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Mobility for disabled individuals is a crucial issue in their daily lives. The navigation system 

is one of the most commonly employed techniques for smart wheelchairs in the domain of 

mobile robotic-Maurice Audin, providing them with autonomy and social integration 

opportunities. Indeed, its simplicity and reliability can bring benefits to the users. This paper 

deals with intelligent wheelchair navigation through the development of multi-sensor data 

fusion using a hybrid filter (HF) approach by combining the extended Kalman filter (EKF) 

and the modified particle filter (PF). This combination overcomes the limitations of each 

other and leverages their respective strengths to achieve more accurate and robust 

localization. Indeed, the proposed hybrid filter aims to minimize estimation errors and 

improve the dynamic localization and navigation system. The applicability and 

effectiveness of the developed HP approach are demonstrated by simulation, and the results 

obtained were compared with those found in the literature. It has been found that the mean 

absolute error (MAE) and the percentage estimation error of the present method are better 

than those of EKF and both data fusion methods. 
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1. INTRODUCTION

Recent decades have seen dramatic progress in the 

development and application of new technologies. Among 

them, robotics technology is increasingly present in several 

areas including industry, logistics, mobility, and medicine. 

Robots can assist humans or mimic human actions in multiple 

environments. More specifically, robotic assistive devices and 

mobile robotics, such as smart wheelchairs, have the potential 

to improve autonomy in the daily lives of individuals with 

disabilities and the elderly. 

Nevertheless, localization of a robotized wheelchair using a 

particular modified multi-sensor filter is an advanced method 

for accurately determining the wheelchair's position in its 

environment. This technique combines the use of multiple 

sensors to generate environmental data and filtered particles to 

estimate the wheelchair’s location. 

Using and handling a conventional power wheelchair can be 

a difficult and dangerous task for some people suffering from 

motor disabilities. In this context, recent research and 

development deals with smart and autonomous wheelchairs 

able to compensate for the user’s cognitive skills and visual-

perceptual abilities in order to anticipate obstacles and 

navigate on safe trajectories. Over the past ten years, HandiViz 

[1], Sysiass [2], Coalas [3], NavChair [4] and European FP7 

Radhar [5] are among the projects carried out in this area. In 

the Sysiass project, EMG and CAMERA sensors were 

employed. The limitation of this technique is that the sensor 

system which controls the slowing down and stopping of the 

wheelchair in front of an obstacle was not sufficiently 

developed. To avoid collisions, the wheelchair needed to be 

perfectly aligned. The wheelchair developed by HandiViz 

incorporates 15 ultrasonic sensors mounted all around it, 

forming a control system capable of providing seamless 

trajectory correction during wheelchair navigation. This 

innovative approach combines user input with obstacle 

avoidance capabilities, resulting in an efficient and effective 

method. In the NavChair project, they used GPS, compass, and 

ultrasonic sensors. The limitation of this technique is the map 

tracking with a robot and the error caused by imprecise 

calculation. Due to the limitations of wheelchair dynamics and 

current sensors, accurate calculation at a distance in the 

NavChair wheelchair is almost impossible. Another difficulty 

was that the system could not determine exactly where the 

robot was on the map and what its orientation was. 

The literature reports considerable research and 

development efforts to design the next generation of intelligent 

wheelchairs [6]. From a technological point of view, several 

researchers have used assistive technologies including a 

collection of sensors (ultrasound, laser, cameras) and 

computer processing algorithms to develop increasingly smart 

concepts. Currently, the research topic is taking an important 

place in the mobile robotics field, by exploiting new 

technologies and techniques such as human learning, 

navigational assistance, localization, robot interaction, 

artificial intelligence, multi-modal sensors, and so on, aiming 
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to adapt the concepts to the user’s disabilities and/or abilities 

[5]. 

