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This research introduces a novel approach to Alzheimer's disease detection by combining 

Xception's efficiency with machine learning classifiers, notably XGBoost. The hybrid 

model strategically uses Xception for feature extraction and integrates machine learning 

algorithms to enhance early detection accuracy, leveraging depthwise separable 

convolution for reduced computational complexity. Addressing imbalanced data, the study 

incorporates SMOTE, showcasing the hybrid model's effectiveness. Before SMOTE, the 

model achieved 72.89% accuracy and a 74.35% F1 score, outperforming the non-hybrid 

Xception model. Post-SMOTE, accuracy increases to 86.75%, and the F1 score to 86.84%, 

demonstrating substantial improvement without excessive computational demands. In 

comparison, the non-hybrid Xception model exhibits 78.71% accuracy and a 78.27% F1 

score after SMOTE, emphasizing the pronounced enhancement achieved by the hybrid 

model. The Kaggle-derived dataset, totaling 6400 images, undergoes meticulous 

preprocessing, acknowledging dataset-specific constraints on generalizability. 

Emphasizing the importance of addressing data imbalance for robust classification, the 

hybrid model offers a promising solution for accurate and efficient Alzheimer's disease 

detection. This study contributes valuable insights to the field, showcasing the potential of 

innovative hybrid models to address complex healthcare challenges while balancing 

accuracy and computational efficiency. 
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1. INTRODUCTION

In the realm of human memory, three fundamental 

components play pivotal roles: working memory, short-term 

memory, and long-term memory, each serving distinct 

functions in the cognitive processes. Working memory 

facilitates attention and concentration during the intake of data 

and information, while short-term memory temporarily stores 

information for immediate use. In contrast, long-term memory 

serves as the repository for a lifetime of experiences [1]. 

However, this intricate system of memory is susceptible to 

various maladies, with Alzheimer's disease representing a 

significant and devastating affliction. As a progressive 

neurodegenerative disorder, Alzheimer's erodes memory, 

cognitive abilities, and even basic daily functioning. It 

constitutes the predominant form of dementia, contributing to 

a substantial percentage of dementia cases globally, and its 

prevalence is poised to rise exponentially. The World 

Alzheimer's Report of 2015 underscores a grave global 

concern, with over 50 million individuals grappling with 

dementia across the world, a number that is poised to double 

every two decades, as visually represented in Figure 1. This 

alarming trend is not isolated to the global stage; Indonesia, 

for instance, presented recent statistics in 2022 revealing a 

staggering 1.2 million of its citizens contending with the 

challenges of Alzheimer's disease [2]. Regrettably, a definitive 

cure remains elusive, as the disease continues to ravage brain 

cells [3]. Nonetheless, early detection holds promise in 

enabling medical professionals, particularly doctors, to 

explore interventions that may temporarily ameliorate 

symptoms, slow disease progression, and mitigate neural 

damage. 

Figure 1. Statistics of dementia over the world 
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Deep learning (DL) holds the transformative potential to 

revolutionize medical diagnostics, and within this domain, 

convolutional neural networks (CNNs), a subset of deep 

learning algorithms, have exhibited promise in the direct 

diagnosis of Alzheimer's disease using medical imaging data 

[4]. The LeNet-5 design was used in an earlier study by Sarraf 

and Tofighi [5], which also highlighted the necessity for more 

convolutional neural layers to enhance the accuracy of 

Alzheimer's disease diagnosis using MRI scans. However, 

traditional CNN models face limitations, including significant 

computational demands and a high number of training 

parameters, necessitating expensive computing resources. 

To address these challenges, this work proposes a hybrid 

model that combines Xception, a cutting-edge deep learning 

architecture introduced by Chollet in 2017, with machine 

learning strategies for Alzheimer's disease classification [6]. 

Notably, prior studies have shown the efficacy of various 

models but often encounter difficulties related to imbalanced 

data and expensive computing resources. The suggested 

hybrid approach aims to leverage the strengths of both 

Xception and machine learning, providing a more robust and 

efficient solution for Alzheimer's classification. This research 

significantly contributes by explicitly addressing the 

drawbacks of previous methodologies, potentially advancing 

Alzheimer's disease detection and improving patient care. 

