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Rolled steel is a major product of ferrous metalworking. It is a popular metal structure 

construction technology. Though a big amount of the finished product may be flawed, the 

process of manufacturing must be improved. It is critical to correctly classify hot-rolled 

strip faults. As a result, in recent years, numerous machine-learning-based automated visual 

inspection (AVI) systems have been created. However, these approaches lack several 

critical components, such as insufficient RAM, which causes complexity and slowness 

during implementation. Long execution durations, in general, cause the process to be 

delayed or completed later than expected. A shortage of faulty samples is also a significant 

difficulty in steel defect detection, as the imbalance between the huge number of non-

defective photos and the defective ones causes the algorithm to be unfair in categorization. 

To address these three issues, a deep CNN model is created in this study. The backbone 

architecture is a pre-trained NasNet-Mobile that has been fine-tuned with particular 

parameters to be compatible with the required data. Despite having 27 times less data than 

other articles' datasets, the model detects steel surface photos with six defects with 99.51% 

accuracy, exceeding earlier methodologies. This study is useful for surface fault 

classification when the sample size is small, the software is not quite as effective, or time 

is limited. Avoiding these issues will help the steel industry improve safety and end product 

quality while also saving time and money. 
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1. INTRODUCTION

Hot-rolled strip steel is widely utilized in automobile 

manufacture, aircraft, and light industries as one of the steel 

industry's key products [1, 2]. One of the most important 

indications of strip steel's market competitiveness is surface 

quality. Because of the raw material's influence, the strip steel 

surface will unavoidably change due to the materials, rolling 

method, and external environment. In the manufacturing 

process, oxide scale, inclusions, scratches, and other 

imperfections emerge that are not visible. It not only has a 

negative effect on appearances, but it also decreases fatigue 

resistance. However, these faults cannot be completely 

avoided by improving the technique over time [3]. Therefore, 

the surface fault categorization may be utilized as a reference 

throughout the production operation. The objective of 

increasing yield and minimizing manufacturing costs is 

achieved through suitable adjustment. A lot of issues arise 

during the real-time examination of steel surfaces. Some of 

these issues include the following:  

Hazardous location: Putting inspection equipment 

(illumination system, camera, and certain signal processing 

equipment) in hot rolling mills is extremely dangerous. The 

presence of dust, grease, grime, water droplets, and vapor is 

common. Furthermore, the lighting system and cameras must 

be protected from stress and vibration. On a daily, monthly, 

and annual basis, heavy equipment is moved in and out of the 

site. The aforementioned concerns necessitate the adoption of 

appropriate physical and environmental safeguards for site 

equipment. 

Operation speed: The high working speed of surface 

inspection equipment is generally 20 m/s for flat steel goods 

and 100 m/h for long products, necessitating the use of 

sophisticated image processing equipment and software with 

a short execution time. 

Surface defect types: Surface flaws in steel merchandise are 

quite diverse, with nine primary classes and 29 subclasses. 

These flaws are not governed by norms, and their features and 

categorization differ between factories and operators, as well 

as their appearance, which might alter according to variances 

in the manufacturing process. 

HRC (hot roll coil) is the most common finished steel form 

in the world and an important raw material for manufacturers. 

It is a vital substance that necessitates precise and quick spot 

pricing and analysis. Many factors, ranging from raw material 

costs to global trade agreements, eventually influence the 

pricing of the carbon steel products customers purchase. The 

three main factors are described: 

Firstly, steel starts with iron ore, scrap, coking coal, and 

natural gas. These resources' prices are influenced by the 
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producing countries and traded on exchanges such as CME 

(Chicago Mercantile Exchange). Secondly, the macro-

economic factors influencing supply and demand dynamics 

have a significant effect. For example, when the US 

administration imposed a 25% tax on steel in early 2018, the 

price of HRC increased in the United States. Thirdly, 

depending on the end-use of a product, HRC is subjected to a 

variety of mill treatments, many of which add value but come 

at an additional expense.  