Despite their apparent success as an emerging solution to 

improve the daily life of people with disabilities, smart and 

autonomous wheelchairs present several crucial scientific 

challenges, for an efficient hybridization and combination of 

multiple technological solutions and devices [7-9]. More 

particularly, localization and navigation represent the 

fundamental problems during the design and development of 

smart mobile robots [10, 11]. The main technical question 

concerns the exploitation of a set of devices and sensors with 

efficient data fusion and computer processing algorithms to 

provide reliable self-dynamic localization and/or interaction 

with users useful to perform successful navigation in the case 

of autonomous or semi-autonomous operating modes [12, 13]. 

Localization issues for smart wheelchairs are particularly 

important, as high accuracy and reliability are essential for 

user safety and efficiency [14]. These wheelchairs are often 

used indoors, in homes, hospitals, shopping centers, and so on. 

Indoor localization can be complicated due to the diversity of 

structures and obstacles present. As a result, location accuracy 

is crucial to avoid collisions with obstacles, ensure user safety, 

and enable smooth navigation [15]. Location errors can have 

serious consequences. Smart wheelchairs need to adapt to 

constantly changing environments [16, 17]. Some smart 

wheelchairs are designed for outdoor use, which involves 

different localization challenges, particularly taking into 

account weather conditions, uneven terrain, and unique 

obstacles [18]. 

Localization is one of the most important tasks in enabling 

a mobile robot to achieve total autonomy. In the approach of 

Gasparri et al. [19], a new global localization strategy is 

recommended. By utilizing this technique, a robot can 

effectively establish its position or readjust its location in the 

case of recovery from a failure in pose tracking. The algorithm 

presented employs a hybrid approach. Initially, a particle filter 

is utilized to generate conjectures regarding the potential pose, 

under the assumption that no motion is permitted to prevent 

collisions. Afterward, secure paths are planned and carried out 

to minimize the remaining uncertainties, though the 

hypotheses are checked and confirmed by a series of parallel 

extended Kalman filters. The originality of this method lies in 

its ability to generate pose assumptions without relying on any 

feature-based information. Therefore, there is no longer a need 

for a landmark-based representation of the surroundings to 

execute the algorithm. The second hybrid approach used in the 

literature is localization with wireless sensor networks (WSN), 

as proposed by Achroufene et al. [20]. This new technique is 

based on two key elements. Firstly, it utilizes the theory of 

belief functions to effectively handle the imperfections 

associated with residual sum of squares (RSS) measurements 

as well as the credibility of their sources. Secondly, it 

incorporates a more accurate modeling of the disparity of RSS 

measurements caused by intrusion and attenuation phenomena, 

which significantly affect signal propagation within indoor 

settings. 

The Extended Kalman Filter (EKF) is an extensively used 

estimation algorithm for nonlinear objects. It is highly 

appreciated for its ease of implementation, fast execution, and 

generally reliable estimation results. Nevertheless, the 

Extended Kalman Particle Filter deviates from the traditional 

PF algorithm. In this modified approach, the particles in the 

extrapolation step are not randomly selected from the 

transition mode, but from the probability density function 

(PDF) computed using the EKF technique [21]. By combining 

the Kalman filter for initial prediction and the particle filter for 

updating and correction, this hybrid algorithm can take 

advantage of the benefits of each algorithm. The Kalman filter 

provides a fast and efficient initial estimate, while the particle 

filter allows non-linearities and non-Gaussian uncertainties to 

be handled more flexibly. Nevertheless, it should be 

emphasized that the exact design of the hybrid algorithm will 

depend on the application specifications and the characteristics 

of the mobile robot localization system. This approach was 

chosen for its low cost and effectiveness in improving 

localization error, as it does not require many sensors or 

external sensors such as beacons. 

In this context, this work focuses on localization and 

navigation issues in smart wheelchairs through the 

development of a multi-sensor data fusion using a Hybrid 

Filter (HF) based approach. The proposed method based on the 

HF aims, to minimize estimation errors and improve the 

localization and navigation systems. The applicability and 

effectiveness of the developed and implemented technique are 

highlighted through simulation, and the results obtained in an 

indoor environment are compared with those in the literature. 

