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An automatic breast cancer diagnosis is a challenging task because breast masses have a 

random appearance and vary in size and shape. A descriptor is an algorithm that quantifies 

elementary characteristics such as color, texture, contour, or shape. In digital 

mammography, numerous descriptors have been employed to differentiate between benign 

and malignant tumor patterns, but automatic diagnosis remains a difficult function. In this 

paper, we proposed a novel approach based on local features to describe masses in 

mammograms via Polygon Approximation Triangle-Area Representation (PATAR). As the 

degree of spiculation in masse defines their level of malignancy, the strength of our 

approach lies in its ability to isolate and measure spiculations in breast masses. PATAR is 

a robust image descriptor composed of two steps: polygon approximation and triangle-area 

representation. Firstly, we applied a polygon approximation to the masses to raise the most 

critical spiculations and lobulations. Then, by browsing the points of the polygon, calculate 

the triangle’s area formed by the vertices of the polygon, ears, and mouths. The extracted 

characteristics describe the shape and show the severity of spiculations with high precision. 

Digital mammography CBIS-DDSM is used to evaluate the method with a Fuzzy C-Means 

classifier, Support Vector Machines (SVM), and Random Forest (RF). The Random Forest 

classifier achieved the best performance, reaching 97,94%. The proposed method provides 

a fully automated diagnosis with the best accuracy and invariance to scale and rotation. 

Keywords: 

breast cancer, spiculated masses, triangle-

area representation, computer aided 

diagnosis, mass description, mammography 

1. INTRODUCTION

Breast cancer accounts for one in four cancer cases in 

women globally, making it the most often diagnosed 

malignancy. The reported 2.3 million new cases suggest that 

approximately one out of every eight cancer diagnoses in the 

year 2020 was related to breast cancer [1]. Breast cancer is a 

severe worldwide health concern, and its prevalence differs 

geographically, with significant rates observed in third-world 

countries. Breast cancer development is linked to several risk 

factors, which may be categorized primarily as non-modifiable 

and modifiable factors. Non-modifiable risk variables, 

including gender, age, and genetics. Modifiable risk factors are 

Lifestyle Factors, Hormone and Replacement Therapy (HRT) 

and Reproductive Factors. Diagnosing breast cancer involves 

a combination of screening like mammography and ultrasound, 

clinical examination, and diagnostic tests such as biopsy. Early 

detection plays a crucial role in the successful treatment of 

breast cancer, mainly when the tumor is smaller and has not 

metastasized, increasing the likelihood of successful outcomes. 

Automated diagnostic systems, particularly those based on 

artificial intelligence, have proven to enhance sensitivity and 

specificity compared to traditional approaches. These 

progressions play a role in achieving more precise and 

dependable diagnoses of breast cancer. Automated diagnosis 

can help radiologists rapidly categorizing and prioritizing 

cases, potentially reducing the time to diagnosis and treatment. 

An efficient system of automatic diagnosis can reduce 

significant deaths and improve the lives of cancer patients. 

Mammography is the most effective radiological technique 

and is widely used for the early detection and diagnosis of 

breast cancer [2]. A mammogram is a special electronic 

detector based on an X-ray that has been used since 1913 to 

examine breasts [3]. Mammograms provide a digital viewing 

of breast images with two standard views: bilateral 

craniocaudal (CC), shown in Figure 1(a), and mediolateral 

oblique (MLO), shown in Figure 1(b). 

(a)   (b) 

Figure 1. Two standard views of mammographic image: 

(a) bilateral craniocaudal (CC) view and (b) mediolateral

oblique (MLO) view 
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In the late 1980s, the American College of Radiology 

(ACR) launched the Breast Imaging-Reporting and Data 

System (BI-RADS) to provide radiologists with standardized 

terminology [4]. The BI-RADS system provides a common 

language for radiologists and healthcare providers to 

communicate about breast imaging results, facilitating 

consistent interpretation and appropriate patient management 

[5]. BI-RADS categorizes breast imaging findings into several 

assessment categories, ranging from 0 to 6. These categories 

help convey the level of suspicion for malignancy and guide 

subsequent actions. In the context of automatic breast cancer 

diagnosis, the BI-RADS system plays a significant role in 

training and validating machine learning algorithms. These 

algorithms can be trained on large datasets labeled with BI-

RADS categories to learn patterns associated with different 

levels of suspicion. BI-RADS covers the major abnormalities 

of breast cancer, namely masses and microcalcifications. 

