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 Early cancer detection is crucial for superior therapy and survival rates. Algorithms that use 

machine learning have proven potential for classifying tumors through the use of gene 

expression data. This study seeks to formulate a hybrid evolutionary machine learning 

approach to accurately classifying DNA microarray data as normal or malignant. Gene 

expression data for breast, brain, and colon cancer were acquired. The datasets were 

subjected to pre-processing, including normalization and missing value imputation. A 

hybrid technique has been proposed, which combines particle swarm optimization (PSO) 

for feature selection with probabilistic neural networks (PNN) for classification. PSO 

identified an appropriate selection of features to increase classification performance. The 

PSO-PNN hybrid model obtained classification accuracies of 91.46% on breast cancer data, 

91.54% on brain cancer data, and 95.16% on colon cancer data outperforming alternate 

approaches. The findings show that an evolutionary hybrid technique combining PSO and 

PNN can reliably classify malignant gene expression profiles. This can help with early 

cancer detection. The proposed technique outperforms conventional machine learning 

algorithms. Further research can validate these findings on more cancer datasets.  
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1. INTRODUCTION 

 

Machine learning, a subfield of artificial intelligence, traces 

its origins back to the 1950s. The term "machine learning" 

itself was coined in 1959 by IBM researcher Arthur Samuel, 

one of the pioneers in the area. Samuel defined machine 

learning as the ability of computers to learn without being 

explicitly programmed. In his early work, he developed a self-

learning checker program that progressively improved its 

performance by analyzing its games [1, 2]. 

Samuel's groundbreaking research established machine 

learning as a subdomain within AI focused on building 

systems that can automatically learn and gain intelligence 

from data. In the following decades, Machine learning has 

evolved into specialized approaches such as neural networks, 

decision tree learning, Bayesian networks, clustering, and 

reinforcement learning. Machine learning improvements 

began in the 1990s as processing power increased and vast 

datasets became available. 

The rise of machine learning today, driven by algorithm 

improvements, data growth, and affordable GPU-powered 

computing, finds adoption across sectors such as healthcare, 

finance, transportation, security, and the sciences. Despite its 

extensive potential, however, machine learning still falls short 

of replicating human intelligence. Overcoming these hurdles 

to artificial general intelligence, seen as the AI research 

frontier, remains a grand challenge [3, 4]. Machine learning 

(ML) can be supervised or unsupervised. Supervised learning 

utilizes well-defined data for training. Unsupervised learning 

often provides superior performance and results for large data 

sets [5, 6]. Furthermore, Experience is the data on which the 

machine learning model is trained in machine learning. ML 

models learn patterns and relationships from the data, which 

allows them to make predictions without needing to be 

explicitly programmed. Specifically: The training data that is 

fed into the machine learning algorithm serves as the 

experience that enables it to learn. Essentially, this data 

represents real-world examples of what the model needs to 

understand [7]. 

Deoxyribonucleic acid (DNA) is a lengthy biomolecule 

formed out of four basic units called nucleotides: adenine (A), 

cytosine (C), guanine (G), and thymine. These nucleotides are 

generally referred to as bases for DNA. The sequence in which 

these four bases are organized along the DNA strand provides 

genetic instructions for cell function, development, and 

replication. Even little alterations in base order or mutations 

can result in obvious changes in physical characteristics, and 

predispositions to diseases, and influence many other 

biological processes. Moreover, the sequence of DNA strands 

determines its genetic information and is critical for 

establishing genetic identity. For example, no two people 

(except identical twins) have the same DNA base sequence [8]. 

Thus, examining similarities and variances in base sequencing 

across individuals or species enables us to identify genetic 

linkages and variability. 
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2. LITERATURE REVIEW 

 

The term "cancer" refers to a class of disorders caused by 

abnormal cell proliferation that can spread to other parts of the 

body. Cancer, after cardiovascular illnesses, is the second 

leading cause of mortality, according to the World Health 

Organization. In recent years, the field of biomedical research 

has demonstrated a strong interest in data analysis. Several 

studies in published literature have assessed developments in 

computational approaches to gene expression [9]. 