After the above introduction to the research background, the 

subsequent sections of this manuscript are structured as 

follows. Section 2 provides an overview of the localization and 

navigation problems in the mobile robotics area, and 

associated studies are discussed. Section 3 deals with the 

system under consideration and its kinetic modeling. Section 

4 focuses on multi-sensor data fusion using the Hybrid Filter, 

aiming to deliver a consistent assessment of the robot’s 

localization. Section 5 is dedicated to studying the efficiency 

of the developed approach through simulation, presenting a 

comparison and discussion of the results obtained. Finally, the 

last section provides a conclusion and some perspectives. 

 

 

2. LOCALIZATION AND NAVIGATION PROBLEMS 

 

2.1 Localization and navigation challenges 

 

Today, smart and autonomous mobile robots provide 

several applications in industrial manufacturing, military 

operations, logistic organizations, competition games, space 

exploration, medical and social science, etc. They are required 

to assist explorers, researchers, industrials, and more generally 

people to perform some critical and/or special activities, 

including inspection, exploration, transportation, and more 

specifically, to improve the autonomy of people with 

disabilities using smart wheelchairs. For all these reasons and 

by exploiting current technological advances, the topic of 

mobile robots continues to receive increasing attention in the 

research and development community. 

Localization and navigation issues can be considered as the 

major challenges of this research area when talking about the 

development and design steps of a mobile robot. During the 

real-time perception phase, the robot extracts data and 

information from its multiple sensors (camera, ultrasonic, laser, 

RFID, etc.) with the aim of knowing the robot’s position in 

motion. The multi-sensor and robot’s odometry fusion 

approaches strive to offer an optimal approximation of the 

robot’s location (p = (x, y, θ)T). The location information, 

which evolves over time, constitutes crucial input data to be 

processed and exploited by the navigation system for motion 

and mapping control. To avoid estimation errors induced by 
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technology and/or associated methods, efficient processing 

techniques and algorithms are needed to ensure reliable 

localization. 

 

2.2 Localization and navigation approaches 

 

In the literature, several approaches are proposed to support 

the localization and navigation strategies for positioning 

mobile robots. 

• First of all, the robot’s localization is usually 

considered as a probabilistic and multi-sensor fusion issue, 

considering that the sensor data are influenced by 

measurement errors. Consequently, according to the literature, 

the localization can be estimated by using Markov and 

Bayesian methods [22], Extended Kalman Filters, Particle 

Filters, Factor graphs, and evolutionary techniques using 

differential scaling, genetic approaches, and particle swarm 

optimization [23]. 

• In the case of outdoor and large environments, where 

the path configuration alters due to the presence of dynamic 

obstacles or explicit modifications, localization becomes very 

complex. In this context, autonomous map-building 

approaches are proposed aiming to create and modify the 

environment map automatically by exploiting the latest 

advancements in computer vision. Readers may refer to the 

SLAM techniques such as EKF-SLAM [24], UKF-SLAM [25], 

MCL-SLAM [26], and evolutionary SLAM [27] based 

approaches. 

• More recently, the potential of artificial intelligence 

such as Neural Networks and Machine Learning has been 

demonstrated [28, 29]. From another point of view of the 

literature, several technologies and sensors are exploited 

and/or combined, leading to precise path estimation and low 

positioning errors [30]. Various technologies have been 

adopted, including ultrasonic, laser, sonar, GPS, vision, WiFi, 

and RFID technologies. In all these cases, sensor data fusion 

plays a pivotal role in the processing of information obtained 

from a mobile robot's multiple sensor configurations. 

Furthermore, the selection of technological solutions is 

contingent upon the specific domain of application. and must 

be adapted to the environment of use, which can be indoors 

(hospitals, housing, offices, etc.) or outdoors (roads, nature, 

space, etc.), taking into account some specificities or 

constraints such as users' disability, object dynamics, and 

operating modes. 

For more details on this active research topic, review papers 

have recently been published covering the smart wheelchair 

case [6] and the mobile robot case in general [31]. 

The rest of this work focuses on smart wheelchair 

localization based on multi-sensor data fusion using Hybrid 

Filter (HF). The principle, architecture, application, and 

advantages of the proposed approach are detailed in the 

subsequent sections. The Hybrid Filter (HF) method aims to 

reduce the system assessment error and improve the dynamic 

location of the mobile robot. 