Chollet's introduction of Xception in 2017 is noteworthy, 

combining residual connections and Depthwise Separable 

Convolution (DSC) for increased accuracy and reduced 

computing complexity [6]. Compared to conventional 

convolutional layers, DSC employs fewer parameters and 

computational calculations while maintaining an equivalent 

level of performance [7]. The central research question 

guiding this study is: How can a hybrid model, combining 

Xception and machine learning techniques, improve the 

efficiency of Alzheimer's disease detection compared to 

traditional CNN models? 

To address this question, the research objectives include 

evaluating the effectiveness of the proposed hybrid models 

compared to non-hybrid models, specifically Xception alone. 

The hybrid models, incorporating Xception and machine 

learning techniques, will be systematically compared with the 

non-hybrid model to comprehensively evaluate their 

effectiveness. By combining the advantages of both methods, 

the proposed model aims to overcome the limitations of 

traditional CNN models, offering improved F1-Scores and 

reduced computing complexity. 

Additionally, the challenge of imbalanced data is addressed 

through the application of the Synthetic Minority Over-

sampling Technique (SMOTE), notably enhancing the 

performance of the selected models. This comprehensive 

approach ensures valuable insights into the most suitable 

method for Alzheimer's detection, furthering the 

understanding and advancement of diagnostic methodologies 

in the field. 

2. RELATED WORKS

In one notable study conducted by Shahbaz et al. [8], a 

comprehensive investigation was undertaken to compare 

various ML models, including K-Nearest Neighbor (KNN), 

Decision Tree (DT), Rule Induction, Naïve Bayes, 

Generalized Linear Model (GLM), and deep learning models. 

They utilized the TADPOLE Alzheimer's Disease 

Neuroimaging Initiative (ADNI) dataset for their analysis. 

Remarkably, the GLM model emerged as the top performer, 

achieving an impressive accuracy rate of 88.24%. Similarly, 

Murugan et al. [9] conducted research that focused on the 

modification of a CNN architecture called DEMentia 

NETwork (DEMNET) for Alzheimer's disease detection. 

They leveraged a publicly available dataset from Kaggle and 

compared various data pre-processing techniques, including 

the use of Synthetic Minority Over-sampling Technique 

(SMOTE) to address dataset imbalance. Their results revealed 

that SMOTE had a substantial impact, significantly enhancing 

accuracy by a substantial 10% margin. 

Building on this, Prakash et al. [10] employed the ADNI 

dataset and introduced pre-trained CNN models and transfer 

learning strategies to enhance model accuracy. They 

conducted a comparative analysis of different CNN 

architectures, including ResNet-101, ResNet-50, and ResNet-

18, with ResNet-101 emerging as the top performer, achieving 

an accuracy rate of 98.37%. Likewise, Khan et al. [11] in their 

research using the ADNI dataset, compared VGG-16 and 

VGG-19 and found that VGG-19 slightly outperformed 

ResNet-101, achieving an accuracy rate of 98.47%. 

A different approach was taken by Chui et al. [12], who 

utilized the Open Access Sequence of Image Studies (OASIS) 

dataset. They proposed a novel method that combined a 

Generative Adversarial Network (GAN), CNN, and transfer 

learning. The GAN module was used to generate additional 

training data for the minority class, effectively addressing 

class imbalance. Their method displayed improvements in 

detection model accuracy across various evaluation scenarios, 

with improvements ranging from 2.85% to 40.1%. Meanwhile, 

Ganesh et al. [13] employed pre-trained CNN models such as 

VGG-16, InceptionV3, and Xception. Among these, VGG-16 

achieved the highest accuracy, reaching 75%. 

In a recent study Zena et al. [14] focusing on Alzheimer's 

disease diagnosis and classification, the authors emphasized 

the critical importance of early diagnosis for effective 

treatment and management of the disease. They explored the 

use of deep learning methods, including popular architectures 

like MobileNetV2, ResNet-101, DenseNet-121, and a 

modified convolutional neural network (CNN) model inspired 

by VGG16, for classifying normal brain scans and various 

stages of Alzheimer's disease using magnetic resonance 

imaging (MRI) data obtained from Kaggle. Their investigation 

centered on evaluating the classification performance of these 

deep learning architectures, with a specific focus on accuracy, 

precision, recall, and F1-score as performance metrics. 