Shape and contour are the most significant features that 

indicate whether a mass is benign or malignant. Masse’s shape 

may be round, oval, lobular, or irregular. Generally, benign 

masses tend to be round, oval and circumscribed. On the other 

hand, malignant masses suggest a greater likelihood of 

irregular shape and spiculated contour [5]. 

In the last few decades, due to the evolution of 

mammography, automatic diagnosis has occupied an 

important place in the domain of breast cancer recognition. 

Computer-aided diagnosis (CAD) has become an 

interdisciplinary field, including image processing, machine 

learning, computer vision, mathematics, physics, and statistics. 

This combination creates advanced computer tools that help 

radiologists in the interpretation process. Computer Aided 

Diagnosis or CADx systems ensure, in most cases, a fully 

automated double reading of mammographic images for 

radiologists. CAD (Computer-Aided Diagnosis) systems aid 

radiologists by assisting in detecting abnormalities, but they 

cannot replace radiologists. Human expertise and judgment 

are essential for accurate diagnosis and patient care. These 

elements are integrated into computerized methods designed 

to support radiologists in their medical decision-making 

processes. The primary goal of diagnostic systems is to 

enhance the precision of a radiologist [6]. CADx systems 

comprise three basic steps, segmentation, description, and, 

classification. This evolution in CAD systems is due to shape 

representation and characterization methods applied to digital 

mammographic masses [7]. Despite using different descriptors 

based on various feature extraction techniques, the problem of 

describing spiculated masses remains difficult. The blurred 

margins and random shapes of masses make the feature 

extraction and classification process complicated. To 

overcome this problem, robust descriptors based on significant 

features are necessary.  

This paper proposes a novel approach based on the 

Triangle-area representation with polygon approximation 

(PATAR) for detecting and characterizing convexities and 

concavities in masses. The primary purpose of this paper is to 

design an advanced, fully automated method for diagnosing 

breast cancer in digital mammograms. Our interest was to 

develop a highly accurate descriptor in detecting lobulations 

and spiculations of masses. The precision in measuring mass 

features significantly affects the classification process [8]. To 

overcome the problem of spiculation, lobulation detection, and 

quantification, a polygon approximation is applied to the 

masses to raise the most critical convexities and ignore minor 

variations in contours. The triangles made by the polygon 

approximation step are measured with the Triangle-area 

representation (TAR) algorithm. TAR signature allows the 

PATAR algorithm to isolate and reasonably estimate the 

spiculated parts of masses. With this descriptor, the scale, 

rotation and translation invariant are ensured. 

The remainder of this paper is organized as follows. Section 

2 presents some of the recent methods and descriptors used in 

CADx systems. In section 3, our approach is detailed, 

including feature extraction and classification. Section 4 

presents the classification process. Experimental results and 

comparison with some previous works are detailed in section 

5. Section 6 concludes the paper and gives suggestions for 

future research. 

 

 

2. RELATED WORK 

 

Research on breast cancer classification involves various 

methodologies such as machine learning, deep learning, and 

image analysis. Studies focus on improving diagnostic 

accuracy, identifying biomarkers, and predicting cancer 

subtypes. Diverse datasets and innovative algorithms 

contribute to the ongoing advancements in breast cancer 

detection, aiding early diagnosis and personalized treatment. 

These tools also aid radiologists and technicians in quicker and 

more effective identification of breast cancer through 

mammography.  

Guliato et al. [9] proposed a descriptor that employs 

polygons for identifying key characteristics of spicules, 

including recognition points and features, in addition to the 

previously mentioned aspects of spiculation. Then, the turning 

function is applied to the polygon to calculate the spiculation 

index. An accuracy of 93% was obtained on 111 images. 

Xie et al. [10] built a model using the level set model for the 

detection and segmentation of masses, then feature extraction 

was done with multidimensional feature vectors covering gray 

level features combined with textural features, and feature 

selection is achieved by SVM and extreme learning machine 

(ELM) since not all feature vectors improve the classification. 

MIAS and DDSM datasets are used. The accuracy obtained is 

96.02%. Beheshti et al. [11] Applied the fractal method as a 

region of interest (ROI); the fractal technique was based on 

discriminating lesions from the background tissues with a low 

mean square error of 0.21%. Then, evaluation for malignancy 

is done by defining new fractal features based on extracting 

asymmetric information from the lesion. Using 168 images 

they get an accuracy of 87.81%. 