 

2.3 Kalman filter localization 

 

Firstly, the Kalman Filter (KF) is widely regarded as a top-

notch algorithm employed in the field of data fusion filtering 

purposes in several research domains, including mobile 

robotics [32-34]. Within the basic theory, the KF algorithm is 

only appropriate for linear systems. However, in many robotic 

systems, the measurement equations are nonlinear. The 

nonlinearity can be associated with either the process model, 

the observation model, or both. Consequently, an Extended 

Kalman Filter (EKF) using a linearization step is needed in 

such systems [34]. Basically, the Taylor series approximation 

is used to extend models of nonlinear functions in the 

Extended Kalman Filter. It involves estimating the state and 

linearizing the model in the first order. The assessment of a 

noisy measurement of the nonlinear system location is 

commonly achieved using the 

EKF algorithm. It is based on the assumption that the 

measurement noises are Gaussian and temporally uncorrelated, 

with zero mean and known variance. The general localization 

diagram is shown in Figure 1.
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Figure 1. General EKF diagram for the localization 
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Figure 2. General PF diagram for the localization 

 

As shown in the diagram, the position prediction applies the 

kinematic model with a Gaussian error to robot odometry. 

From the sensor data (camera, ultrasonic, laser, RFID, etc.), 

the robot extracts different information about the environment 

(doors, lines, etc.) in order to generate a perception of its 

position. The estimation (data fusion) is performed by the EKF 

algorithm by exploiting the best matching between the 

predicted and perceived positions. In other words, the 

prediction and update are combined to reduce the average 

square error of the state estimation. 

Unfortunately, the performance of an extended Kalman 

filter (EKF) can be significantly compromised due to the 

inherent linearization errors present in its specification, 

especially in cases where the signal-to-noise ratio is low and 

the estimation of noise variances has been inadequate [35]. In 

this context, to increase the filtering process and improve the 

localization robustness of the EKF method, a combination 

with the Particle Filter method is proposed in this work. As a 

successive iteration of the Monte Carlo approaches [36], the 

Particle Filter (PF) method is proposed to solve the nonlinear 

filtering problem. 

 

2.4 Particle filter localization 

 

To assess the position and orientation of the moving robot, 

the approach utilizes a Particle Filter algorithm to depict the 

probable states of the robot in motion. The states are denoted 

by a collection of points referred to as "particles". Generally, 

the algorithm commences by employing a uniform distribution 

to generate the particles across the configuration space, 

assuming that the robot can initially be at any point within that 

space [37, 38]. The particles are resampled using recursive 

Bayesian estimation, which takes into account the correlation 

between the actual sensed data and the predicted state 

whenever the robot detects something. Finally, the particles 

ought to converge towards the current location of the robot [39, 

40]. The general PF localization diagram is illustrated in 

Figure 2. 

The Monte Carlo (PF) localization method has a drawback 

when the particles propagate randomly and converge to an 

erroneous state, which makes the particles move away from 

the real state of the robot and are eliminated by the next 

iteration. As a result, the number of particles will have to be 

lower, and with a reduced number, we will not be able to 

determine the correct location. 
 

 

3. WHEELCHAIR KINEMATIC MODEL  
 

First, we present the kinematic model representing the 

navigation system behavior of a considered wheelchair, 

illustrated in Figure 3. Its position is described by a three-

dimensional vector p = (x, y, θ)T, where (x, y) indicates the 

wheelchair's location in the global frame of the 2D map and θ 

represents its orientation. The wheelchair's odometry relies on 

motion sensor data to estimate the alterations in position with 

respect to the wheelchair's starting point as time progresses. 

It should be noted that the laser sensor plays a key role in 

estimating the odometry required to localize the intelligent 

wheelchair. Odometry is the method used to estimate a robot's 

position and orientation based on measurements of the 

movements made by its wheels or actuators. However, due to 

inherent errors and uncertainties, odometry alone is often not 

sufficient to acquire a precise estimation of the robot's location. 

Laser sensors act as an external source of data, providing direct 

environmental measurements to improve the precision of this 

estimate. 

