization algorithm, 

the distance of a krill from its food source is treated as a design 

variable. There are three types of algorithms that can be 

compared to the KH algorithm: (1) Evolutionary algorithms 

(2), a bacterial foraging algorithm, and (3), swarm intelligence 

[22, 23]. 

In order to underscore the pragmatic ramifications of WOA, 

a case study [24] concerning the real-time PID controller 

optimization of a micro robotics system demonstrates WOA's 

exceptional performance relative to Grey Wolf Optimization. 

The study provides evidence that WOA exhibits superior 

performance compared to alternative methods, as determined 

by its ISTES cost function, which decreases error by 47.5%. 

WOA is suggested by these empirical results for adjusting PID 

parameters in micro robotic systems. 

Previous research does not address the nonlinearity of 

robotic knee flexion during walking, with a particular 

emphasis on enhancing mobility and rehabilitation for patients. 

Therefore, in this context, this paper aims to address the design 

of an optimized Desired Optimal Controller (DOC)-based 

multivariable Model Reference Adaptive Control (MRAC) 

algorithm for robotic human knee flexion during gait. This 

algorithm assists the robotic knee joints to achieve better 

performance to match how people walk and their body's needs.  

Gives help to people who have moving problems to feel 

natural and move in an efficient manner. The aim is to design 

a controller that exhibits fast rise time with no overshoot and 

the steady-state error approaches zero. By incorporating 

concepts from DOC and MRAC, it will give these desired 

characteristics smoothness, energy efficiency, stability, and 

compatible with the patterns of the user's gait. Hence, the 

objective of the proposed investigation is to: 

1. Maximizing the Performance of Robotic Knee Joints: 

·Design of a control system which ensures the response of 

the robotic knee joints to be appropriate for different inputs 

and conditions. 

·Enhance the capacity to adapt to various locomotion 

patterns and the physiological circumstances. 

2. Attaining Precise Control Attributes: 

·Make sure that the flexion of the knee is seamless and with 

no overshoot. 

·Achieve a rapid onset of motion and eradicate steady-state 

error while walking. 

3. Desired Optimal Control and MRAC Integration: 

·Blend the tenets of Model Reference Adaptive Control and 

Desired Optimal Control. 

4. Improvements to Controller Attributes: 

·Ensure the energy efficiency, fluidity, and stability of the 

control system. 

·Customized assistance can be achieved by aligning the 

controller with the user's unique locomotion patterns. 

5. Development and Validation of Algorithms: 

·Construct a comprehensive MRAC algorithm utilizing 

DOC. 

·Conduct experiments and simulations to evaluate the 

efficacy of the algorithm. 

6. Investigation of Methods for Combined Optimization: 

·Explore the potential for integration between WOA and 

KHO. 

·Evaluate the advantages of integrating WOA-KHO in 

contrast to conventional optimization algorithms. 

This paper will further explore the development, simulation, 

and experimental validation of the algorithm in the following 

sections. By doing so, it will make a valuable contribution to 

the field of robotic knee prosthesis technology, which aims to 

enhance gait assistance and rehabilitation. 

 

 

2. MODELING OF ROBOTIC HUMAN KNEE 

 

 
 

Figure 1. The biomedical model of tibial movement [8]  

 

To regulate the motion of the tibial in the knee joint, a 

system transfer function is employed to derive a two-

dimensional model. Particular attention is devoted to the 

dynamics occurring in the sagittal plane. This deliberate 

simplification is based on the valid assertion that the 

magnitudes of motions in the coronal plane are relatively 
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lesser than those observed in the sagittal plane. Figure 1 

depicts the biomedical model of tibial movement. 

The biomechanical model consists of the upper leg segment 

(femur) and the lower leg segment (tibia and fibula, 

collectively known as the shank). A revolute joint connects 

these segments. A torque denoted by T is applied at the knee 

joint, which serves as the input for this biomechanical model. 