Souza et al. [12] suggested a method using section area, 

convolutions, and descriptors of shape distribution. The 

method utilizes a set of shape descriptors D1dist, D2dist, and 

D3dist, a modified descriptor of D1, D2, and D3 conceived by 

Osada et al. [13]. They proposed three methods, D1dist, D1dist, 

and D3dist, which are determined by selecting a group of 

random pixels on the surface of the mass. Section area and 

convolutions are also generated by dividing the object's 

surface in the x-y plane along the z-axis. For each descriptor, 

they calculate the standard deviation and mean of the shapes, 

resulting in 12 features. They use an SVM classifier, obtaining 

an accuracy of 92.15%.  

Ribli et al. [14] Used a Faster Region-based Convolutional 

Neural Network (Faster R-CNN) to make an automatic system 

that recognizes and classifies lesions on a digital 

mammography. Faster R-CNN builds upon a convolutional 

neural network and includes extra components to identify, 
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localize, and classify items in an image. The base CNN 

utilized in this model was a VGG16 (Visual Geometry Group) 

network, which means a 16-layer deep CNN. In the last layer, 

two objects are detected in each image: benign or malignant 

lesions. They achieved a classification accuracy of about 85%. 

Goudarzi et al. [15] extract compactness, entropy, mean, and 

smoothness from mini-MIAS database images. Then, a fuzzy 

classifier with the look-ep method is performed, getting an 

accuracy of 89.37%. 

Sun et al. [16] modified the Convolutional Neural Network 

(CNN) architecture to extract significant features from 

multiple views of MLO and CC to use the additional 

information from multiple mammography views. The model 

integrates a multi-view convolutional neural subnetwork 

(MVCNN) and a multi-dilated convolutional neural 

subnetwork (MDCNN) to extract features. They obtain an 

accuracy of 82.02% with the SVM classifier. 

Vijayarajeswari et al. [17] use the Hough transform to 

separate particular shapes in an image with an SVM classifier. 

The image is processed with the Hough transform, similar to a 

random transform. This technique is primarily employed to 

detect diverse shapes and straight lines. The Hough transform 

exhibits tolerance towards gaps, noise, and occlusion in 

mammograms. The effective extraction and distinct separation 

of features are essential. Hough transform calculates An 

accumulator for each edge point (x, y). They used 95 images 

from the MIAS database, getting an accuracy of 94%. 

Pezeshki et al. [18] extract spiculated pixels of a tumor with 

homogenous intensity. To specify the correspondence of 

pixels in the same direction to indicate a spiculated part of the 

mass, they compute the summation of dissimilarities between 

the central pixel and its adjacent pixels across all symmetric 

orthogonal orientations. A minimal difference in each 

direction signifies pixel similarity and suggests the presence 

of spiculations. They considered the summation calculated in 

the previous step to extract spiculated components in all 

directions. The accuracy obtained with this method was 

92.33%. 

De Brito Silva et al. [19] developed a descriptor based on 

maps representing geometric and topological features and the 

distribution of shapes. Two spatial feature maps, namely the 

distance map and surface map, are computed for each 

mammography image. These maps describe mass geometry 

and topology. To compute similarity measures, they generate 

two spatial feature maps, the distance map and the surface map. 

These maps save features along with their corresponding 

spatial information, representing the geometry and topology of 

the mass. Additionally, shape descriptors built on distance 

histograms are employed to calculate distances, area, and 

angles, contributing to the characterization of mass shape. The 

best accuracy obtained was 93.70% using 794 images. 

Arora et al. [20] Proposed a deep ensemble transfer learning 

for automatic feature extraction. A feature extraction 

technique based on a deep ensemble was introduced using a 

neural network (NN) classifier to evaluate the discriminative 

capability of the extracted features. This approach is 

implemented on pre-processed Region of Interest (ROI) image 

patches from the Curated Breast Imaging Subset Digital 

Database for Screening Mammography (CBIS-DDSM) 

dataset, generating features corresponding to each deep sub-

architecture. An optimized feature vector is created by 

normalizing the utilized features, and this vector is 

subsequently input into the NN classifier for the final 

classification. Using SVM, the method achieves an accuracy 

of 88% with an Area Under the Curve (AUC) of 0.88.  

Zhang et al. [21]. Develop an approach named BDR-CNN-

GCN; this method integrates two advanced neural networks: 

(a) a graph convolutional network (GCN) and (b) a 

convolutional neural network (CNN). Initially, they employed 

a standard 8-layer CNN and incorporated two enhancement 

techniques: (a) batch normalization (BN) and (b) dropout 

(DO). Subsequently, they replaced traditional max pooling 

with rank-based stochastic pooling (RSP), creating BDR-CNN, 

a fusion of CNN, BN, DO, and RSP. BDR-CNN was then 

hybridized with a two-layer GCN, making the BDR-CNN-

GCN model employed to analyze breast mammograms using 

a 14-way data augmentation approach. The results showed that 

the BDR-CNN-GCN model achieved an accuracy of 96% 

when analyzing breast mammograms using the MIAS 

database. 