The position is approximated by the successive elementary 

displacements supplied by encoders. Based on the wheelchair 

kinematics model (Figure 3), the linear (vl) and angular (vθ) 

velocities are given by: 
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Figure 3. Kinematic model of the wheelchair 
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where, 𝑣𝑑 and 𝑣𝑔 are the speeds of the right and left wheels 

respectively. 

The elementary displacements from an instant k to an 

instant k +1 are respectively given by the following equations:  
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4. APPROACH HYBRID FILTER LOCALIZATION (HF) 

 

Every time the robot changes its position, the particles also 

adjust their positions to anticipate the robot's new state 

following the movement. The particles undergo resampling 

through a recursive Bayesian estimate whenever the robot 

detects an object, i.e., the correlation between the real detected 

data and the expected result. In the end, the particles ought to 

come together at the actual location of the robot. 

Consider a robot equipped with an internal map of its 

surroundings. When the robot is in motion, it requires the 

ability to ascertain its position within this map. The 

determination of its position and rotation using sensor 

observations is called robot location. 

Due to the robot's tendency to exhibit unpredictable 

behavior, it frequently generates numerous random 

assumptions regarding its forthcoming destination. These 

assumptions are commonly referred to as particles. Every 

particle encompasses a comprehensive depiction of a potential 

forthcoming condition. As the robot perceives its surroundings, 

it discards the particles that do not align with this perception 

and generates additional particles that closely resemble the 

ones exhibiting coherence. Ultimately, it is expected that the 

majority of the particles will eventually converge at the precise 

location of the robot. Figure 4 illustrates the Extended 

Kalman-Particle Filter localization diagram. 

 

 

 

 

 

 

 

 Particle Generation 

Odometry Prediction 

Normalize Weights Wk 

Laser Correction EKF 

Resampling 

Neff < Np 

Estimate Update 

 
START 

 
END 

 
 

Figure 4. Extended Kalman-Particle Filter localization 

diagram 
 

 

5. CRITERIA OF THE ALGORITHM PERFORMANCE 

EVALUATION 

 

The assessment standards for measuring the effectiveness 

of a technique implemented on a data fusion system differ 

across different problems due to various essential factors, 

including objective, reliability level, ease of use, runtime, 

precision, ruggedness, consistency, and coherence [41]. Hence, 

it is imperative to analyze multiple criteria to assess a data 

fusion system. Consequently, to assess a technique and 

substantiate its superior reliability over another, it is necessary 

to respect these requirements. In this study, we used two 

widely used fusion performance criteria, namely, the Absolute 

Error (AE) and the Mean Absolute Error (MAE) which are 

given by the following expressions: 

 

• Absolute error (AE) in positions: 

It represents a series of numerical values that correspond to 

the absolute value of the disparity between the actual and 

predicted locations. It increases when the expected and true 

locations differ, and it will be zero when they are similar. For 

this criterion, the algorithm that yields the lowest value is the 

most favored. 
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where, 𝑥𝑖 ,𝑦𝑖 ,𝜃𝑖  represent the true locations and orientation; 

𝑥𝑖,𝑦𝑖,𝜃�̂�are the predicted locations and orientation. 

 

• Mean absolute error (MAE): 

The mean absolute error is determined by taking the average 

of the absolute error values. 

It is given by the following relations: 
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6. RESULTS AND DISCUSSION 

 

6.1 Determination of the optimum particle number 

 

It should be noted that in the localization process, we used 

two different filters: the Kalman filter (Bayesian) and the 

particle filter (probabilistic) to merge the data from both 

sensors (the odometers and the laser rangefinders) and obtain 

a better estimate of the particle position. The Kalman filter 

modifies the divergence of the particles and reduces the 

estimation error during their movement by increasing the 

precision and convergence of the filter. 

In order to examine the dependability of the suggested 

technique, simulations were performed with Matlab using the 

PKF algorithm in a known indoor environment. Four different 

numbers of particles were tested. The obtained results are 

shown in Figures 5, 6, 7, and 8. Note that the curve in black is 

the estimated trajectory, and the one in red is the real trajectory. 