In this biomedical model, LT represents the shank's length, rT 

is the distance between the center of the shank's mass and the 

axis of the knee joint, while mT denotes the shank's mass, and 

g represents a gravitational constant. In this work, the values 

of the biomedical model's parameters are taken from [8], 

where LT=0.435 m; mT=3.72 kg, and rT=0.188 m. 

The range of motion of the shank is represented by the angle, 

which spans 90°. This enables the shank to move from a 

vertical to a horizontal position. The angle =0° corresponds to 

the range's midpoint, which is 45° s off the vertical line. 

Consequently, =45° indicates complete leg extension. The 

angle denotes this system's output. The parameters for the 

biomedical model are taken from [8] and defined in Table 1. 
 

Table 1. The parameter for the biomedical model 

 
Symbol Description Values 

B Viscous Damping 6.75 Nms/rad 

IT Inertia around a knee joint 0.44 Kgm2 

K Stiffness of the knee joint 44.22 Nm/rad 

g 
Acceleration due to gravity 

creates a nonlinear torque 
9.8 m/s2 

 

The system torque contributions include gravitational 

torque, shank inertia torque, viscous damping torque, joint 

rigidity torque, and applied torque T(t). Considering the 

directionality of each torque, we can derive the following Eq. 

(1) by adding them [8]: 

 

𝐼𝑇
𝑑2𝜃(𝑡)

𝑑𝑡2 + B
𝑑𝜃(𝑡)

𝑑𝑡
+ K 𝜃(𝑡) + 𝑚𝑇𝑔 𝑟𝑇sin (𝜃(𝑡) +

45°) = T(t)  
(1) 

 

where, IT is the shank's inertia around the knee joint, while B 

is the knee joint's viscous damping coefficient, and k 

represents the stiffness of the knee joint. The Equation of 

motion must be linearized around an equilibrium point to 

determine the system's transfer function. In this instance, the 

equilibrium point chosen corresponds to the condition in 

which θ*=0°. Simplify the Eq. (1) as specified in [8] to get the 

linear Eq. (2) for the model: 
 

𝐼𝑇  �̈� +  B �̇� + K 𝜃(𝑡) +  
√2

2
𝑚𝑇 . 𝑔 𝑟𝑇 . 𝜃(𝑡) = T(t)  (2) 

 

where, θ, �̇� , �̈� represent the angular distance, velocity, and 

acceleration of the plant motion. For Eq. (2), which takes the 

Laplace transform and assumes initial conditions of zero, the 

transfer function for this model is given [8]: 
 

𝜃(𝑠)

𝑇(𝑠)
=

1

𝐼𝑇 𝑠2+𝐵𝑠+(𝐾+
√2

2
  𝑚𝑇.𝑔 .𝑟𝑇)

  (3) 

 

By substituting the system's parameters in Eq. (3) as 

specified in [8], we will get the system transfer function in Eq. 

(4): 

 

TF(s) =
1

0.44𝑠2+6.75𝑠+49.07
  (4) 

This transfer function corresponds to a second-order system 

with a damping ratio (ζ)=0.72 and natural frequency 

(ωn)=10.54. 

 

 
3. THE OPTIMIZATION ALGORITHMS 

 

This paper provides a comprehensive overview of  WOA 

and KHA, shedding light on their significance and potential 

applications in solving optimization problems. The subsequent 

sections will delve into the details of these algorithms, 

elucidating their mechanisms and showcasing their 

contributions to the advancement of optimization techniques. 

 

3.1 The whale optimization algorithm (WOA) 

 

The key algorithm is inspired by the habits of whales. 