The approaches proposed in the related work present 

methods and models to improve the accuracy of description 

and classification. In our work, we have concentrated on 

describing the spiculated masses to ameliorate the accuracy of 

CADx systems. 

 

 

3. PATAR DESCRIPTOR  

 

As mentioned previously, the main goal of our work is to 

provide radiologists with a robust descriptor that helps them in 

the diagnosis procedure. An efficient CADx system is based 

on a solid descriptor with significant features. Due to the 

random shape of masses and the high resemblance between 

breast tissue and masses, the description of spiculated masses 

remains a difficult task and an unsolved problem in the domain 

of breast cancer. In the literature, most of the descriptors 

developed until now cannot extract all spiculated parts of 

masses and automatically false the classification step [22]. To 

overcome this problem, we proposed an approach based on 

two steps. First, we begin by applying a geometric 

transformation, a polygon approximation of the mass contour. 

The polygon approximation isolates and well-estimates 

concave and convex areas, which are the key properties that 

distinguish benign from malignant masses. Secondly, to 

calculate the size of spiculations of masses, Triangle-Area 

Representation (TAR) is used. All the corners made by the 

polygon approximation are browsed in the clockwise direction 

to calculate the triangles formed by three consecutive points. 

Our descriptor is based on polygon approximation as the first 

step, followed by the TAR calculation, making a robust 

descriptor capable of detecting spiculation in masses and 

calculating their size. Figure 2 explains the functioning of the 

PATAR descriptor; each step is detailed in the sections below. 
 

 
 

Figure 2. Illustration of PATAR descriptor, polygon 

approximation is applied on mass ROI’s then TAR signature 

to extract features 

 

3.1 Polygon approximation 

 

Polygonal approximation simplifies complex shapes or 

contours by representing them using polygons with minimum 

ROI
Polyon

approximation
TAR 

signature

Features
extraction
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vertices. The goal is to maintain important features of the 

original form while reducing the level of detail. This 

simplification is often done for computational efficiency, data 

compression, or visualization [23]. Polygonal approximation 

enhances the efficiency of shape characterization and 

classification. This method is efficient because of its strong 

representation and insensitivity to translation, scale, and 

rotation invariance. These significant features are found 

helpful in many applications. The primary goal of polygon 

approximation is to represent a curve using a polygonal shape, 

with its vertices determined by a selected subset of points 

along the curve.  

In our context, polygon approximation plays a crucial role 

in maintaining the degree of spiculation of masses while 

reducing contours to a polygon form. Figure 3 shows an 

example of polygon approximation applied to digital 

mammographic mass. 

 

 
(a) Original 

mammographic mass 

 
(b) CBIS-DDSM ROI 

 
(c) Contour of the mass 

 
(d) Polygon approximation 

 

Figure 3. Example of Polygon approximation: a) the original 

mammographic mass, b) CBIS-DDSM ROI, c) contour of the 

mass and d) the result of its polygon approximation 

 

 
(a) Mass without polygon 

approximation 

              
(b) ε=0.005 

 
(c) ε=0.010 

 
(d) ε=0.015 

 

Figure 4. Different values of parameter ε on same mass 

contour, (a) mass without polygon approximation (b) ε=0.005 

(c) ε=0.010 and (d) ε=0.015 

Algorithm 1. Douglas-Peucker polygon approximation 

algorithm 

 

procedure DouglasPeucker(PointList[1...n], tolerance: real) 

    dmax := 0 

    index := 0 

    for i := 2 to n - 1 do 

        d := PerpendicularDistance(PointList[i], 

Line(PointList[1], PointList[n])) 

        if d > dmax then 

            index := i 

            dmax := d 

    end for 

    if dmax > tolerance then 

        recResults1 := DouglasPeucker(PointList[1...index], 

tolerance) 

        recResults2 := DouglasPeucker(PointList[index...n], 

tolerance) 

        return concatenate(recResults1, recResults2) 

    else 

        return Line(PointList[1], PointList[n]) 

    end if 

end procedure 

 

The Ramer-Douglas-Peucker algorithm [23] is used for the 

polygon approximation method. Let us consider the curve Cd 

= {p1, p2, …., pn}, where pi=(xi, yi) are points in the 

clockwise direction in the discrete 2-dimensional space. These 

curves are derived from the edges of mammographic masses 

using contour-detection techniques. The algorithm starts by 

identifying the start and end points of the mass contour. In 

their paper, Douglas and Peucker [23] refer to these two points 

as the anchor point and the floating point. The algorithm has 

one parameter, ε, and the value of ε defines the degree of 

approximation. In Figure 4, different values of ε are used for 

the same mass, showing the importance of ε in keeping the 

most significant spiculations of masses. More ɛ parameter is 

important, more variations in contour are ignored, and the 

polygon is less representing the original form of mass. In 

Algorithm 1, tolerance refers to the ε parameter. 