Remarkably, the results of their study demonstrated the 

superiority of the proposed modified CNN model, which 

achieved an outstanding accuracy of 97.625%, along with a 

recall, precision, and F1-score of 98%. This suggests that their 

approach outperforms the other deep learning models 

considered. 

Beyond these studies, another promising avenue for 

Alzheimer's disease detection involves the development of 

hybrid models that integrate CNNs as feature extractors with 

ML models as classifiers. For instance, Tuan et al. [15] 

combined CNN with XGBoost and SVM, achieving an 

accuracy of 89% with their CNN+XGBoost hybrid model. 

Eroglu et al. [16] utilized Darknet 53, InceptionV3, and 

ResNet101 as pre-trained CNN models combined with SVM 

and KNN, reaching an impressive accuracy of 96.1% with the 

ResNet101+KNN and Darknet 53 +KNN hybrid models. 

Sharma et al. [17] employed DenseNet-121 and DenseNet-201 
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in combination with SVM, Gaussian Naïve Bayes, and 

XGBoost, achieving a top accuracy of 91.75% with the 

DenseNet201+Gaussian Naïve Bayes hybrid model. 

In addition, the work [7] stands out for its focus on creating 

a more compact and accurate model for Alzheimer's disease 

detection. They conducted a comparative analysis of 

convolutional CNN, Deep Separable Convolution (DSC), and 

transfer learning algorithms. DSC exhibited a significant 

reduction in complexity and computational cost while 

maintaining high accuracy. Transfer learning models, such as 

AlexNet and GoogLeNet, achieved accuracy rates of 91.40% 

and 93.02%, respectively, albeit at a higher computational cost. 

The proposed DSC module offers a potential solution to 

reduce model complexity, offering a balance between 

accuracy and efficiency. 

Given this extensive literature review, the current research 

introduces a hybrid model, combining Xception and machine 

learning techniques. Unlike existing single-modality 

approaches, such as ResNet-101, VGG-16, and InceptionV3, 

our hybrid approach synergistically utilizes the accuracy and 

computational efficiency of Xception for feature extraction, 

coupled with machine learning strategies as classifiers 

including Gaussian Naïve Bayes, XGBoost, Random Forest, 

and SVM, for early detection of Alzheimer's disease. These 

selected models have demonstrated promising accuracy in 

prior research and the hybrid model is expected to strike a 

balance between compactness and accuracy, presenting a 

robust solution for effective Alzheimer's disease detection. 

This integration overcomes challenges seen in traditional 

models, addressing issues like imbalanced data and reducing 

computational demands. Our model stands out by uniquely 

employing DSC in Xception, significantly reducing 

computing complexity. This innovation offers a balanced 

solution, enhancing F1 Score while reducing computational 

demands, making it suitable for resource-constrained 

environments. 

In comparison to traditional CNN + XGBoost/SVM models 

[15], our hybrid approach showcases efficiency by utilizing 

DSC in the CNN architecture, requiring fewer parameters and 

computations while maintaining performance levels. This 

distinctive combination presents an innovative solution, 

advancing Alzheimer's disease detection by overcoming 

limitations faced by existing models. 

3. METHODOLOGY

The methodology follows a well-structured framework 

comprising several crucial stages which are shown in Figure 2. 

It initiates with data preparation, involving the acquisition of 

relevant datasets and meticulous pre-processing to enhance 

data quality. The pre-processing phase incorporates 

techniques such as image augmentation, oversampling, and 

data splitting. At its core, the approach centers on constructing 

a hybrid model that utilizes Xception for feature extraction, 

allowing the identification and extraction of key patterns from 

the pre-processed data to enhance model performance. 

Subsequently, a machine learning model serves as the 

classifier. The final step entails model evaluation, which 

rigorously assesses the performance of the models and the 

overall success of the approach.