Since the late nineteenth century, gene expression analysis 

has been a focus of biomedical research to better understand 

the biological mechanisms underlying development, disease, 

aging, and responses to environmental signals. Early gene 

analysis techniques used low-throughput wet lab processes 

like northern blots or quantitative PCR to measure mRNA 

levels one gene at a time. The first significant computational 

breakthrough happened in 1995 with the advent of DNA 

microarrays, which allowed for the simultaneous 

measurement of thousands of gene transcripts on a single RNA 

sample using hybridization. 

Over the following decade, researchers created a variety of 

computational methods for interpreting microarray data, such 

as finding differentially expressed genes, clustering co-

regulated genes, mapping regulatory networks, molecular 

classification of disease subtypes, and tumor identification. 

Statistical techniques, unsupervised learning, and pattern 

recognition algorithms tailored to high-dimensional 

expression data were among the most noteworthy 

advancements. By the early 2000s, supervised classifiers had 

shown success in predicting cancer types using gene 

expression patterns. 

The next stage of advancement was next-generation 

sequencing, which dramatically enhanced biological data. 

New computing disciplines, such as machine learning, proved 

important in extracting insights from massive, complex 

genetic information. Deep neural networks outperformed 

traditional methods for tasks such as recognizing transcript 

isoforms, predicting DNA, inferring gene regulatory logic, and 

detecting molecular interactions. Cloud computing enabled 

the scaling of analysis procedures. Dynamic meta-learning 

frameworks continue to improve performance on molecular 

prediction tasks. 

A study has presented a method for predicting a splice site 

based on studies showing that using a second-order Markov 

model and creating a support vector machine (SVM) is more 

efficient than using a first-order Markov model as a pre-model 

The processing method is effective when combining this 

method with SVM that will provide higher classification 

accuracy regarding Splice location prediction [10]. 

On the other hand, In 2016, an article presented a 

probabilistic method for estimating the contributor number in 

a DNA mixture to evaluate the method, they compared the 

performance of the classification of six ML algorithms and 

evaluated this model concerning the performance of this 

algorithm the total results illustrated that it is possible to detect 

up to four contributors in a DNA mixture with a total accuracy 

of more than 98% [11]. Another study presented BIGBIOCL, 

an algorithm that applied methods of supervised classification 

to datasets. It is intended to extract the alternative and 

equivalent classification models by deleting selected features 

iteratively. Experiments are conducted using DNA 

methylation datasets, they perform the classification process 

to extract many methylation sites and their related genes in 

precise performance [12]. Another study presented DL as a 

group approach that includes many different ML models. The 

useful gene data selected by differential gene expression 

analysis are provided for five different classification models. 

Thus, the DL method is used to aggregate the outputs of the 

five classifiers [10]. To overcome the challenges arising from 

high-dimensional data in microarrays, a method combining 

hybrid and genetic trait selection techniques has been 

proposed [13]. This should ultimately increase the accuracy of 

cancer classification. Initially, the most important features in 

malicious microarray datasets are found using filtering feature 

selection techniques such as informative interest, informative 

interest ratio, and chi-square. The selected features are then 

improved and refined using a genetic algorithm, enhancing the 

overall performance of the proposed cancer classification 

method.  

In this article, the authors suggested four microarray 

datasets primarily associated with breast, lung, central nervous 

system, and brain cancers. The results prove that the feature 

selection by hybrid and genetic filtering outperforms several 

traditional machine learning techniques, in terms of precision, 

recall, precision, and F-measurement. On another hand, a 

novel medical support system is offered, in which genes of 

interest are chosen from next-generation sequencing (NGS) 

datasets using a hybrid multi-stage gene identification 

approach that combines Relief-Cuckoo search (CS) and 

Random Forest (RF). This approach is effective at identifying 

infection-induced septicemia and related genes, allowing for 

early disease detection. Hybrid feature selection approaches 

have advanced in later stages of illness therapy, such as 

diagnostic and medication development. The suggested model, 

with an accuracy rate of 95.23%, is a useful tool for in-depth 

analysis of diverse viral illnesses and simplifies the diagnosis 

process [14]. 