The value of the ε parameter is fundamental for the PATAR 

descriptor; a false value may omit the concave and convex 

spaces in mass. The challenge is to find a value of ε that keeps 

the spiculated part of the contour’s mass without deformity 

and, on the other hand, transforms a mass into a polygon that 

preserves information and characteristics of masses. In this 

work, ɛ parameter of the polygon approximation function is 

fixed to 0.01 using the Douglas-Peucker algorithm [23]. 

ε=0,01 is the universal value and guaranty the best 

representation of the mass by preserving the morphology of 

the shape. 

 

3.2 TAR signature 

 

Concavity and convexity are shape features made by 

spiculations in masses; they are the most significant 

characteristics used to discriminate between malignant or 

benign masses. This approach uses triangle-area 

representation (TAR) calculation in the second step of the 

PATAR descriptor after polygon approximation. In this paper, 

a triangle-area representation was used to detect and calculate 

concavity and convexity with high precision. The TAR 

function calculates the area formed by triangles shaped by the 

mass contour. The curvature of the contour point (in, jn) is 
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calculated using the TAR function, defined as follows: 

 

𝑇𝐴𝑅 (𝑛, 𝑡𝑠) =
1

2
|

𝑖𝑛−𝑡𝑠 𝑗𝑛−𝑡𝑠 1
𝑖𝑛 𝑗𝑛 1

𝑖𝑛+𝑡𝑠 𝑗𝑛+𝑡𝑠 1
|  (1) 

 

For every three consecutive pixels of the contour of masses 

Pn-ts (in-ts, jn-ts), Pn (xn, yn), and Pn+ts (xn+ts, yn+ts), where n∈ [1, N] 

and ts∈ [1, N /2 −1], ts represent the step of the TAR function 

if ts=1 means that Pn+1 is the neighbor of Pn in the clockwise 

direction and Pn-1 is the neighbor in counter-clockwise 

direction. The triangle is formed by the points Pn-1, Pn, and 

Pn+1is given by Alajlan et al. [24]. A pseudo-code of the TAR 

signature is presented in Algorithm 2. 

 

Algorithm 2. TAR signature of contour 

 

Procedure TAR(PointList[1...n], step: integer) 

for p := 1 to n do 

 TAR[p] := det[(pi-step,pj-step ,1),(pi,pj,1),(pi+1,pj+1,1)] 

if TAR(p) < 0 then p is concave point 

if TAR(p) > 0 then p is convex point 

if TAR = 0 traight line  

return TAR[] 

end procedure  

 

Figure 5 illustrates that the TAR function can generate three 

distinct outcomes: negative, zero, and positive values when the 

contour is traversed in a counter-clockwise direction. These 

outcomes signify the nature of the area enclosed by the three 

points, indicating whether it is concave, straight-line, or 

convex [24]. Additionally, the TAR signature exhibits 

significant invariance, meaning it remains consistent even 

when subjected to translation, rotation, and scaling operations. 

This dual advantage of efficiency and invariance makes 

triangle-area representation a valuable tool in our research, 

where it aids in rendering smooth curves accurately while 

reducing computational overhead. 

 

 
 

Figure 5. Three possible values of TAR signature, convex 

when TAR is positive, convex when TAR is negative and 

straight line if TAR=0 

 

3.3 Feature extraction 

 

The role of a descriptor in computer vision and image 

processing is to capture and represent critical characteristics or 

features of an image quantitatively and mathematically. 

Descriptors try to simulate human perception by quantifying 

visual features and patterns in images, aiming to replicate how 

humans interpret and understand visual content. A feature is a 

measurable information extracted from an image to identify 

and classify objects. PATAR descriptor aims to quantify 

spiculation in mass and qualify its degree to assign mass in a 

specific class (Benign or malignant). PATAR takes the ROI 

image in input and provides a series of features generated by 

the implemented approach. 