Figure 2. Proposed methodology 
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3.1 Data preparation 

In this research, the dataset was obtained from various 

websites with each and every label verified. This dataset is 

available on Kaggle [18] and comprises 6,400 images 

depicting four phases of Alzheimer's disease: mild dementia 

(MD), moderate dementia (Mod. D), non-demented (ND), and 

very mild dementia (VMD). Importantly, it's worth noting that 

each of these phases of Alzheimer's disease in the dataset is 

based on different individuals. The distribution of MRI 

pictures for each class, as well as the number of images in the 

training and testing sets, are shown in Table 1. The MD class 

is composed of 896 images, while the Mod. D class consists 

of 64 images. In total, the ND class comprises 3,200 photos. 

Lastly, the VMD class encompasses 2,249 images. The 

examples of the images have been shown in Figure 3. 

Table 1. Number of Alzheimer's MRI Image Datasets 

Class Total 

MildDemented (MD) 896 

ModerateDemented (Mod. D) 64 

NonDemented (ND) 3,200 

VeryMildDemented (VMD) 2,240 

Total Set 6,400 

Figure 3. Alzheimer MRI dataset: (a) MD, (b) Mod.D, (c) 

ND, and (d) VMD 

3.2 Preprocessing data 

Preprocessing data is the first step in building a model that 

involves collecting raw data and converting it into a format 

that can be processed by the model. In this research, data pre-

processing involves several stages, namely image 

augmentation, oversampling with SMOTE, and splitting the 

dataset. 

3.2.1 Image augmentation 

The process begins with defining image classes and sizes to 

facilitate image augmentation for improved image 

classification. The image dimensions were set to 299x299 

pixels with RGB color channels, in alignment with the 

Xception model's requirements. Image augmentation is then 

employed to diversify the dataset by applying transformations 

such as horizontal flipping, zooming, filling, and brightness 

adjustments to create new data samples. Subsequently, the 

dataset is loaded using the 'flow_from_directory' method from 

the 'ImageDataGenerator' class, structured to match the 

custom directory layout. This data generator streamlines data 

loading and seamlessly integrates predefined image 

augmentations, simplifying the model training process. 

3.2.2 SMOTE 

The Synthetic Minority Oversampling Technique (SMOTE) 

is a method for resolving imbalanced data that oversamples the 

minority class using "synthetic" instances. However, it is 

essential to acknowledge the potential risk of overfitting 

associated with the generation of syntethic data. Instead than 

concentrating on all data points, SMOTE is carried out based 

on the value and features of the data relationships by 

employing synthetic examples in "feature space" as opposed 

to "data space." SMOTE works by oversampling each 

minority class and injecting synthetic cases along the axes that 

connect any or all of the k-nearest neighbors of each minority 

class. In accordance with the required level of oversampling, 

neighbors from the k-nearest neighbors are chosen at random 

[19]. To mitigate the risk of overfitting, careful consideration 

and validation of the synthetic instances' impact on the model's 

generalization should be undertaken, possibly through cross-

validation or other relevant techniques. This ensures that the 

benefits of addressing class imbalance with SMOTE are 

achieved without compromising the model's ability to 

generalize to new, unseen data. 

3.2.3 Splitting the dataset 

For the hybrid model, the dataset is initially divided into two 

subsets: an 80% training set and a 20% testing set. In the case 

of the experiment in a non-hybrid model, the training set is 

further subdivided into two distinct subsets: an 80% training 

set and a 20% validation set. This additional step ensures the 

non-hybrid model's performance can be effectively evaluated 

during the training process. 

3.3 Model building 

In the model building stage, a novel approach is employed 

by constructing a hybrid model that merges the capabilities of 

the Xception architecture as a feature extractor with the 

proficiency of a machine learning model serving as the 

classifier. This integration leverages the strengths of both 

components to create a comprehensive and powerful model. 

3.3.1 Feature extraction using xception 

In the context of feature extraction using Xception, a pre-

trained Xception model is employed in its original state as the 

foundation for this process. The decision to use the pre-trained 

Xception model without fine-tuning on the dataset is rooted in 

the model's proficiency in image recognition tasks and its 

ability to generalize well to diverse datasets. Xception, often 

referred to as "extreme inception," stands out for its 

convolutional neural network architecture designed to 

significantly enhance the efficiency and effectiveness of image 

recognition tasks, distinguishing it from the Inception 

architecture. 