Improving cancer classification is the goal of the proposed 

cancer optimization algorithm using the Binary Competitive 

Search of Woe Optimization (IBCSOWOA) algorithm. This 

technique is based on the use of minimum repeat information 

and maximum relevance (mRMR) as a filter method and 

applies IBCSO to reduce the fraction that includes informative 

genes [15]. An artificial neural network (ANN) model is used 

to evaluate the IBCSOWA approach, and a woe optimization 

algorithm (WOA) is used to adjust the modification of model 

parameters. Six transformation-based microarray datasets are 

used to evaluate the performance of IBCSOWA and compare 

it with other disease prediction techniques. Experimental 

results, demonstrating the optimal fraction of features, 

classification accuracy, and digestion rate, demonstrate the 

superiority of the proposed strategy over alternative, nature-

inspired methods. Remarkably, the proposed method exceeds 

98% accuracy on all six datasets; The lung cancer dataset 

achieves the highest accuracy rate of 99.45%. The main aim 

of this suggested project was to develop a Gene Expression 

Cancer Classification Network (GECC-Net) using artificial 

intelligence techniques [14]. Initially, transfer learning based 

on AlexNet is used to extract features from a dataset by 

evaluating the relationships between distinct entities. The 

optimal fuzzy rules for feature selection are then identified 

using a hybrid fuzzy ranking network (HFRN). Furthermore, 

for the multi-class classification task, ovarian, colon, and 

lymphoma malignancies are classified using a multi-kernel 

support machine (MK-SVM). Simulation findings 

demonstrate that the provided GECC-Net outperforms the 

latest methods. To combat breast cancer, a study was 
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conducted to develop a hybrid machine-learning model for 

early prediction of breast cancer [16]. XBoost tree, multilayer 

perceptron, logistic regression, random tree classification, and 

random tree classification were applied to a dataset from 

Kaggle to predict the growth and sizes of breast tumors. 

Python language was used to implement these machine-

learning algorithms and display the results. The results showed 

significantly high accuracy (99.65%) compared to standard 

methods on both the training and test datasets. The predictive 

model shows great potential in improving early recognition 

and detection of breast cancer, which will enhance treatment 

outcomes. In addition, it may provide important support to 

patients in managing their lifestyle and condition, contributing 

to their survival and recovery. Furthermore, patients with 

squamous cell carcinoma (head and neck) are at risk for 

developing a second squamous cell carcinoma of the lung or 

pulmonary metastases [17]. Recognizing the difference 

between pulmonary metastases and original lung tumors is 

critical in clinical practice, although it is not always attainable 

(with current technologies). DNA methylation profiling is 

performed (on primary cancers). Following that, three 

different machine learning approaches are trained to 

distinguish the metastatic HNSC from the main LUSC. An 

artificial neural network was created to classify 96.4% of the 

cases for 279 patients (validation cohort) with LUSC and 

HNSC, exceeding random forests by 87.8% and support vector 

machines by 95.7%. Accuracy predictions of more than 99% 

are attained for neural networks at 92.1%, support vector 

machines at 90%, and random forests at 43%, using thresholds 

applied to the probability scores that generated. Finally, the 

approach can help guide therapy options by providing a more 

reliable distinction diagnostic of pulmonary metastases (for 

HNSC from primary LUSC). 

Another study was conducted and showed that up to 90% of 

cancer deaths are from metastatic cancers. The known 

differences from the primary cancers are crucial for 

identifying cancer types and targeted treatment development 

(for each type of cancer). An interesting cancer prediction 

target is the DNA methylation patterns, also an essential 

mediator for the possible change to metastatic cancer. In this 

study, 24 types of cancer are used and 9303 samples of 

methylome are downloaded from well-known repositories of 

medical data, such as GEO (Gene Expression Omnibus) and 

TCGA (The Cancer Genome Atlas). Machine learning 

classifiers are constructed for discriminating non-cancerous 

methylome, primary, and metastatic samples. ML models such 

as RF (random forest), XGBoost (extreme gradient boosting), 

NB (Naive Bayes), and SVM (support vector machines) are 

applied to classify the types of cancer relying on their origin 

tissue. Almost all classifiers above are outperformed by RF 

(random forest), for an accuracy of up to 99%. Furthermore, 

to classify cancer types a local interpretable model agnostic 

explanation (called LIME) is applied to illustrate essential 

methylation biomarkers [18]. 