The malignant mass has a specific topology characterized 

by lines of varying length and thickness radiating from the 

margin of the mass. As mentioned before, PATAR aims to 

isolate concave and convex spaces and begin the process by 

applying a polygon approximation. All the corners in the 

polygon generated are marked to form the triangles and 

calculate their sizes with triangle-area representation (TAR). 

The corners are browsed in the clockwise direction; for each 

point, Pi, the area of the triangle formed by Pi, Pi-1, and Pi+1 is 

measured. The number of corners, the concave, and convex, 

are the extracted features using the PATAR descriptor. 

- Number of corners: a shape with high irregularity 

contains more corners compared to round shapes. Oval and 

round masses are usually benign and contain fewer corners 

than irregular shapes. Figure 6 and Figure 7 illustrate the 

relation between the number of corners and the probability of 

roundness of mass shape. 

 

        
(a)                                          (b) 

 

Figure 6. (a) Benign mass with round shape having 13 

corners, (b) malignant mass with irregular shape having 25 

corners 

 

- Negative and Positive TAR: TAR signature is used 

to extract and evaluate convex and concave spaces formed by 

the polygon’s corners. The triangles are separated according 

to their values, as follow: 

 

{
𝑇𝐴𝑅𝑁 = ∑  𝑇𝐴𝑅𝑃𝑖 < 0𝑛

𝑖=1

𝑇𝐴𝑅𝑃 =  ∑  𝑇𝐴𝑅𝑃𝑖 > 0𝑛
𝑖=1

  (2) 

 

 n is the number of corners, the area of triangles i.e., the 

values of TARN and TARP made by the corners of shapes 

define the degree of spiculation in mass. A high value of TARN 

and TARP means the mass is probably malignant. Round mass 

is characterized by a value of TARN close to zero. 

 

     
(a)                            (b) 

 

Figure 7. Mass (a) and (b) shows the difference between 

round (a) and spiculated mass (b) in term of TARN (Green 

triangle) and TARP (black triangle) values 

 

In addition to TARN, TARP and the number of corners, 
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mass area, and contour length are used as features in the 

classification process. The extracted features are formulated in 

the following vector PATAR [TARN, TARP, NBP, MA, CL]. 

 

 

4. MASS CLASSIFICATION 

 

The features obtained during the description phase serve as 

inputs for the subsequent classification process. The 

classification aims to allocate each mass to the suitable class, 

benign or malignant. In the domain of breast cancer, every 

decision made by a radiologist carries a risk of error, and only 

a biopsy can decide definitively if a mass is benign or 

malignant. For those reasons we choose a fuzzy classifier in 

this stage. A fuzzy classifier will attribute for each mass a 

probability of membership to every class. In addition to Fuzzy 

C-means, SVM and Random Forest are selected to perform 

classification. 

This step uses three classifiers to evaluate the PATAR 

descriptor: Fuzzy C-means (FCM), SVM, and Random Forest 

(RF). The choice of classifiers depends on the data types, 

scales, and classification purpose. 

Fuzzy C-means (FCM) is a soft clustering method that 

assigns each data point in a dataset to N clusters with a certain 

degree of membership or probability score, indicating the 

likelihood of the data point belonging to each cluster [25]. In 

the literature, fuzzy classification is not widely used in 

computer-aided diagnosis systems (CADx). A fuzzy classifier 

in breast cancer diagnosis shows realistic results. In reality, a 

radiologist cannot define if a mass is malignant or benign, and 

only a biopsy gives a 100% diagnosis; for these reasons, a 

probability of malignancy and benignity should be attributed 

to each mass. In our approach, the probability of membership 

is equal to the distance of each point (Features vector of the 

image) to the centroid of the class (Malignant or benign). 

Based on the ground truth training dataset, N masses are 

divided into two classes, malignant and benign Ja and Jb, 

respectively, and the matrix membership Uia, Uib ∈ {0,1} 

i=1, …, N is also created. For each class, the centroid is 

calculated as follows [25]: 

 

𝐶𝑎,𝑏 =
∑ 𝑈𝑖(𝑎,𝑏)

𝑚 𝑥𝑖
𝑁
𝑖=1

∑ 𝑈𝑖 (𝑎,𝑏)
𝑚𝑁

𝑖=1

  (3) 

 

In this classification stage, the distance between centroid 

classes (Benign and malignant) and the mass point is 

calculated for every mass in the test dataset. Based on those 

distance membership to each class is estimated. The 

membership Ui(a,b) of a mass defines their probability of 

malignity and benignity. Ui(a,b) is calculated as follows [25]: 

 

Ui(a,b) =
1

∑ (
‖𝑥𝑖−𝑐𝑎,𝑏‖

‖𝑥𝑖−𝑐𝑎,𝑏‖
)

2
𝑚−1

𝑐
𝑘=1

  
(4) 

 

Support vector machines as the supervised classifier are 

widely used, especially for two-class problems like mass 

classification. SVM provides distance to the hyperplane 

instead of probability as FCM and random forest. Random 

Forest is a very powerful classifier when features are on 

various scales. 