So to obtain a better localization, it is necessary to reduce as 

much as possible the error between both curves. 

 

 
 

Figure 5. Comparison of the real trajectory and the estimated 

trajectory by HF approach when N=60 particles 

 
 

Figure 6. Comparison of the real trajectory and the estimated 

trajectory by HF approach when N=120 particles 

 

 
 

Figure 7. Comparison of the real trajectory and the estimated 

trajectory by HF approach when N=160 particles 

 

 
 

Figure 8. Comparison of the real trajectory and the estimated 

trajectory by HF approach when N=200 particles 

 

It can be seen that when the number of particles increases, 

the estimation error decreases, and the estimation curve gets 

closer to the real curve until N = 200. Beyond this value, the 

error becomes significant again, and this returns to the 

duration of the program execution, which becomes important 

compared to real-time. 
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6.2 HF approach implementation 

 

The steps for implementing the hybrid approach can be 

summarized as follows: 

 

1. Generation of particles𝑥𝑘  with a weight 𝑤𝑘  for each 

particle in a random way 𝑘 = 1,… ,𝑁 particles 

Selective resampling: 

Select N particles from the current distribution with 

weights(𝑤1, 𝑤2, … , 𝑤𝑁( )). 

1. Calculate a resampling threshold (T). 

2. Initialize an index i = 1. 

3. Initialise a counter j = 0. 

3. Repeat until j reaches N: 

    If 𝑤𝑖 ≥ 𝑇, copy particle i into the new distribution. If 

not, select a particle at random from the remaining 

particles. 

 

2. Prediction of the robot state using the Extended Kalman 

Filter (EKF). The EKF prediction equation is as follows: 

 

𝑥𝑘
(𝐸𝐾𝐹) = 𝑓(𝑥𝑘−1

(𝐸𝐾𝐹)) + 𝑤𝑘
(𝐸𝐾𝐹)

 

 

where 𝑥𝑘
(𝐸𝐾𝐹)

 is the estimate of the state at time k using 

EKF, 𝑓(𝑥𝑘−1) is the non-linear state transition function, 

and 𝑤𝑘
(𝐸𝐾𝐹)

 is the process noise. 

A prediction of the robot state using the particle filter 

(PF). Each particle corresponds to an assumption 

regarding the state of the robot, and it evolves according 

to the transition model of the particle filter. For each 

particle I, the prediction equation for the PF is as follows: 

 

𝑥𝑘
(𝑃𝐹,𝑖) = 𝑓(𝑥𝑘−1

(𝑃𝐹,𝑖)) + 𝑤𝑘
(𝑃𝐹,𝑖)

 

 

where 𝑥𝑘
(𝑃𝐹,𝑖)

 is the estimate of the state of particle i at 

time k using the PF, 𝑓(𝑥𝑘−1
(𝑃𝐹,𝑖))  is the nonlinear state 

transition function for particle i, and 𝑤𝑘
(𝑃𝐹,𝑖)

 is the 

process noise specific to particle i. 

The weighted average 𝑥ℎ𝑦𝑏𝑟𝑖𝑑  is calculated as follows: 

 

𝑥ℎ𝑦𝑏𝑟𝑖𝑑 = 𝑤𝐾𝐹 . 𝑥𝐾𝐹 + 𝑤𝑃𝐹 . 𝑥𝑃𝐹 

 

where: 

𝑥ℎ𝑦𝑏𝑟𝑖𝑑 is the hybrid estimation of the mobile robot 

location. 

𝑥𝐾𝐹is the Kalman filter estimate. 

𝑥𝑃𝐹is the estimate of the particle filter. 

𝑤𝐾𝐹is the weight assigned to the Kalman filter  

𝑤𝑃𝐹is the weight assigned to the particle filter  

 

3. Correction 

Measure the current position of the robot using the laser 

sensor. This measurement is noted𝑧𝑘. 