The key to Xception's success lies in its utilization of 

depthwise separable convolution, a two-step convolutional 

approach. It initiates with depthwise convolution, where each 

filter independently processes a single channel of the input 

image, effectively reducing computational load while 

preserving crucial spatial information. Following this, 

pointwise convolution takes over, employing 1x1 filters to 

amalgamate and transform information from individual 

channels. What truly distinguishes Xception is the sequence in 

which it applies these convolutions; it commences with 1x1 

pointwise convolution and subsequently proceeds with 

channel-wise spatial convolution which shown in Figure 4. 

This unique order optimizes feature extraction and 

concurrently minimizes computational overhead, rendering 

Xception an exceptionally efficient and effective architecture 

for image recognition tasks [20]. 
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Figure 4. Xception module 

This Xception model is then configured to exclude its top 

classification layers and is tailored to accept images with 

dimensions of 299 by 299 pixels and three color channels 

(RGB). A Global Average Pooling 2D layer is added to the 

Xception model, reducing the output dimension. This 

modified model now serves as a feature extractor, taking input 

data and producing feature representations for each input 

image. The feature extraction is applied to both the training 

and test datasets. The resulting feature arrays are then reshaped 

into a format suitable for further processing. Additionally, the 

original labels are transformed to a one-hot encoded format, 

where each label is represented as a binary vector. This 

meticulous feature extraction process is crucial in preparing 

the data for subsequent machine learning or classification 

tasks, ensuring optimal utilization of Xception's capabilities 

without fine-tuning for the specific dataset. 

3.3.2 Classification using machine learning model 

The extracted features from Xception serve as the 

foundation for Alzheimer's stage classification, with a range 

of machine learning models selected for their distinct strengths 

in addressing this task. Gaussian Naive Bayes (GNB) is 

embraced for its simplicity and efficiency. It operates under 

the assumption of independence among predictors, making it 

well-suited for datasets with a multitude of features. GNB's 

foundation in probabilistic principles, using Bayes' theorem, 

enables it to accurately model the conditional probabilities of 

features given a class label [21]. 

Support Vector Machine (SVM), another vital choice, 

excels in high-dimensional feature spaces. SVM's robustness 

is attributed to its capacity to identify an optimal hyperplane, 

thereby maximizing the margin between different classes. It 

thrives in scenarios with complex decision boundaries, 

offering the versatility to address both linear and non-linear 

data separations. This adaptability proves advantageous for 

Alzheimer's stage classification [22]. 

XGBoost (Extreme Gradient Boosting) is a prominent 

ensemble method renowned for its high predictive accuracy 

and scalability. It builds upon gradient boosting and is 

particularly adept at capturing intricate relationships within 

data. By combining weak learners into a robust ensemble 

model, XGBoost is well-suited for tasks like Alzheimer's stage 

classification, where detecting subtle data patterns is crucial 

[23]. 

Random Forest (RF) is a versatile ensemble learning 

approach. It assembles multiple decision trees, each 

constructed from random training data subsets. The strength of 

RF lies in its ability to aggregate predictions from these trees 

through averaging, which mitigates overfitting and enhances 

model accuracy. RF excels at managing high-dimensional data 

and intricate feature relationships, making it a valuable asset 

in Alzheimer's stage classification. Additionally, RF is known 

for its capacity to provide robust predictions, even in the 

presence of outliers and noise [24]. 

The selection of these models is deliberate, aiming to 

harness their individual strengths, ranging from simplicity and 

efficiency to predictive accuracy and robustness in handling 

complex data distributions. Notably, in this experiment, 

parameter tuning was not performed for these models. The 

best model was determined by comparing the F1 Score and 

computation time, with a focus on achieving an optimal trade-

off between classification performance and computational 

efficiency. This strategic combination ensures the 

achievement of accurate and versatile Alzheimer's stage 

classification, contributing to the ongoing progress in the field. 

3.4 Evaluation 

In the model evaluation stage, this study employs a range of 

metrics to assess performance, encompassing Accuracy and 

F1-Score. Additionally, this study utilizes Computation Time 

as a critical metric to gauge the model's efficiency. 

3.4.1 Accuracy 

Accuracy measures the proportion of correctly classified 

instances out of the total number of examples in the dataset. 