 

 

5. EXPERIMENTS AND RESULTS 

 

The adopted strategy in experiments is separated into two 

phases: learning and testing. In the training part, features are 

extracted from the ROIs of the CBIS-DDSM dataset. ROIs are 

a portion of the images containing the abnormality; these are 

delimitated and annotated by mammographs and radiologists 

in the CBIS-DDSM dataset. CBIS-DDSM is an improved and 

standardized version of DDSM designed for evaluating CAD 

systems [26]. Using the ground truth of the CBIS-DDSM 

dataset, we evaluate the PATAR descriptor. Figure 8 shows 

the outline of our CADx system based on PATAR. 

 

 
 

Figure 8. Overview of the proposed approach, in the learning 

phase training dataset is used to build the feature’s model. 

SVM, FCM and RF classifiers are used to distinguish 

malignant from benign masses. Finally, the testing to 

evaluate PATAR 

 

Our approach for automatic diagnosis was put to the test 

through a series of experiments. These experiments evaluated 

its performance by measuring accuracy, sensitivity, specificity, 

and the F1-score. Python software (version 3.7) with OpenCV 

library was used on a PC with Intel i5 (2.00 Ghz) with 8 GB 

of RAM and a Windows 10 operating system. CBIS-DDSM 

was used to assess the model's performance [26]. The dataset 

is separated into two subsets, one for the training containing 

1318 ROIs (637 Malignant and 681 benign masses) and 

another for the test and validation step composed of 378 ROIs 

(147 Malignant and 231 benign masses). 

 

5.1 CBIS-DDSM dataset 

 

The Digital Database for Screening Mammography (DDSM) 

contains digitized images from scanned mammography films 

compressed with lossless JPEG encoding. In these 

experiments, we have used a database version, i.e., CBIS-

DDSM, containing an updated and standardized version subset 

of the original DDSM images in the standard Digital imaging 

and communications in medicine (DICOM) format. Table 1 

shows the number of cases, abnormalities, and images in each 

set, training, and testing. Masses are located and approved by 

an experiment radiologist [26]. 
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Table 1. Number of Cases, Abnormalities and Images in the Training and Test Sets, each case can have one or more 

abnormalities and more images 

 
 Benign Cases Malignant Cases  

 Cases Abnormalities Images Cases Abnormalities Images Total Images 

Training 355 387 681 336 361 637 1318 

Testing 117 135 231 83 87 147 378 

Computer-aided diagnosis systems (CADx) need only 

analyze regions of interest (ROIs), not full mammogram 

images. ROIs feature abnormalities within the cropped 

sections of the image, which outline the bounding rectangle of 

the abnormality relative to its ROI see Figure 9. Our descriptor 

performed calculations directly on masses segmented and 

delineated the mass from the enveloping tissue. Ground truth 

provided by CBIS-DDSM is founded on the BI-RADS 

category. 

 

   

   

   

   
(a)                                                  (b) 

 

Figure 9. Four cropped images of mass from CBIS-DDSM 

dataset, a) mammographic images without segmentation, b) 

shows segmented mass (Mask image) 

 

5.2 Results and discussion 

 

In order to determine the effectiveness of the proposed 

approach, 1 545 mammograms were used, 1 318 (681 benign 

and 637 malignant) images were in the training phase, and 247 

images were selected for testing (131 benign and 96 

malignant). Our method's diagnostic performance is assessed 

regarding computing time, sensitivity, specificity, and 

accuracy. Accuracy measures how many test cases the 

classifier correctly classifies, while sensitivity (SN) represents 

the valid positive rate, and specificity (SP) denotes the true 

negative rate. These parameters are formally defined as 

follows: 

 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (6) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (7) 

 

where, TP is the true positive, FP is the false positive, TN is 

the true negative, and FN is the false negative. 

The obtained accuracy in this method proves that combining 

polygon approximation and TAR signature improves the 

classification of mammograms in order to diagnose breast 

cancer on digital mammograms automatically. Polygon 

approximation is valuable in our descriptor, especially in 

simplifying complex masse shapes or contours in 

mammographic images. Breast mass can contain intricate 

shapes and contours, especially spiculated masses. Polygon 

approximation simplifies these shapes by representing them 

with reduced vertices without losing their characteristics 

(Spiculations) and making triangle-area representation (TAR) 

more beneficial. Without polygon approximation, TAR 

calculations are done on all negligible contour variations and 

false completely the description and poorly estimate the 

spiculations. 