WOA's basic performance consists of three stages: prey 

encirclement, bubble-net assault, and prey discovery. In what 

follows, it will discuss the mathematical models of three 

distinct strategies [12, 20, 21]: 

Cascading its victim The humpback whales encircle their 

prey once they identify its location. In the absence of prior 

knowledge regarding the location of the optimal design in the 

search space, the WOA algorithm operates under the 

assumption that the current best candidate solution is either the 

target prey or is near the optimum, thereby indicating its 

suitability as the search agent. As a result, the remaining 

agents will endeavor to revise their stances regarding this 

agent. The other search agents update their locations by 

moving onward to the best-fitted agent which is followed by 

the below equations: 

 

Ð⃗⃗ = |Ç⃗  . 𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (5) 

 

𝑋 (𝑡 + 1) = 𝑋∗ ⃗⃗ ⃗⃗  ⃗(𝑡) − Á.⃗⃗  ⃗  Ð⃗⃗  (6) 

 

where, 𝑋∗, 𝑋 , and t represent the location coordinate of the 

optimal solution, the current each iteration, and the position 

vector format correspondingly. Coefficient vectors, denoted as 

Á⃗⃗  and Ç⃗  are known as coefficient vectors and calculated by 

using the below equations: 

 

Á⃗⃗ = 2á⃗  . 𝑟 − á⃗  (7) 

 

Ç⃗ = 2 𝑟  (8) 

 
where, 𝑟  represents the random vector within the range [0, 1], 

and with each iteration, the value of á⃗  decreases linearly from 

2 to 0. 

(b) Exploitation stage (i.e., the bubble-net attack); the two 

operations comprising the exploitation stage.  

(1) The implementation of a diminishing encircling 

mechanism involves the reduction of a value as specified in 

Eq. 4. Note that á⃗  is a random value between [−á⃗ , á⃗ ]. 
(2) The spiral update positional method is utilized to 

compute the distance separating the cetacean and its prey. The 

following spiral equation is used to simulate the helix-shaped 

motion: 

 

𝑋 (𝑡 + 1) = Ð ⃗⃗  ⃗𝑙𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋∗ ⃗⃗ ⃗⃗  ⃗(𝑡)  (9) 
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In the given interval [−1, 1], denoted as "l," a random 

number, and "b" a constant. A probability of 50% is postulated 

regarding the selection between the spiral model and the 

shrinking encircling mechanism. The mathematical model is 

therefore expressed as follows: 

 

𝑋 (𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗  (𝑡) − Á⃗⃗ . Ð⃗⃗ , Ƥ < 0.5

Ð⃗⃗ 𝑙𝑒𝑏𝑙. cos(2𝜋𝑙) +𝑋∗⃗⃗ ⃗⃗  (𝑡), Ƥ ≥ 0.5
 (10) 

 

The symbol Ƥ denotes a number chosen at random from a 

uniform distribution. 

(c) Stage of exploration (i.e., pursuit of the prey). The 

exploration for target method utilizes a variation of Á⃗⃗  that is 

either greater than 1 or less than −1. As of now, during the 

exploitation phase, update the location of a search agent. The 

mathematical model shown below is employed to conduct a 

global search for |Á⃗⃗ | > 1. 

 

Ð⃗⃗ = |Ç⃗ . 𝑋 𝑟𝑎𝑛𝑑 − 𝑋 | (11) 

 

𝑋 (𝑡 + 1) = 𝑋 𝑟𝑎𝑛𝑑 − Á.⃗⃗  ⃗  Ð⃗⃗  (12) 

 

where, 𝑋 𝑟𝑎𝑛𝑑  is a random location vector which is chosen 

from existing population. 

Algorithm 1 shows the pseudo-code of the original WOA 

algorithm. 

WOA 

Initialize a population of n random whales or search agents 

Xi (i=1, 2, 3, …, n). 

Evaluate each search agent B the best search agent. 