Accuracy provides a convenient way to assess how well the 

model predicts the correct class label. In other words, accuracy 

is the ratio of the number of correct positives and negatives 

(correctly classified instances) to the total number of instances 

in the dataset. To find the accuracy value, the formula used can 

be seen in Eq. (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(1) 

3.4.2 F1 score 

A classifier's performance is assessed using the F1 score, 

which combines precision and recall. Precision measures the 

accuracy of positive predictions made by the classifier, 

indicating how many of the predicted positive instances were 

actually correct. On the other hand, recall, also known as 

sensitivity, measures the classifier's ability to correctly 

identify all relevant instances in the dataset, highlighting the 

proportion of true positive instances that were successfully 

detected. 

The F1 score merges these two essential measures into a 

single statistic [25], providing a balanced assessment of a 

classifier's performance. It is frequently used to evaluate how 

well various classifiers perform. To calculate the F1 score, the 

formula used can be seen in Eq. (2). This single metric 

encapsulates both precision and recall, offering a 

comprehensive view of the classifier's ability to make accurate 

positive predictions while capturing all relevant instances. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2) 

3.4.3 Computation time 

Computation time serves as a pivotal metric in the 

evaluation process, allowing for a comprehensive comparison 

between the hybrid model and the non-hybrid model. The 
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objective of this analysis is to underscore the notable 

advantage of employing DSC-based CNN models, such as 

Xception, within the hybrid model. By meticulously 

measuring and comparing the computational time required for 

both models, it is aimed to demonstrate that the DSC 

implementation in the hybrid model significantly reduces the 

overall computational load. 

In this experiment, a V100 GPU on Google Colab Pro for 

computation was utilized. This detail is essential for 

reproducibility and ensuring a fair comparison. The efficiency 

demonstrated by the reduced computational calculations is 

pivotal not only in terms of model training and inference speed 

but also in resource utilization. By highlighting this reduction 

in computational load and providing information about the 

hardware environment, the study sheds light on the potential 

benefits and optimizations that can be harnessed through the 

integration of Xception within the hybrid model, ultimately 

enhancing the model's overall performance and practical 

utility. 

4. RESULT AND DISCUSSIONS

The preprocessing results in image resizing to 299x299 

pixels and dataset splitting into training and testing sets. The 

image augmentation techniques, including horizontal flipping, 

zooming, filling, and brightness adjustments, diversify the 

dataset. SMOTE resolves imbalanced data by oversampling 

the minority class with synthetic instances. The data is then 

divided into subsets: 80% training and 20% testing for the 

hybrid model and, in the non-hybrid model, further split into 

80% training and 20% validation subsets. This meticulous data 

preparation underpins the subsequent model building and 

evaluation steps, ensuring robust and meaningful results. 

This research provides compelling results that substantiate 

the efficacy of the proposed hybrid model in accurately 

classifying the stages of Alzheimer's disease, as demonstrated 

in Table 2. Before the application of SMOTE, a thorough 

examination of the model's performance reveals the efficacy 

of the hybrid model, Xception+XGBoost, in classifying 

Alzheimer's stages. This hybrid model achieved a noteworthy 

accuracy of 72.89%, and a commendable F1 score of 74.35%, 

all while operating efficiently within a brief computational 

time of 218 seconds. This striking performance exemplifies 

the hybrid model's capacity to effectively classify the four 

stages of Alzheimer. Importantly, in direct comparison to the 

non-hybrid Xception model, which achieved an accuracy of 

66.17% and F1 score of 65%, the hybrid model exhibits 

superior classification performance. The comparison with 

non-hybrid deep learning models further underscores the 

incremental benefit of the hybrid approach over deep learning 

alone. Additionally, it does so with significantly reduced 

computational demands, as the non-hybrid Xception model 

necessitates a substantially longer computational time of 3,556 

seconds, underscoring the compelling advantage of the hybrid 

approach in terms of both accuracy and efficiency. The 

integration of traditional machine learning models, like 

XGBoost, with deep learning architectures, such as Xception, 

showcases a synergistic effect, improving overall 

classification performance. 

Table 2 presents a further comparison between different 

hybrid models based on accuracy, F1 Score, and 

computational time. The Xception+XGBoost hybrid model 

outperforms other hybrid models in terms of accuracy and F1 

score, indicating its superior classification capability. 