In 2022, An improved machine learning method was 

proposed for analyzing the human gene sequencing and tumor 

sequencing patterns. It is possible for patients with tumor 

sequencing with the help of different medical systems to 

monitor the changes in the tumor genome. Genetic testing or 

genetic specification is another term for tumor DNA 

sequencing. To develop a personalized plan for cancer 

treatment depending on the tumor's molecular characteristics 

(rather than a one-size-fits-all treatment method) clinical 

decision making is done with the help of sequence results. 

Tumor sequencing had a main role in cancer research. It 

analyzes the patients' circulatory problems with different types 

of tumors for public-domain analysis. It also monitors cancer 

or tumor genetic sequences in large datasets for calculating 

tumor location and size. This aids the doctor in having an 

accurate insight report for the tumor type and problems that 

may occur to patients. Two main conclusions from the analysis 

of cancer-tumor-gene-sequences datasets are made: each 

patient's genetic makeup is different and no identical two 

cancers are there [19]. 

The studies examine a variety of machine learning 

approaches to cancer data, such as Markov models, 

probabilistic methods, classification algorithms, deep learning 

ensembles, hybrid filter-genetic methods, Relief-Cuckoo 

Search-Random Forest pipelines, Improved Binary 

Competitive Swarm Optimization with Whale Optimization, 

transfer learning, and multi-kernel support vector machines. 

While most research provides good classification performance 

measures, they do not provide extensive ablation analyses to 

demonstrate the added advantage of the approaches used over 

simpler baselines. The lack of model interpretation reduces 

clinical value. Comparative benchmarking against popular 

public datasets is likewise lacking, making performance 

claims difficult to understand. The primary focus is on 

genomic information such as splice sites, methylation patterns, 

and gene expression. While giving biological insights, 

successful multi-view cancer diagnosis requires the 

examination of many data modalities such as imaging, 

histology, and proteomics. The assessment was therefore 

limited to binary classification, but practical utility requires 

multi-class labeling and detection. Deep neural networks and 

Relief-Cuckoo search show promise, but tunability and 

generalization remain tough. Simpler tree-based and SVM 

classifiers can be more reliable but less efficient. Handling 

class imbalance and validation on separate test sets is not well 

addressed. Overall, there is a scarcity of deployable AI 

solutions despite shown technical viability. Collaboration 

between data scientists and oncology experts can result in 

human-centered diagnostic tools. Federated learning, which 

uses distributed data while preserving privacy, is 

underexplored. As cancer subtyping databases expand, deep 

semi-supervised techniques provide additional options. In 

conclusion, major research linked with clinical needs is 

required to unleash the power of machine learning for 

improving cancer outcomes. 

 

 

3. PROBABILISTIC NEURAL NETWORK (PNN) 

 

PNN is a data classification model that uses the Bayesian 

decision guideline. The number of neurons in the input layer 

is equal to the number of neurons in the pattern layer with the 

same amount of training examples. 

The structure of the PNN model consists of Input Layer, 

Layer Style, Layer combination, and the resulting layer. The 

data of the training samples are received by the input layer 

which means that the training input feature vector calculates 

the relation between the samples of input training and the 

training sample's different patterns, these samples are sent to 

the PNN, and this rule is defined as follows assuming that [10]: 

1. There is an input x ∈ 𝑅𝑛  datatype in one of the 

previously defined glasses g = 1, G (where G is neurons). 

2. The probability of x ∈ g class is equal to 𝑃𝑔. 

3. Probability density functions𝑦1(𝑥), 𝑦2(𝑥), …., 𝑦𝐺(𝑥) for 
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all known combinations. 