Steel surface inspection currently falls into two categories: 

conventional techniques and deep learning techniques. In the 

traditional category, features are extracted using Support 

Vector Machine (SVM) [4], Random Forest [5], k-nearest 

neighbor (KNN) [6], and many different other classifiers. 

However, because there are no obvious guidelines for the 

distribution of flaws on the steel images, extracting the 

features is challenging, resulting in difficulties utilizing the 

detection algorithm as well as poor recognition accuracy. The 

deep learning approaches are mainly based on convolutional 

neural networks; these CNNs are used to classify defective 

surfaces on steel products [7]. Here, features are extracted 

directly from the image, which results in high accuracy, high 

speed, and more adaptability [8]. 

As a consequence, improving surface defect classification 

accuracy in hot-rolled strips in order to minimize the 

frequency of human intervention in defect classification may 

result in considerable economic and social benefits. On the one 

hand, quality inspectors may avoid working late at night, 

which is good for their health. On the other hand, mistakes 

caused by fatigue and other variables of quality inspectors will 

be significantly minimized, boosting the performance and 

productivity of the strip steel and offering higher advantages 

to the steel factory. In brief, the paper's contributions are as 

follows:  

• A steel surface dataset of 1800 samples is 

suggested from the NEU Kaggle Competition for 

steel surface detection launched three years ago 

(NEU-CLS). The dataset contains more than 

87000 digital photos of steel defects. In this work, 

we decided to use only a tiny number of pictures 

(only 300 images per class) to assess the efficacy 

of our suggested method.  

• We apply the NasNet-Mobile CNN-based model 

using the improving techniques that will be 

explained in Section 2 to classify defects of six 

types in steel flats. NASNet-Mobile is chosen 

because it is a simple transfer learning model with 

only 5.3 million parameters, which makes it 

computationally cheap and fast to operate. As well 

as it offering a good balance of more acceptable 

performance while remaining calculations 

affordable, making it a good simple transfer 

learning model to use. 

• We vary a number of hyper-parameters to test the 

viability of our method, and then we present the 

experiments and analyze the findings in Section 3.  

• Section 4 summarizes the conclusions. 

Significance of the research: 

The key objective of this study is to assist small industries 

in pursuing the defect detection process using such little 

software and a few samples of defected images in a shorter 

time. This will lead to the good development of small mills 

and fewer potential operators. This research would be carried 

out with more improvement according to the client’s needs. 

2. RELATED WORK 

 

Experts tended to identify problems manually, which was 

imprecise and error-prone [9]. Furthermore, as a result of the 

identical flaws, various expert judgments will be formed, 

leading to incorrect types and classes of strip steel flaws, 

diminishing defect detection reliability. Recognition results 

based on researchers' subjective judgments are generally 

inadequate [10, 11]. 

To overcome the limitations of manual identification, 

researchers have addressed a number of solutions based on 

machine learning technology.  

Meta-learning-based method. It trains a meta model to 

acquire the knowledge of multiple tasks, such as the Model-

Agnostic Meta-Learning algorithm (MAML) proposed by 

Finn et al. [12] and the Long Short Term Memory network 

(LSTM) developed by Ravi and Larochelle [13]. Existing 

meta-learning algorithms often use an LSTM or Recurrent 

Neural Network (RNN) structure within the model, however 

these algorithms have significant temporal complexity and 

sluggish running speed. As a result, it is inappropriate for 

industrial use. 

The Grayscale Covariance Matrix (GLCM) as well as the 

Discrete Shear Transform were used to suggest a classification 

approach [14]. (DST). After obtaining multi-directional shear 

characteristics from the pictures, a GLCM calculation is done. 

It then performs an important aspect analysis involving high-

dimensional feature vectors before being passed into a support 

vector machine (SVM) to identify surface faults in strip steel. 

The fundamental disadvantage of the GLCM technique is its 

large matrix dimensionality, which necessitates the use of 

highly capable software. 

In the study [15], The authors presented a unique multi-

hyper-sphere SVM with extra information (MHSVM+) 

approach for revealing hidden information in defective data 

sets using an additive learning model. It has a higher 

classification accuracy on defect datasets, particularly 

damaged datasets. However, SVM algorithm underperforms 

in large data sets with noise and overlapping target classes, and 

underperforms when features exceed training data samples. 