While (t< max - epoch) 

for each search agent in the population 

Update WOA parameters (á⃗  , Á⃗⃗  , Ç⃗⃗  ⃗ , 𝑙, Ƥ) 

if (Ƥ < 0. 𝟓) 

if (|Á⃗⃗ | < 𝒍) 

Update the current search agent by 𝑋 (𝑡 + 1) = 𝐵 − Á⃗⃗ . Ð⃗⃗  

else if (|Á⃗⃗ | ≥ 𝒍) 

select a random search agent (𝑋 𝑟𝑎𝑛𝑑) 

update the current search agent by 𝑋 (𝑡 + 1) = (𝑋 𝑟𝑎𝑛𝑑) −

Á⃗⃗ . Ð⃗⃗  
end if 

else if (Ƥ ≥ 0. 𝟓) 

Update the current search agent by 𝑋 (𝑡 + 1) =

Ð ⃗⃗  ⃗𝒍𝒆𝒃𝒍. 𝐜𝐨𝐬(𝟐𝝅𝒍) +𝐵 

End if 

End for 

Evaluate the search agent 

Update B if there is the better solution in the population 

T=t+1 

End while  

Return B 

 

3.2 Krill herd algorithm (KHA) 

 

The KHA was originally suggested by Gandomi et al. [18] 

to model the movement of krill in the ocean. Local and global 

search are balanced adequately, which is one of the primary 

benefits of KHA that improves its discovery capability. Upon 

calculating the objective functional for every krill, this 

algorithm selects the finest krill [25]. The input layer of the 

krill herd algorithm is the krill position, and the objective 

function is sustenance. As shown in Eq. (13), the position of 

each krill (𝒱ɍ,𝑖
𝒾𝑡𝑟) in its life cycle is determined by the factor of 

induction, the factor of foraging, and the factor of diffusion 

[22, 23, 25-29] by the following equations: 

 

𝒱ɍ,𝑖
𝒾𝑡𝑟 = 𝒱induction,𝑖

𝒾𝑡𝑟 + 𝒱foraging,𝑖
𝒾𝑡𝑟 + 𝒱diffusion,𝑖

𝒾𝑡𝑟  (13) 

 

The factor of induction (𝒱induction,𝑖
𝒾𝑡𝑟 ): The motion of each 

krill as follows: 

 

𝒱induction,𝑖
𝒾𝑡𝑟 = 𝛼induction,i𝒱induction,𝑖

𝑚𝑎𝑥 + 𝜔𝑖𝒱induction,𝑖
𝒾𝑡𝑟−1  (14) 

 

where, 𝒱induction,𝑖
𝑚𝑎𝑥  is the utmost forced speed produced in the 

absence of other krill, 𝒱induction,𝑖
𝒾𝑡𝑟−1  is the last forced activity, ωi 

is the moment of inertia of the forced motion [0-1], and 

αinduction,i is the start of the forced move, according to Eq. (15): 

 

𝛼induction,i = 𝛼𝑙𝑜𝑐𝑎𝑙
induction,i + 𝛼𝑡𝑎𝑟𝑔𝑒𝑡

induction,i (15) 

 

The local influence given by i neighboring krill is denoted 

by 𝛼𝑙𝑜𝑐𝑎𝑙
induction,i, and the target direction effect formed by 

𝛼𝑡𝑎𝑟𝑔𝑒𝑡
induction,i the ideal krill individual position is denoted 

by i et. 

The factor of foraging (𝒱foraging,𝑖
𝒾𝑡𝑟 ): Each krill adjusts its 

position based on where it has found food recently and in the 

past as: 

 

𝒱foraging,𝑖
𝒾𝑡𝑟 = 𝒱𝑓𝛽foraging,𝑖 + 𝜔𝑓𝒱foraging,𝑖

𝑜𝑙𝑑  (16) 

 

𝒱𝑓 is the foraging velocity, 𝛽foraging,𝑖 is the foraging motion 

their source, ωf is the foraging inertial weight between [0,1], 

and 𝒱foraging,𝑖
𝑜𝑙𝑑  is the last foraging activity. 

 

𝛽foraging,𝑖 = 𝛽foraging,𝑖
𝑓𝑜𝑜𝑑

+ 𝛽foraging,𝑖
𝑏𝑒𝑠𝑡  (17) 

 

𝛽foraging,𝑖
𝑓𝑜𝑜𝑑

 stands for i's interest in food, and 𝛽foraging,𝑖
𝑏𝑒𝑠𝑡  

stands for i's interest in being in peak physical condition. 