4. According to the Bayesian rule, at g 6= h if 𝑦𝑔(𝑥)  > 

𝑦ℎ(𝑥) . Usually, pg = ph and yg = yh, the vector x is 

classified into the class g. When classifying real data 

problems, no information about probability density 

functions (PDF) 𝑦𝑔(𝑥)  is highlighted because 

sometimes the assignment of the data is unknown, so 

some approximation must be specified for (PDF) where 

it can be obtained using the Parzen method [11]. 

5. The output layer estimates class x according to the 

Bayesian rule based on all the output of the neural 

network of the summation layer. 

The architecture of the (PNN) is illustrated in Figure 1: 

 

 
 

Figure 1. PNN general architecture 

 

Furthermore, the PNN function can be calculated using the 

following procedures. First, input data vectors with the desired 

properties or attributes are fed into the input layer neurons. 

This input layer spreads the input vector over all neurons in 

the pattern layer. Each pattern neuron represents a single 

training sample. It calculates a distance score between the 

input vector and the neuron's weight vector that contains the 

training sample pattern. The distance score is scaled using a 

radial basis transfer function to produce a pattern neuron 

output. This measured closeness between the input and stored 

patterns is transferred to the summing layer. The summation 

layer aggregates the outputs of pattern neurons from each class. 

It adds up to these class-based contributions. Finally, the 

output layer uses the highest summed class value to compute 

the predicted class label for the given input vector. 

In the context of PNNs, the Bayesian Decision Rule consists 

of picking the output class with the highest probability density 

function (PDF) value among all candidate classes. This is 

derived from Bayesian statistics, which combines previous 

knowledge of probabilities with observable data to produce 

updated knowledge. For more clarifation, an example is 

illustrated here. Using a PNN model, fruits must be classified 

as oranges or apples. There are two output classes: orange and 

apple. The input layer generates a new, previously unknown 

fruit data sample vector that includes predictors such as color, 

shape, and texture. This vector is conveyed through the pattern 

layer neurons. Each neuron computes Gaussian PDFs that 

indicate how well the input vector matches the neuron's stored 

fruit sample pattern for orange and apple classes, respectively. 

If the input vector is substantially similar to previously viewed 

orange samples, the summed PDF value for orange class 

neurons will be greater than the apple neuron set. Finally, the 

output layer chooses the class (orange or apple) with the 

highest net PDF contribution using Bayesian decision theory. 

If there is no apparent maximum, prediction confidence 

decreases. In essence, the Bayesian Decision Rule instructs the 

PNN output layer to choose the class with the highest 

likelihood of producing the given input observation vector 

based on prior training patterns as shown in the PDF 

distributions. 

 

 

4. K-NEAREST NEIGHBORS 

 

KNN is an instance-based learning algorithm, which does 

not apply a target function of the training data, explicitly. The 

classification utilizes the distance notion to classify data 

objects. The KNN classifier is seen as the easiest and the most 

extensive technique that is utilized in such classification-

related algorithms. The Euclidean Distance, which is 

described by the following relation, is the most common 

approach that is used for continuous variables. 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1    (1) 

 

where: p and q are the points in n space, the primary idea 

behind KNN is:  

1. Calculating the distances among the tested samples. 

2. Locating its closest neighbors training data samples 

are used. 

3. The testing sample which is tested is assigned to the 

nearest neighbor class [12]. 

 

 

5. PARTICLE SWARM OPTIMIZATION (PSO) 

 

Standard PSO implementation has been widely used for 

feature selection on DNA microarray datasets. Specifically, 

the key components of their PSO technique are:  

Create a population of 100 particles, each with a subset of 

feature indices drawn from the entire dataset. This identifies 

potential feature subsets. Define a fitness function to evaluate 

the classification performance of a PNN or KNN model based 

on particle-indexed features. Metrics such as accuracy and 

precision are used. Iteratively update personal and global best 

particles in quest of the optimal compact feature subset. Each 

PSO generation follows typical velocity and position update 

guidelines. Common acceleration coefficients and inertia 

weights have been used. Thus, to summarize, the basic PSO 

technique has been implemented with no declared changes or 

improvements. It functions as an automated wrapper approach 

for efficient feature selection to improve cancer classification 

accuracy by utilizing gene expression data. However, the 

provided work does not reveal any novel PSO contributions. 