In Table 2, the results of the comparison between our 

approach and classification without polygon approximation 

using TAR signature. The accuracy obtained with polygon 

approximation and Fuzzy C-means classifier is 96.76%, 

97,94% with Random Forest, and 94,65% with Support vector 

machines. Without polygon approximation, the classification 

accuracy decreases significantly to 82.80%. The amelioration 

gained in terms of accuracy, precision, sensitivity, and 

specificity with polygon approximation confirms with 

exactitude our hypotheses at the beginning of our paper that 

spiculation in masses will be well raised, represented, 

extracted, and evaluated with our contribution using PATAR 

descriptor. Compared results are presented in Figure 10. 

The classification performance using the DDSM dataset for 

the three classifiers (RF, FCM, and SVM) is indicated in the 

ROC plots in Figure 11. The area under a receiver operating 

characteristic (ROC) curve, abbreviated as AUC, offers an 

aggregate performance measure across various classification 

thresholds. The AUC (Area Under the Curve) is an evaluation 

metric ranging from 0 to 1, with 1 indicating the highest level 

of performance. The SVM classifier's AUC of FCM was 95,48 

and 96,23; Random Forest gives the best performance with 

97,13 of AUC and 97,94 accuracy. 

Table 3 compares our approach and some existing works on 
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mammographic classification to better demonstrate the 

performance of our method. Our work gives one of the best 

results in accuracy, sensitivity, and specificity using a 

maximum number of mammograms.97.94% is the highest 

accuracy obtained with a random forest classifier using more 

than double the samples (mammograms) in most of the studies 

presented in Table 3. 

 

Table 2. Comparison of results obtained with and without polygon approximation 

 
 Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 

(%) 

With Polygon Approximation 

RF 

FCM 

SVM 

 

97.94 

96,76 

94,65 

 

98.31 

95.08 

98,04 

 

93.55 

92.06 

80,65 

 

99.45 

98.37 

99,45 

 

95.87 

93.55 

88,50 

Without Polygon Approximation 82.80 76.29 77.32 83.57 74.81 

 

 
 

Figure 10. Comparing the best results of PATAR, with and without polygon approximation 

 

Table 3. Comparison between proposed approach and some previous works 

 
METHOD Number of Mammograms Database Accuracy (%) Sensitivity (%) Specificity (%) Classifier Year 

PATAR – FCM 

PATAR – SVM 

PATAR – RF 

1545 

1545 

1545 

CBIS-DDSM 

CBIS-DDSM 

CBIS-DDSM 

96.76 

94.65 

97.94 

92.06 

80.65 

93.55 

98.37 

99.45 

99.45 

FCM 

SVM 

RF 

- 

Arora et al. [20] - CBIS-DDSM 88 - - SVM 2020 

Pezeshki et al. [18] 200 DDSM 93.22 92.06 94.54 SVM 2019 

Vijayarajeswari et al. [17] 322 MIAS 94 - - SVM 2019 

Goudarzi et al. [15] - mini-MIAS 89.37 88.23 84.23 Fuzzy 2018 

Souza et al. [12] 620 DDSM 92.15 91.40 92.90 SVM 2017 

Xie et al. [11] 300 DDSM 96.02 94.88 97.16 SVM 2016 

Beheshti et al. [10] 168 DDSM 87.81 97.37 79.55 SVM 2016 
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Figure 11. ROC curve of RF, SVM and FCM using CBIS-

DDSM. SVM classifier ensures the best results in terms 

of accuracy and AUC 

 

 

6. CONCLUSION 

 

In this paper, a new mass descriptor is proposed for breast 

cancer diagnosis using digitized mammograms. PATAR 

descriptor performs a polygon approximation on masses to 

eliminate slight variation in contours and detect important 

spiculations, which are significant characteristics for 

automatic diagnosis in the breast cancer domain. Finally, 

Fuzzy C-means, SVM, and random forest were utilized for 

classification. The results obtained on mammograms from 

CBIS-DDSM confirm the utility of our contribution. With an 

accuracy of 97.94%, the PATAR descriptor presents one of the 

best results using a random forest classifier. We recommend 

conducting experiments using different image databases to 

improve the method's validation. The epsilon (ɛ) parameter 

can be revisited by applying a generic method that calculates 

the optimal value of (ɛ). 
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