The factor of diffusion ( 𝒱diffusion,𝑖
𝒾𝑡𝑟 ): The population's 

variation is guaranteed by a standard random operator, as in 

the case of random diffusion: 

 

𝒱diffusion,𝑖
𝒾𝑡𝑟 = 𝒱𝑚𝑎𝑥  𝛿 (18) 

 

where, 𝒱𝑚𝑎𝑥  is the maximum rate of diffusion, δ is a 

uniformly distributed random vector, and the matrices it 

generates are numbers in the interval [1, 1]. Combining these 

three patterns, we can determine an individual krill's location 

vector from t-to-t Dt by solving Eq. (19) [28]: 

 

𝒳𝑖
𝒾𝑡𝑟+1 = 𝒳𝑖

𝒾𝑡𝑟 + Ḉɍ,𝑖
𝒾𝑡𝑟 × ∑ (𝒰𝑗 − 𝘓𝑗)

𝑆
𝑗=1   (19) 

 

The krill's position at time t is denoted by 𝒳𝑖
𝒾𝑡𝑟, and at next 

time by 𝒳𝑖
𝒾𝑡𝑟+1 . The maximum and bottom bounds of the 

variables 𝒰𝑗 and Lj, the overall collection of parameters S, and 

the characteristic of the interval [0, 2] are given by 𝒰𝑗 and Lj, 

respectively. 

KHA: Idealizing the mobility properties of the krill 

individuals allows for the creation of a wide variety of 
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algorithms. The following is a high-level overview of the KH 

algorithm. 

Data Structures—Simple Bounds Defined, Algorithm 

Parameters Determined, etc. 

Beginning Steps: Generating the Search Space's Starting 

Population at Random. 

Position-based fitness assessment: rating each krill in the 

population. 

Determining the Movement: 

Induced movement. 

Foraging 

Diffusion at Random 

Include the use of genetic operators. 

A krill's position in the search space is being updated. 

Step III must be repeated until the termination conditions 

are met. 

End. 

 

 

4. THE PROPOSED DOC-BASED MRAC 

ALGORITHM FOR ROBOTIC HUMAN KNEE 

 

This work presents a novel control method for the robotic 

human knee that integrates the  multivariable model reference 

adaptive control (MRAC) algorithm that demonstrated better 

performance as compared to a non-adaptive PID controller 

[30] with an online tuning gain scheduling deep neural 

network (DNN)-PID control utilizing a Multi-Layer Feed-

Forward Neural Network (MLFNN) that has the 

characteristics such as simple structure and little computation 

time [31]. The linear formulation of inputs to the Dynamic 

Output Consensus (DOC) involves combining error feedback 

and the reference model output. From this combined input, the 

control action that is implemented at the knee joint is derived, 

and the control action is additionally incorporated with the 

result of the PID controller, which receives the error feedback 

signal as its input. 

The objective is to enhance the control performance and 

adaptability of the knee joint by integrating the advantages of 

adaptive control techniques and neural network-based control 

strategies. 

The block diagram of the overall proposed system 

configuration is depicted in Figure 1. The DOC's inputs 

include the reference model input Um, the reference model 

output Ym, and error feedback e. Due to the inherent second-

order nature of the given system, it is suggested that the 

reference model be described using the standard second-order 

transfer function, as shown in Eq. (20)  The error feedback is 

computed as the difference between the output of the reference 

model Ym and the desired output set point Yo. The value of X 

is computed by linearly combining these signals using 

adaptive gains Ke, Ky, and Ku, as shown in Eq. (21) Figure 2 

depicts the intended optimal controller structure. 