Followed by the Xception+SVM hybrid model, which 

achieved an accuracy of 71.64% and an F1 score of 71.05%, 

and notably, it demonstrates a more efficient computational 

time of 27 seconds compared to the Xception+XGBoost 

hybrid model. The results from this comparison emphasize the 

effectiveness of hybrid models in addressing the complexities 

of Alzheimer's disease classification. The synergy between 

deep learning, represented by the Xception architecture, and 

traditional machine learning, represented by XGBoost and 

SVM, results in models that excel both in accuracy and 

computational efficiency. These findings highlight the 

potential for enhancing diagnostic processes and clinical 

decision-making in Alzheimer's disease detection. 

The implementation of SMOTE significantly enhances the 

robustness of the models, improving accuracy and F1 scores 

across various machine learning models, as demonstrated in 

Table 3. All models’ accuracy and F1 score has improved. 

Notably, the same hybrid model which achieved the highest 

accuracy and F1 score before SMOTE got an accuracy of 

86.76%, and F1 score of 86.85% after SMOTE, all while 

maintaining a reasonable computational time of 439 seconds. 

This underscores the efficacy of SMOTE in enhancing the 

hybrid model's classification capabilities without imposing 

excessive computational overhead, reaffirming its role in 

addressing data imbalance and bolstering model robustness. 

However, it's crucial to note that SMOTE introduces potential 

drawbacks, such as the generation of synthetic instances that 

may introduce artificial noise, impacting model generalization. 

Future work should carefully consider this trade-off between 

addressing data imbalance and maintaining model 

generalizability. 

Table 2. Experimental results without SMOTE 

Model Accuracy Precision Recall F1 Score Computational Time (Seconds) 

Xception+XGBoost 72.89% 77.92% 72.89% 74.35% 218s 

Xception+Gaussian Naïve Bayes 45.78% 64.19% 45.78% 48.60% 76s 

Xception+SVM 71.64% 71.40% 71.64% 71.05% 191s 

Xception+Random Forest 65.15% 76.32% 65.15% 69.17% 91s 

Xception 66.17% 70.23% 60.62% 65.06% 3556s 

Table 3. Experimental results with SMOTE 

Model Accuracy Precision Recall F1 Score Computational Time (Seconds) 

Xception+XGBoost 86.75% 86.99% 86.75% 86.84% 439s 

Xception+Gaussian Naïve Bayes 48.78% 67.81% 48.78% 53.08% 141s 

Xception+SVM 83.82% 83.79% 83.82% 83.80% 413s 

Xception+Random Forest 82.50% 83.36% 82.50% 82.75% 174s 

Xception 78.71% 82.53% 74.57% 78.27% 7,127s 
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The diverse performance across models may be attributed 

to the inherent complexity of Alzheimer's disease 

classification. Different models exhibit varying degrees of 

sensitivity to nuanced patterns within the data, leading to 

differences in accuracy and F1 scores. For instance, Gaussian 

Naive Bayes (GNB) operates under the assumption of feature 

independence, potentially limiting its effectiveness in 

capturing intricate relationships present in Alzheimer's disease 

data. Similarly, the non-hybrid Xception model, while a 

powerful deep learning architecture, may struggle with certain 

aspects of feature representation crucial for Alzheimer's 

classification. The hybrid models, on the other hand, showcase 

the benefits of combining the strengths of Xception's feature 

extraction capabilities with the discriminative power of 

machine learning classifiers. These nuanced insights into 

model performance shed light on the challenges inherent in 

Alzheimer's disease classification and underscore the 

importance of a hybrid approach that leverages the strengths 

of different models for enhanced accuracy and efficiency. 

Further exploration of model interpretability and feature 

importance analysis could provide deeper insights into the 

specific characteristics of Alzheimer's disease data that 

contribute to varied model performance. 

The research findings hold significant clinical implications, 

with the enhanced accuracy and computational efficiency of 

the hybrid model offering the potential for more precise and 

timely diagnoses of Alzheimer's disease. This advancement 

not only promises improved patient outcomes but also carries 

the prospect of reducing the strain on healthcare systems, 

particularly in the context of an aging population and rising 

Alzheimer's disease cases. 