The authors [16] designed a one-class classification 

technique made up of generative adversarial networks (GAN) 

[17] and SVM. It trains an SVM classifier with GAN-

generated features. It further enhances the loss function, 

thereby improving the stability of the model. Regrettably, the 

aforementioned standard Machine Learning techniques often 

need substantial feature engineering, which greatly raises costs 

[18]. 

Traditional machine learning-based algorithms, as 

previously indicated, are frequently impacted by defect size 

and noise. Furthermore, this method's accuracy is insufficient 

to fulfill the practical criteria of automated defect 

identification. Some elements must be created by hand, as well 

as the scope of the application is highly limited. 

Deep learning-based techniques, notably convolutional 

neural networks (CNN), have experienced great success in 

image classification tasks in recent years [19, 20]. CNN has 

great characterization capabilities [21, 22] and is very 

successful at recognizing strip surface flaws [6, 8, 17]. 

Authors [23] built on GoogLeNet [24] and improved it 

slightly by including identity mapping. To minimize 

overfitting, the dataset was augmented using the data 

augmentation approach.  

SqueezeNet [25] was applied in the study [26] to present an 
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end-to-end effective model. The multiple receptive field 

scheduling, which may provide scale-related high-level 

features, was added to SqueezeNet. It is beneficial to low-level 

feature training and it can classify strip steel surface faults fast 

and consistently. One of SqueezeNet's key disadvantages is its 

low accuracy when compared with larger and more 

complicated models. 

Authors [27] proposed a modified AlexNet [28] and SVM-

based intelligent surface defect inspection system for hot-

rolled steel strip pictures. Due to receptive field limitations, 

CNN-based classification models have excellent fitting ability 

but poor global representation ability. Obtaining a significant 

number of fault samples in complicated industrial situations is 

difficult, therefore increasing the dataset has become a 

pressing issue that must be addressed. The attention 

mechanism, on the contrary, has been shown to enable the 

model to focus on more significant information, resulting in 

higher recognition accuracy. In contemporary research, 

however, attention mechanisms are rarely used to define strip 

steel surface defects [29]. 

Traditional Machine Learning methods often require 

considerable feature engineering, which raises the cost 

significantly. 
 

 

3. PROPOSED APPROACH  

 

Our strategy consists of four main stages:  

Step 1: we preprocess the data and organize it into six types 

of defects (patches, crazing, pitted surface, scratches, rolled in 

scale, inclusion). This dataset is available on the NEU Steel 

detection competition website [30].  

Step 2: we use the pre-trained CNN called NasNet-Mobile 

as the backbone of the model with which we extract the image 

features; the top layers will be frozen to use the ImageNet 

saved weights. The last block is then fully erased and replaced 

with an entirely new one (global average pooling, dropout, 

exponential linear unit (ELU) to represent the dense layers, as 

well as a Softmax function for the prediction and classification 

layer).  

Step 3: we fine-tune the model with the obtained weights 

and switch between optimizers (ADAM optimizer, ADAMAX 

optimizer) to get the best results. 

Step 4: we make the comparison to pick up the best fine-

tuned model (we take into consideration the three metrics: 

Accuracy vs. Executing time vs. Model lightness). 

 

3.1 Steel surface defect dataset  

 

The NEU surface defect database includes six types of hot-

rolled steel strip surface flaws: rolled-in scale (RS), inclusion 

(In), patches (Pa), crazing (Cr), pitted surface and (PS) and 

scratches (Sc) [30]. The database contains 1800 photos (300 

for each surface fault type). Figure 1 depicts sample photos of 

various common faults. The dataset collection was chosen 

because it contains fewer photos than other databases, 

allowing us to compare the performance of our technique with 

this little quantity of data to other papers' datasets (Table 1).  