 

H(s) =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛 𝑠+𝜔𝑛
2  (20) 

 

X=(𝑌𝑚×𝐾𝑒)+(e×𝐾𝑦)+(𝑈𝑚×𝐾𝑢)  (21) 

 

Figure 3 depicts the desired optimal controller, consisting 

of an MLFNN comprised of three layers and the tuned PID 

controller. The input variable x is utilized by the hyperbolic 

tangent function f(x), which exhibits a nonlinear relationship, 

as shown in Eq. (22) The introduced control algorithm has 

significant advantages over auto-tuning neural network-based 

controllers developed previously. These benefits include a 

reduction in computation time, a simplification of the structure, 

and an increase in control robustness [31]. 

 

f(x)=
(1−𝑒−𝑥)

(1+𝑒−𝑥)
  (22) 

 

 
 

Figure 2. The block diagram of the proposed system 

configuration 

 

 
 

Figure 3. The structure of the desired optimal controller 

(DOC) 

 

The values of K and B (i.e., the PID controller's output) are 

used as bias weights for the input and hidden layers, 

respectively. Initial PID values are selected to achieve a 

satisfactory system response. Then the cetacean optimization 

algorithm is then used to fine-tune the PID gains (kp, ki, and kd) 

to improve the system's response further. The activation 

function's output, denoted f1(x) is combined with the parameter 

k to yield f2(x), as shown in Eq. (23). The MLFNN network is 

trained using the fast learning-backpropagation (FLBP) 

algorithm to reduce the deviation between the intended set 

point of the output and the actual output of the knee plant. The 

control signal u applied to the knee joint is explained by Eq. 

(24). 

 

𝑓2(x)=𝑓1(x)×K (23) 

 

u=𝑓2(x)+B (24) 

 

Figure 3 illustrates the detailed hybrid strategy employed to 

address the limitations of the current WOA. To overcome the 

tendency of WOA to favor local optima over global optima, a 

novel combined approach called WOA- KHA is proposed. The 

goal is to enhance the WOA's global search capability, 

stability, and convergence speed. KHA utilizes the mean 

square error (MSE) theory as a fitness function in Eq. (25), 

aiming to minimize the error and obtain optimal values for 

tuning controller parameters can be a powerful approach to 

optimize the performance of control systems [32]. This 

approach is depicted in the accompanying Figure 4. 

 

𝑀𝑆𝐸 =
1

2
∑ (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑜𝑢𝑡𝑝𝑢𝑡)2𝑝𝑜𝑝

𝑛=1   (25) 
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Figure 4. Flowchart of combining WOA-KHO algorithm 

 

 

5. SIMULATION RESULTS AND DISCUSSION 

 

Figure 5 depicts the Simulink model of the human-robotic 

knee plant as described by Eq. (2) and using the parameter 

values described in the preceding section. Figure 6 explains 

the unit step response of the open loop system for the nonlinear 

model as specified in Figure 5 that employs Eq. (1) which 

includes the nonlinear parameters of the Knee joint plant 

dynamic model as listed in Table 1 and for the simplified 

model as denoted in Eq. (4) that represent the second order 

knee joint plant model. Based on the step response 

characteristics, the two responses reveal a steady-state error 

(es.s) of 0.19 and 0.2 for the nonlinear and simplified models, 

respectively, indicate that the system is slightly underdamped. 

For the nonlinear model, the unit step response of the closed-

loop robotic human knee system is shown in Figure 7. 

Observations from this figure highlight certain characteristics 

of the closed-loop response. Notably, it shows a relatively high 

es.s of 0.493, accompanied by a settling time ts of 0.545 Sec. 

with an error tolerance of 0.02%., and a rise time tr of  0.106 

Sec. These findings imply a system response with slow 

behavior with overshoot. 

In this study, Figure 8 illustrates the Simulink model of the 

designed system that uses the desired DOC-based MRAC 

algorithm for controlling the robotic human knee. The 

adaptive gains ke, ky, ku are allocated the values 0.6, 0.001, and 

0.001 to optimize the controller. The PID controller's 

parameters kp, ki, and kd are fine-tuned to accomplish enhanced 

system response, with specific values of 0.80, 1.29, and 0.90, 

respectively. By taking ζ=1 and ωn=10 and substituting these 

values in Eq. 20, the transfer function of the reference model 

is explained in Eq. (26). 