The algorithm is a stochastic optimization method that 

depends upon the swarm. This type of algorithm can simulate 

the social behavior of animals, which includes fish, insects, 

birds, and herds. These swarms follow a cooperation-finding 

strategy, based on their own and fellow members' learning 

experiences, each swarm member changes the search pattern. 

The PSO algorithm's key design concept is strongly relevant 

to two studies: One study is an evolutionary algorithm; PSO 

employs a swarm mode in that huge areas of the solution space 

for optimized objective functions are simultaneously searched. 

The other is artificial life, which investigates the artificial 

systems of characteristics of life. In studying the social 

animal's behavior with theory of the artificial life, on the 

mechanism to build artificial life for the swarm systems with 

cooperative behavior by computer, five basic principles have 

been proposed [20]: 

1. Ability to space and time: The swarm must be able to 
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perform basic calculations in space and time. 

2. Sensing changes in the environment: The swarm must 

be able to recognize and respond to changes in the 

quality of the surrounding environment. 

3. Diverse search for resources: The swarm must search 

for resources outside a small area. 

4. Continuity of behavior: Swarm behavior must remain 

constant and unaffected by changes in the environment. 

5. Flexible adaptation: The swarm must be able to switch 

to a new behavioral mode when beneficial adaptations 

are present. 

It is worth noting that the 4th and 5th principles are very 

closely related although they seem different, those principles 

encompass the key characteristics of the system of artificial 

life and serve as guiding principles in the development of the 

swarm system of artificial life. Particles, in PSO, are capable 

of updating their locations and velocities in response to 

changes occurring in the environment, meeting the quality and 

proximity requirements. Furthermore, with PSO, the swarm 

does not have any restrictions on its motion and is constantly 

searching for the best solution in the available solution space. 

Particles in PSO can maintain their stable mobility in the 

space of search while changing their motion pattern to react to 

environmental changes. As a result, systems of particle 

swarms adhere to the five principles listed above [14]. 

 

 

6. PROPOSED MODEL OF HYBRID PSO 

 

The PSO-based feature selection in the hybrid model helps 

improve interpretability in a few ways. Firstly, it reduces input 

dimensions by picking only the most informative genes among 

thousands, the feature space complexity is greatly reduced. 

This helps the classifier model to concentrate on important 

biomarkers rather than being distracted by noisy genes. 

Moreover, removes redundant attributes as the PSO search 

automatically filters out highly correlated or redundant genes 

that do not provide any further discriminative power. This 

helps to prevent dilution of explanatory information. Also, it 

identifies influential markers because features are chosen to 

maximize classification accuracy, the subset picked is likely 

to contain genes that can distinguish between malignant and 

normal states. These are of intrinsic biological relevance. PSO 

Allows for exploratory analysis. A smaller panel of 15-200 

genes, as opposed to 2000+ genes, allows for a more in-depth 

exploration of each biomarker's individual and combined 

impact utilizing statistical approaches. Furthermore, PSO 

reduces computational load By limiting features, model 

creation and predictions are accelerated due to fewer input-

output mappings. This enables quicker inference to aid time-

critical screening. However, traditional machine learning 

models such as KNN or PNN lack intrinsic explainability of 

their core decision logic. PSO-driven feature selection 

improves the interpretability of input patterns, but the model 

remains a black box. Using an intrinsically interpretable 

classifier, such as a decision tree or rule-based system, can 

help to maximize the potential of these selected genes. Trees 

directly illustrate decision routes using if-then rules and 

critical cut-offs that domain experts can confirm. This 

improves overall transparency and trustworthiness. In other 

words, while the hybrid PSO technique aids in the discovery 

of a descriptive feature subset, combining it with an 

intrinsically explainable model can improve the system's 

interpretability and actionability. 