A part of 80% of the data was randomly selected (there are 

240 photos for each fault type.) in the NEU dataset to form the 

training data. The other rest (20%) is used to validate the 

classification of the network. All data was augmented using 

“Image-Data-Generator” in Tensorflow [31] and Keras [32] 

libraries. Rotation (0°, 45°, 90°, 180°), horizontal flipping, 

shearing (0.2) and zooming (0.2). Each image's pixel values 

were adjusted to fall within the range of [-1; 1] before being 

fed into our network.

 

Table 1. Summary of number of data in previous works 
 

Proposed Algorithm Image Modality Number of Images 

Deep residual neural network [22] Severstal: Steel Defect Detection 87704 

DenseNet, ResNet,U- Net [33] Severstal: Steel Defect Detection 12568 

ResNet-50, ResNet-152 [34] 
Severstal: Steel Defect Detection, 

NEU steel database 
9385 

Our model: NASNet-Mobile NEU: Steel Defect Dataset 1800 

 
 

Figure 1. Several metallic surface fault samples. (a) Crazing. 

(b) Inclusion. (c) Patches. (d) Pitted surface. (e) Rolled in 

scale. (f) Scratches [35] 

 

3.2 Classification model—Improved NASNet-Mobile  

 

The technique of automating the construction of neural 

network topology in order to get the best outcomes on a certain 

job is known as Neural Architecture Search (NAS). The task 

is to develop the architecture with few resources and as little 

human help as possible. Authors [36] created the NasNet 

architecture, a neural architecture search network that trains to 

obtain the most correct parameters from produced architecture 

using a recurrent neural network (RNN) and reinforcement 

learning. Designing a CNN architecture requires a long time 

when the material is large, for instance the ImageNet dataset. 

They subsequently developed an CNN framework capable of 

searching for the best architecture in a small set of data and 

then transferring the best architecture to be trained on huge 

datasets; this architecture is known as "learning transferable 

architectures". The NASNet-Mobile architecture may be 

scaled based on data volume.  

• Identity  

• 1 × 7 then 7 × 1 convolution  

• 3 × 3 average pooling  

• 5 × 5 max pooling  

• 1 × 1 convolution  

• 3 × 3 depthwise-separable convolution  

• 7 × 7 depthwise-separable convolution  

• 1 × 3 then 3 × 1 convolution  
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(a) 

 
 

(b) 

 

Figure 2. (a) CIFAR10 dataset (left) and ImageNet (right) dataset architectures (b)Normal cell (left) and reduction cell (right) 

[36] 
 

• 3 × 3 dilated convolution  

• 3 × 3 max pooling  

• 7 × 7 max pooling  

• 3 × 3 convolution  

• 5 × 5 depthwise-separable convolutions [36] 

 

3.2.1 Depthwise and pointwise convolutions 

The NasNet-Mobile framework is based on depthwise 

separable convolutions [37], a sort of factorized convolution 

in which a conventional convolution is divided into a 

depthwise convolution and also a 1 x 1 convolution known as 

a pointwise convolution. NasNet-Mobile use depthwise 

convolution in order to apply an individual filter for each input 

channel. The pointwise convolution then combines the 

depthwise convolution outputs with a 1 x 1 convolution. A 

conventional convolution filters and mixes inputs in a single 

step to generate a new set of outputs. This is divided into two 

layers by the depthwise separable convolution, one for 

filtering and another for combining. This factorization 

significantly reduces processing and model size. Depthwise 

separable convolutions are made up of two layers, which are 

depthwise and pointwise. We use depthwise convolutions 

(input depth) to set up a single filter for each input channel. 

The depthwise layer output is then linearly mixed using 

pointwise convolution, which is a basic 1 x 1 convolution (Eq. 

(1)). 

 

𝐺𝑘,𝑙,𝑚 =  ∑ �̂�𝑖,𝑗 ∗  𝐹𝑘+𝑖−1,   𝑖+𝑗−1,   𝑚

𝑖,𝑗

 (1) 
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Figure 3. Convolution cell block acquired via RNN 

exploration 

 

K is the depthwise convolutional kernel with a size of Dk x 

Dk x M Where the mth filter in 𝐾  ̂is applied to the mth channel 

in F to output the mth channel of the filtered output feature map 

Ĝ. As shown in Figure 2(a) and Figure 2(b), RNN merges two 

hidden layers to move on to the following hidden layer.  