TF(s)=
100

𝑠2+20𝑠+100
  (26) 

 

Figure 9 explains the response of the proposed controller. 

This figure demonstrates that the controller's response 

stabilizes at torque =50.97 (Newton. Sec.). This value is well 

within the accepted range of control signals, making it the 

optimal controller for the investigation's robotic human leg 

plant. 

 

 
 

Figure 5. Simulink model of the robotic human knee plant 

 

 
 

Figure 6. The unit step response of the open loop system 

robotic human knee for nonlinear and simplified models 

 

 
 

Figure 7. The unit step response of the closed loop for the 

robotic human knee system 

 

Figure 10 depicts the unit-step response of the robotic 

human knee system using the proposed DOC-based MRAC 

algorithm. Implementing the proposed controller enhances 

system response and eliminates es.s, resulting in a es.s of zero. 

However, the system's ts=2.52 Sec. at an error tolerance of 
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0.02%, indicating a relatively slow response due to the 

nonlinearity of the dynamic knee joint model as specified in 

Eq. (1), and a rise time tr=1.602 Sec. 

 

 
 

Figure 8. Simulink model of the system using the desired 

DOC-based MRAC algorithm for the robotic human knee 

 

 
 

Figure 9. The response of the desired DOC-based MRAC 

controller 

 

 
 

Figure 10. The unit step response of the system using the 

desired DOC-based MRAC algorithm for the robotic human 

knee 

 

To enhance the system's performance and achieve optimal 

response, an optimization technique is introduced to reduce the 

system's settling time ts and accelerate its overall response. 

Figure 11 depicts the unit step response of the robotic human 

knee system using the proposed DOC-based MRAC algorithm 

optimized with GA. The simulation results demonstrate a not 

significant improvement in the system's performance when the 

GA is employed to tune the parameters of the proposed 

controller. The optimization technique implemented through 

GA effectively reduces the system's settling time ts to 0.56 Sec. 

with an error tolerance of 0.02%. Simultaneously, it maintains 

a rise time tr of 0.45 Sec. and a small acceleration in the overall 

response. Yet, a steady-state error es.s of 0.1 persists. 

 

 
 

Figure 11. The unit step response of the system using GA for 

tuning parameters of  the desired DOC-based MRAC 

 

Figure 12 presents the unit step response of the robotic 

human knee system using the proposed DOC-based MRAC 

algorithm optimized with PSO, demonstrating a slight 

improvement in system performance. The optimization 

technique reduces settling time ts to 0.26  Sec. with an error 

tolerance of 0.02%. Simultaneously, it maintains a rise time tr 

of   0.15  Sec. and accelerates the overall response without 

minimizing steady-state error es.s. 

 

 
 

Figure 12. The unit step response of the system using PSO 

for tuning parameters of  the desired DOC-based MRAC 

 

 
 

Figure 13. The unit step response of the system using WOA 

for tuning parameters of the desired DOC-based MRAC 

 

Figure 13, the unit step response of the robotic human knee 

system using the proposed DOC-based MRAC algorithm 

optimized with WOA. The simulation results demonstrate 

significant improvements in the system's performance when 

the WOA is employed to tune the parameters of the proposed 

controller. The optimization technique reduces settling time 
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effectively reduces the system's settling time ts to 0.082  Sec. 

with an error tolerance of 0.02%. Simultaneously, it maintains 

a rise time tr of  0.07  Sec. and accelerates the overall response 

while minimizing steady-state error es.s to zero. These findings 

indicate the successful optimization of the controller's 

parameters through the WOA-based approach, leading to 

enhanced efficiency and precision in controlling robotic knee 

flexion during gait. 