Looking ahead, there are promising avenues for future 

research. Exploring various deep learning architectures and 

the integration of alternative machine learning algorithms can 

further refine and extend the findings of this study. 

Additionally, expanding the dataset and conducting clinical 

validation and deployment in real-world healthcare settings 

will be crucial to solidify the practical applicability of the 

proposed approach. 

Nonetheless, it is essential to acknowledge the study's 

limitations. These encompass the use of a specific dataset from 

Kaggle [18] which may introduce constraints on the 

generalizability of the results. The Kaggle dataset, while 

comprehensive, may not fully encapsulate the diverse range of 

imaging characteristics and patient demographics encountered 

in real-world clinical settings. Variations in imaging protocols, 

equipment, and patient populations across different healthcare 

institutions can significantly impact the performance of 

machine learning models. Therefore, the reliance on a single 

dataset, albeit rich in Alzheimer's disease images, could 

potentially limit the external validity of the proposed hybrid 

model. 

In addition to dataset-specific limitations, there are inherent 

concerns related to overfitting, particularly given the use of 

SMOTE. The introduction of synthetic instances through 

SMOTE aims to address imbalanced data but raises the 

possibility of overfitting to the augmented data. To mitigate 

this concern, the study adopts a cautious approach by 

refraining from parameter tuning. 

Furthermore, the ethical deployment of machine learning 

models for Alzheimer's disease diagnosis demands a 

comprehensive approach to safeguard patient privacy, ensure 

data security, and enhance model transparency. Adherence to 

privacy regulations, robust data anonymization, and 

encryption protocols are essential to protect sensitive medical 

data. Transparent communication and obtaining informed 

consent from patients regarding data usage are critical ethical 

practices. Ensuring fairness, monitoring and addressing biases, 

and conducting rigorous clinical validation contribute to 

responsible model deployment. Additionally, efforts to 

enhance model interpretability and decision-making 

transparency build trust among healthcare professionals and 

patients. Ethical considerations underscore the need for a 

balanced integration of technological advancements with 

patient-centric principles, emphasizing the responsible and 

transparent use of machine learning in healthcare settings. 

5. CONCLUSION

In conclusion, this research significantly contributes to the 

field of Alzheimer's disease detection. The presented hybrid 

model, which combines DSC-based CNN models like 

Xception with machine learning classifiers, demonstrates its 

effectiveness in classifying Alzheimer's stages with 

computational efficiency. Particularly, before SMOTE, the 

hybrid model, Xception + XGBoost, achieves higher accuracy 

than the non-hybrid model, all within a computational time of 

218 seconds. The incorporation of SMOTE further enhances 

the model's robustness, improving accuracy and F1 scores by 

approximately 14%, with a computational time of 439 seconds. 

Post-SMOTE application, the hybrid model sustains its 

classification prowess while significantly reducing 

computational demands. This study underscores the hybrid 

model's unique ability to harmonize accuracy, compactness, 

and computational efficiency, presenting a promising avenue 

for advancing Alzheimer's disease detection. Furthermore, it 

accentuates the critical role of addressing data imbalance for 

robust and reliable classification. 

Looking ahead, the practical implications of these findings 

extend to the potential integration of the hybrid model into 

clinical workflows, facilitating early Alzheimer's diagnosis 

and intervention. While the model showcases substantial 

promise, its seamless adoption into clinical practice 

necessitates a thorough understanding of potential barriers. 

Future research endeavors could delve into exploring the 

translational aspects, considering factors such as model 

interpretability, validation across diverse patient populations, 

and the incorporation of the model into existing diagnostic 

workflows. 

In reflecting on the broader impact of this research, it not 

only provides valuable insights to the medical field but also 

lays the foundation for redefining current diagnostic 

procedures for Alzheimer's disease. The hybrid model's 

capacity to navigate the intricate landscape of Alzheimer's 

classification opens avenues for more precise and timely 

diagnoses. As we move forward, the research invites a 

collaborative effort between the realms of artificial 

intelligence and clinical practice, fostering a dialogue that 

paves the way for transformative advancements in Alzheimer's 

disease diagnosis and patient care. 
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