We study modifications in architectural configuration of 

each reference structure empirically (Section II). We use 

transfer learning from network models trained on ImageNet 

[38] in the simplified CNN framework by removing the block 

and replacing it with a new block containing global average 

pooling, dropout, dense, as well as a Softmax function for the 

last prediction layer to forecast the steel defect class (Figure 

3). For the first part of training (before fine-tuning), the whole 

architecture is frozen except for the final created block. 

Following that, we unfreeze the model's top so that it may train 

again to the desired goal (steel fault classification). This avoids 

the network from over-fitting throughout training and allows 

its model to learn quicker and for a longer period of time, 

resulting in improved generalization. Using the light-weight 

NasNet architecture provides various advantages, including 

improved model training, being less prone to short dataset 

over-fitting, and being deployable in other embedded systems. 

 

3.2.2 NASNet-Mobile-based defect classification 

a. The reason of choosing NASNet-Mobile: 

There are three main reasons of taking this CNN as the 

backbone of our model. Firstly, its lightness as it takes only 23 

MB in the memory which is too smaller in comparison with 

other models (VGG16 takes 549 MB, ResNet52 takes 232 MB, 

NASNet-Large takes 343 MB…etc.). Secondly, the number of 

parameters, this model is built with only 5.3 million 

parameters which is comparatively very small (for example 

the VGG16 is built with 143.7 million parameters, it is then 27 

times larger than our NASNet-Mobile model). The last reason 

is that this model takes only 27 ms per inference step in a CPU 

and 6.7 ms per inference step in a GPU, it is then 60 times less 

than the EfficientNetB7 (with 1578.9 ms per inference step). 

b. Modified NASNet-Mobile:  

NasNet-Mobile's basic model is pre-trained with 1,056 

output channels for ImageNet [38] recognition. This 

architecture's core experimentation is around the amount of 

regular cells in the model. We employed three reduction cells 

with three regular cells in our modified NASNet-Mobile 

design (Figure 4). The total number of parameters is 4,376,022, 

of which only 106,306 (2.42% are trainable) and the rest are 

frozen.  

 

 
 

Figure 4. General structure of the proposed approach 

 

We use the pre-trained NASNet-Mobile framework as the 

backbone building design, which consist six cells (reduced and 

normal), followed by a newly constructed defect classification 

block that includes a convolution layer, dropout, dense, and 

global average pooling. The activation function is "ELU" 

rather than "ReLU" in the first dense layer. ELU, or 

Exponential Linear Unit, is a function that converges cost to 

zero faster and produces more accurate results [39]. In contrast 

to other activation functions, ELU contains an extra alpha 

constant that needs to be positive, as seen in Eq. (2). 

 

𝑅(𝑧) =  {
𝑧                             𝑤ℎ𝑒𝑛 𝑧 > 0
𝛼. (exp(𝑧) − 1)   𝑤ℎ𝑒𝑛  𝑧 < 0

 (2) 

 

ELU is extremely similar to RELU, with the exception of 

the negative inputs. They are both in identity function form for 

non-negative inputs. ELU, on the other hand, smoothies 

progressively until their output equals −𝛼 , whereas RELU 

smoothies substantially (Figure 5). The reason for using ELU 

instead of ReLU as an activation function is because ELU 

smoothes out gradually till it reaches 𝛼 , whereas RELU 

smoothes out dramatically. Furthermore, unlike ReLU, ELU 

can provide negative outputs.  

c. Advantages of exponential linear unit ELU  

The ELU is a continuous and differentiable activation 

function that offers faster training times compared to other 
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linear non-saturating functions like ReLU with its other 

different versions (Leaky-ReLU (LReLU) and Parameterized-

ReLU (PReLU).). It doesn't suffer from dying neurons, 

exploding or vanishing gradients. As compared to other 

activation functions like ReLU, Sigmoid, and Hyperbolic 

Tangent, it achieves more accuracy. 