Figure 14 introduces the unit step response of the robotic 

human knee system utilizing the proposed DOC-based MRAC 

algorithm optimized with the Combined WOA and KHO, 

exhibiting further improvement. The joint optimization 

approach outperforms the use of WOA alone, achieving 

reduced settling time ts to  0.043   Sec. at an error tolerance of 

0.02%, Simultaneously, it maintains a rise time tr of 0.029  Sec 

and accelerates the overall response with and zero steady-state 

error es.s. The synergistic effect of these nature-inspired 

algorithms enabled a comprehensive exploration of the 

parameter space, leading to the identification of an optimal 

parameter set for the controller. 

 

 
 

Figure 14. The unit step response of the system using WOA-

KHO for tuning parameters of the desired DOC-based 

MRAC 

 

In general, the simulation outcomes unequivocally illustrate 

the efficacy of both the WOA-based and Combined WOA-

KHO methodologies in enhancing the performance of the 

system. By integrating optimization techniques, the 

controller's parameters were refined, resulting in improved 

gait control and a walking experience that is more comfortable 

and natural for people with mobility impairments. 

Furthermore, further enhancements in the system's response 

characteristics were observed with the integration of WOA 

and the Combined WOA-KHO optimization approach. These 

improvements encompassed decreases in steady-state error, 

settling time, rise time, and overshoot. 

The integration of KHO and WOA yields distinctive aspects 

that set it apart from the GA, PSO, and WOA algorithms 

individually. WOA draws inspiration from the foraging 

behavior of whales to optimize exploration in space. On the 

other hand, KHO uses swarm intelligence that simulates 

collaborative behaviors noticed in nature to enhance its 

capabilities of exploration.  

The incorporation of the WOA-KHO approach utilizes the 

characteristics of both WOA and KHO to make it easier to 

thoroughly study and adjust the settings of the controller 

effectively. Consequently, the developed optimization 

algorithm makes it more thorough and effective, gives better 

control accuracy and system behavior. This optimization 

algorithm combines multiple algorithms to improve robot 

performance. It reduces errors over time, speeds up how 

quickly the robot becomes stable, and optimizes the time it 

takes to reach its peak performance. As a result, this approach 

makes robots more effective and responsive, making it a 

valuable tool for advanced robot control. 

In this paper, the controller is designed to use a model of the 

MRAC algorithm-based DOC. For optimizing this algorithm, 

advanced optimization algorithms are used. The results of the 

simulation explain that the combination of these algorithms 

enhances the performance of the controller and efficiency. 

This gives an exception of the  controller to be validated using 

experimental data, which will give further evidence of its 

accuracy. 

 

 

6. CONCLUSION 

 

An innovative algorithm has been introduced in this work 

to enhance the movements of the robotic knee during walking. 

This knee robotic system is improved greatly by using a 

combination of the DOC-based MRAC algorithm with the 

WOA optimization method and WOA-KHO as a combination 

algorithm.  The results of the simulation explain that these 

enhancements in the control system lead to minimize errors, 

speed up the response of the system, and reducing 

overshooting with higher precision and the efficiency of the 

robotic knee system.  This work has provided the significance 

of designing robotic knee prostheses utilizing optimization 

methods that mimic the natural systems and the control 

methods which are adjusted according to changing conditions. 

The future expectations and consequences of these findings 

include methodologies of rehabilitation, offering high 

developments in the clinical environments. The 

implementation of the interventions of personalized 

rehabilitation, which integrate the refined strategies of the 

control and optimized algorithms, provides potential 

enhancements in mobility, the outcomes of the rehabilitation, 

and the quality of overall life for people with mobility 

impairments. The enhanced accuracy and productivity 

exhibited in this research indicate a potentially fruitful 

direction for the creation of customized and more efficacious 

rehabilitation approaches for people with mobility 

impairments. In line with the overarching goal of enhancing 

the general well-being of individuals with mobility 

impairments, this research ultimately possesses the capacity to 

substantially improve their walking experience. 
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