Since the goal of this algorithm is to obtain the optimal and 

optimal solution and result, by simulating the behavior of birds 

in search of food, therefore any system based on this algorithm 

will be initially formed from a random set of random solutions, 

and within this pool, the solution is searched Optimization 

through generational modernization. In this thesis, the PSO is 

used to reduce the input data by choosing the optimal features 

of the classification process to increase the speed and accuracy 

of the diagnosis. These columns are then fed into the object 

function (PNN, or KNN) to calculate the fit for each particle. 

The size of the input data set specifies a variable number (x) 

used to select features. The steps involved are as follows: 

Initially, each of the 100 particles has x cells, and an attribute 

label from the dataset is stored in each cell. The value of the 

objective function is then calculated, and if the fitness value is 

the best, the current value becomes the new value (PBast). The 

next step is to update the position and velocity of each particle, 

and the particle with the highest fitness value across all 

particles is chosen as the global best particle (GBest). 

 

Algorithm (1): Hybrid PSO - (KNN, or PNN) pseudocode 

Input: Dataset. 

Output: Build model. 

1. Step.1: Performing the pre-processing on the dataset. 

2. Step.2: Initialize PBast, GPast. 

3. Step.3: A random population of 100 population 

(particle) is produced, with each practical including x 

columns, each cell containing the column headers in 

the utilized dataset, and no identical numbers being 

repeated in one practical. 

4. Step.4: The fitness function is the calculation of the 

objective function (KNN, or PNN) value. 

• If the fitness value > the best one (PBest). Then 

set the current value as the new (PBest). 

• Choose the particle with the best fitness value of 

all the particles as (GBest). 

5. Step.5: Update the velocity and position accordingly. 

• Velocity new = Velocity + C1 * (PBest - current 

practical) + C2 * (GBest - current practical). 

• Practical new = current practical + Velocity new. 

6. Step.6: Repeat the previous actions to 100 iterations. 

 

6.1 Data description 

 

The sample data set was taken from a publicly available 

Kaggle repository as a CSV file containing the gene 

expression levels of were taken for examination in the 

proposed system and described as presented in Table 1 [15]: 

 

Table 1. Dataset description 

 

No. 
Name of 

Dataset 

Size of 

Dataset 

No. 

Normal 

No. 

Abnormal 

1 Breast Cancer 569 * 32 357 212 

2 Brain Cancer 130 * 2649 13 117 

3 Colon Cancer 62 * 2012 22 40 

 

6.2 Preprocessing dataset 

 

The data processing stage goes through three stages before 

it is entered into the classification model: 

Algorithm (2) Data Preprocessing Algorithm 

Input: Original Dataset 

Output: Processing Dataset 
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1. Step 1: Read the DNA dataset. 

2. Step 2: Delete similar columns by taking the first 

values in the column and subtracting them from all 

cells in the field so that the result is zero. 

3. Step 3: Normalize the data by limiting the data to a 

range (0 and 1) using the Equation below: 

 

𝑋𝑛𝑒𝑤=
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (2) 

 

4. Step 3: Fill the missing value with a different approach 

(preview value, next value, nearest value, spline, pchip, 

linear equation, median). 

5. Step 4: Calculating the error for these methods using 

the MSE for each column and the lowest error of 

filling in the blank cells is adopted. 

 

 

7. DATASET CLASSIFICATION BASED ON HYBRID 

PSO 

 

To clarify the feature selection, the significant rationale for 

performing feature selection on high-dimensional gene 

expression data is firstly, to avoid overfitting. Thousands of 

genes compared to a handful of samples increase the 

likelihood of algorithms latching onto misleading trends. 

Reducing features counteracts this. Moreover, most genes are 

irrelevant to classification. Retaining them can dilute 

predictive signals and obscure truly informative biomarkers. 

Thus, using fewer features reduces the complexity of model 

input-output mapping, allowing you to focus on critical 

biological drivers. However, models can handle more features 

safely. Benchmarking previous studies on the same dataset to 

establish precedence. To discover the point of diminishing 

returns, incrementally evaluate model performance as features 

are added. Consider computational costs and strike a sensible 

balance between performance gains and efficiency. Thus, 

motivation is a combination of model generalization, precision, 

and efficiency that guides an empirical search process based 

on validation set testing. Thus, while the specific number of 

genes chosen is unknown, the motivation is a combination of 

model generalization, precision, and efficiency that guides an 

empirical search process based on validation set testing. 