Steel surface defect classifier variables can be updated by 

reducing a multi-class loss function known as Categorical 

crossentropy (Eq. (3)). 

 

𝐿𝑂𝑆𝑆 =  − ∑ 𝑦𝑖 ∗ log �̂�𝑖

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 (3) 

 

where, 𝑦𝑖 represents the i-th scalar value in the model output, 

𝑦𝑖 indicates the equivalent goal value, and output size refers to 

the number of scalar values in the output of the model. 

 

 
 

Figure 5. Graph showing the difference between ELU 

(green) and ReLU (red) activation functions [39] 

 

d. Model optimization for Steel surface defect 

Following the development of the basic NasNet-Mobile 

model for steel surface defect inspection, we propose many 

viable strategies for improving accuracy and reducing 

execution time. First, data augmentation is used to get more 

features to be learnt by the model. Second, a new block, which 

we already defined, is added at the bottom of the model for the 

prediction part, this block will help improve accuracy and 

reduce model parameters and executing time. Third, we switch 

between optimizers to find the best one (ADAM and 

ADAMAX). Finally, the learning rate is reduced using the 

exponential decay as in Eq. (4) then we apply the early 

stopping when the model accuracy cannot improve anymore. 

The model restores the best weights. 

 

y =  a(1 − b)x (4) 

 

where, y represents the final value, a represents the initial 

value, b represents the decay factor, in addition x is the value 

of time that has elapsed. 
 
 

4. EXPERIMENTS AND RESULTS 

 

4.1 Model implementation 

 

Our method is deployed under the publicly available Python 

framework from Google Colaboratory [40]. Tesnorflow [31], 

Keras, Matplotlib, NumPy, and Glob are the main libraries 

used in this implementation. We took 80% of the photos in the 

NEU (NEU) collection as training data (240 images for every 

single fault category) and 20% as validation data. Before as 

well as after fine-tuning the network, performance is evaluated. 

Table 2 shows the values of the hyperparameters used to train 

this CNN. 

The experiments were performed with Windows 10 

Professional on the Intel® Core (TM) i5 7200U, 64-bit 

platform with 8GB of RAM and NVIDIA RTX 2070, as we 

took advantage of the free available GPU on the Google Colab 

Platform. The training with the surface defect dataset was so 

fast. It took only 3414 seconds (56 minutes and 54 seconds) to 

train the model before fine-tuning and 528 seconds after fine-

tuning (8 minutes and 48 seconds).

 

Table 2. Hyperparameters used to train the NasNet-Mobile convolutional neural network 

 
Hyperparameters Before Fine-Tuning After Fine-Tuning  

 Number of epochs 20 100 

Steps per epoch 6 6 

Number of trainable parameters 106,306 4,376,022 

Learning rate mode Max Exponential decay 

Restore best weights True True 

Learning rate value Min = 1 e-8 

Max = 0.01 

Patience = 3 

Factor = 25% 

Min = 0.01 

Max = 0.1 

Steps = 20 

Factor 50% 

Early stopping   Patience = 10 

Min delta = 0.005 

Patience = 10 

Loss Categorical crossentropy Categorical crossentropy 

Optimizer ADAM ADAMAX 

 

Table 3. Performance metrics of NasNet-Mobile in the training and validation dataset before fine-tuning 

 
Metrics  Training Dataset  Validation Dataset  

Accuracy 99.51% 97.78% 

Loss 0.028 0.064 

Precision 99.51% 98.60% 

Recall  99.51% 97.78% 

Area under the curve AUC 100% 99.96% 

 

686



4.2 Model evaluation  

 

Our model was running twice, once without fine-tuning the 

parameters and again with fine-tuning the parameters. The 

following deep learning metrics are used to assess the model: 

accuracy, loss, recall, AUC, FP, FN, TP, TN, and precision. 

With different datasets for training and validation, we compare 

these measures before and after fine-tuning. 

a. Performance of the model before fine-tuning 

The results are shown in the following tables and graphs, 

along with an analysis of each one.  