Update the EKF using this measurement. The equation 

for updating the EKF is as follows: 

 

𝑥𝑘
(𝐸𝐾𝐹) = 𝑥𝑘

(𝐸𝐾𝐹) + 𝐾𝑘
(𝐸𝐾𝐹). (𝑧𝑘 − ℎ(𝑥𝑘

(𝐸𝐾𝐹))) 

 

where 𝐾𝑘
(𝐸𝐾𝐹)

is the Kalman gain matrix, 𝑧𝑘  is the 

measurement, and ℎ(𝑥𝑘
(𝐸𝐾𝐹))  is the nonlinear 

observation function. 

 

4. Resampling 

To eliminate the least relevant particles. 

After resampling, we will have the final group of 

particles representing the position of the robot. 

 

5. k=k+1 repeat step 2 or end of the algorithm. 

 

 

6.3 Performance evaluation 

 

In this subsection, a simulation was conducted to determine 

the location based on x, y, and θ. 

The simulation employs the subsequent parameters: 

- Sampling period: t=0.1s. 

- Initial state vector 𝑋0 = [0 0 0]𝑇  

In order to show the influence of measurement noise on the 

position and orientation of the wheelchair (x, y, and θ), three 

different cases have been studied. The robot position has been 

simulated with two encoders alone, then with the laser 

rangefinder, and finally with the EKF fusion filter. 

The position estimation error of the wheelchair was 

calculated as the average of the errors between the actual 

positions and those estimated by the particles. Estimation 

methods are often used to obtain this information, for example, 

the well-known odometry method, where the data from the 

encoders is used to calculate the linear and angular velocities, 

and by using the robot kinematic model, it is possible to 

estimate the position and orientation, which are represented 

according to the coordinates x, y, and the orientation θ. 

Figures 9, 10, and 11 represent, respectively, the variation 

of the mean absolute errors in positions and orientation (x, y, 

and θ) as a function of time. It can be observed that the curves 

of the encoder measurements (odometry) exhibit oscillations 

with larger amplitudes, whereas the curves of the present 

hybrid fusion approach are stable with smaller amplitude 

oscillations. This indicates that the unstable data is a result of 

odometry errors. These errors can be rectified using the laser 

rangefinder measurement data. 

 

 
 

Figure 9. Variation of the mean absolute errors in x as a 

function of time 
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Figure 10. Variation of the mean absolute errors in y as a 

function of time 

 

 
 

Figure 11. Variation of the mean absolute errors in θ as a 

function of time 

 

 
 

Figure 12. Mean absolute error in x 

 

Figures 12, 13, and 14 illustrate a comparison between the 

mean absolute errors in position and orientation (x, y, and θ) 

provided by HF, state vector fusion (SVF), measurement 

fusion (MF), and the EKF method. It can be seen that the 

Hybrid Filter (HF) is more accurate compared to EKF and the 

other data fusion methods, confirming the effectiveness and 

reliability of the proposed approach compared to those in the 

literature. 

 

 
 

Figure 13. Mean absolute error in y 

 

 
 

Figure 14. Mean absolute error in θ 

 

 

7. CONCLUSION 

 

In this work, a hybrid localization system has been 

presented for the autonomous navigation of an intelligent 

wheelchair in order to enhance the level of service for 

individuals with reduced mobility and to offer them a robust, 

efficient, and secure mobile platform. Indeed, localization is 

an essential process for the autonomous navigation of 

automatic systems. To this end, a data fusion approach has 

been proposed to solve the constraints of nonlinearity and 

improve the accuracy of the estimation error in a known indoor 

environment in real-time. Indeed, this represents a new 

localization approach for a wheelchair-type mobile robot. This 

latter is based on a hybrid data fusion filter called HP which 

combines the particle filter PF and the extended Kalman filter 

EKF, using odometer-like sensors and a laser rangefinder. 

To check the efficiency of the proposed method, simulations 

were carried out using Matlab. The results show that our 

hybrid approach gives better results on localization accuracy 

compared to those in the literature. In fact, the average 

percentage reduction in mean absolute error is around 53% 

compared to SVF, 136% compared to MF, and 416% 

compared to EKF. 

In future work, we plan to apply the proposed approach to 

patients using a 3D camera and different types of sensors. 
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