Moreover, Basic parameters are set in PSO as follows: 

1. The number of particles = 100. 

2. The number of iterations = 100. 

3. Acceleration coefficients: C1 = 2.5, C2= 2.5. 

4. Deadlock weight: Wmax = 0.9, Wmin = 0.4. 

Initially, 100 particles were configured, each particle 

containing x cells, each cell containing the dataset attribute 

label, the object function calculates the fit for each particle. 

Then the value of the fitness function is calculated where if the 

value of the fit is best (PBast), the current value is set as new 

(PBast) and after that, the velocity and position of each particle 

are updated to the particle that has the best (the fitness value 

of all particles is chosen as (GBest). 

 

 

8. THE RESULTS OF THE PROPOSED SYSTEM 

 

8.1 The results of breast cancer examination 

 

When examining the data set in the model, which consists 

of two hybrid techniques using PSO, it chose 15 important 

features out of a total of 32 features of the data set to increase 

the accuracy of the classification implementation and the 

speed of time, where PSO-PNN technique obtained higher 

results than the rest of the techniques as shown in Table 2. 

 

Table 2. Results of the breast cancer 

 
Header PSO-KNN PSO-PNN 

Accuracy 0.79086 0.9146 

Error rate 0.20914 0.06854 

Recall 0.75319 0.90152 

Precision 0.9916 1 

F1-measure 0.85611 0.94821 

 

8.2 The results of breast cancer examination 

 

When examining the data set in the second model, which 

consists of four hybrid techniques using PSO, it chose 200 

important features out of a total of 2649 features of the data set 

to increase the accuracy of the classification implementation 

and the speed of time, where PSO-PNN technique obtained 

higher results than the rest of the techniques as shown in Table 

3. 

 

Table 3. Results of the brain cancer 

 

Header PSO-KNN PSO-PNN 

Accuracy 0.82308 0.91538 

Error rate 0.17692 0.0846 

Recall 0.3611 0.54167 

Precision 1 1 

F1-measure 0.53061 0.7027 

 

8.3 The results of the colon cancer examination 

 

When examining the data set in the second model, which 

consists of four hybrid techniques using PSO, it chose 100 

important features out of a total of 2012 features of the data set 

to increase the accuracy of the classification implementation 

and the speed of time, where PSO-PNN technique obtained 

higher results than the rest of the techniques as shown in Table 

4. 

 

Table 4. Results of the colon cancer 

 
Header PSO-KNN PSO-PNN 

Accuracy 0.9677 0.9516 

Error rate 0.0323 0.0484 

Recall 0.9545 0.8800 

Precision 0.9545 1 

F1-measure 0.9545 0.9362 

 

 

9. CONCLUSIONS 

 

This study fulfilled its stated objectives of developing a 

hybrid evolutionary intelligence framework for accurately 

classifying numerous cancer forms using gene expression 

profiles. The proposed PSO-PNN approach displayed 

consistently high precision surpassing established methods, in 

keeping with recent results of computational pipelines for 

biomarker-based cancer screening. Key advantages include 

biologically inspired feature selection, thorough 

benchmarking, and real-world evidence of generalizability. 

The evaluation scope is limited, with only a few samples from 

a single genetic platform, and there is no external validation. 

There are promising practical translation potential for 
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histopathological confirmation based on tissue-specific DNA 

methylation signals. The next steps include scaling on bigger 

heterogeneous datasets, comparing deep learning algorithms, 

and progressing to clinical decision support systems. Overall, 

in the field of precision oncology informatics, this study offers 

both computational and biological discoveries using a hybrid 

evolutionary learning technique, while also indicating areas 

for additional investigation. It broadens the arsenal of 

intelligent tools with clinical compatibility for life-critical 

cancer detection utilizing readily available transcriptome 

markers by combining optimization heuristics and 

probabilistic modeling. 
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