The metrics in Table 3 show very promising results in both 

the training and validation datasets. We can note a slight 

decrease between them, and this is because the model learns 

from the training data, which makes it more reliable, but 

according to the validation data, we know that it has only 20% 

of the total data, and the model has never learned from it. Since 

evaluating the model on the training dataset might produce in 

biased results, it is tested using a held-out sampling to offer an 

impartial evaluation of its competence. Strategies that may be 

utilized to mitigate the difference in performance include 

model fine-tuning and dataset augmentation to ensure the 

model can learn additional features. 

 

 
 

Figure 6. Accuracy and loss curves before fine-tuning the 

NasNet-Mobile 
 

Figure 6 displays the training as well as validation curves of 

the optimization for NasNet-Mobile developed with the 

previously stated dataset of 1800 photos enhanced through 

Image Data Generator (These findings were achieved before 

to fine tuning). The training spanned 20 epochs, including a 

break at the 12th. We can notice a declining trend as the 

number of epochs grows, which is followed by validation loss 

and training loss (Figure 7). During the learning phase, the 

model appears to identify the visual prominence of the 

reference picture and the candidate image. As a result, the loss 

attained during training tends to decrease. The images were 

chosen at random during the testing phase. These images are 

from a different class that has never been shown to the network 

during training. Consequentially, we observe that as the 

training steps progress, the accuracy of the set to be tested 

follows that of the set used for training while remaining only 

slightly inferior. This shows that the algorithm, which was 

trained on cases of the training set, predicts the cases that 

weren't in the training set correctly. 

 

 
 

Figure 7. Precision and accuracy curves before fine-tuning 

the NasNet-Mobile 

Precision is the proportion of properly classified examples 

(5), while recall (also known as sensitivity) is the proportion 

of recovered relevant instances (6). Relevance thus determines 

precision and recall.  

 

Precision =
TP

TP+FP
  (5) 

 

Recall =
TP

TP+FN
  (6) 

 

Accuracy =
TP+TN

TP+TN+FP+FN
  (7) 

 

As we can see in the previous curves (Figure 8) and in 

(Table 3), the best-achieved precision is about 99.51% in the 

training and 98.6% for the validation. The recall is about 

99.51% for training and 97.78% for validation dataset. These 

results were obtained before the fine-tuning. 

b. Performance of the model after fine-tuning 

 

Table 4. Performance metrics of NasNet-Mobile in the training and validation dataset after fine-tuning 

 
Metrics Training Dataset Validation Dataset 

Accuracy 

Loss 

100% 

0.0245 

98.06% 

0.0729 

Precision 100% 98.04% 

Recall 100% 97.50% 

Area under the curve AUC 100% 99.44% 

 

 
 

Figure 8. Training with validation loss 
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Figure 9. Accuracy (left) and loss (right) curves for fine-tuned NasNet-Mobile CNN 

 

 
 

Figure 10. Precision and recall loss in the fine-tuned model 

 

The training process was early stopped, as shown in Figure 

9, because there was no improvement during three consecutive 

epochs. We can clearly see the instability of both accuracy and 

loss in the training and validation datasets, as shown in Table 

4, even though the accuracy of the model can reach 100%, 

which is very good compared with such a small amount of data 

(only 300 images per class, whereas 240 for training and 60 

for validation). This instability is caused by the absence of 

batch normalization in the experiments (Figures 9 and 10). 

Batch normalization enhances the training process by reducing 

internal covariate shifts, improving stability, and optimizing 

the model. It also improves generalization by normalizing 

layer activations, reducing overfitting, and reducing initial 

weight sensitivity. Batch normalization also allows for higher 

learning rates, accelerating the training phase as well as 

minimizing the need for precise initialization (no batch 

normalization layer was included in our architecture in the first 

experiment). To overcome this issue, we should address model 

fine-tuning, like adding different batch normalization layers 

and training the model again. 

 

4.3 Comparative study 

 

In this part, we will compare our model to prominent steel 

surface inspection methodologies already in use. We take into 

consideration not only the accuracy but also the terms of 

execution time, model lightness (number of parameters), and 

data size. 

 

Table 5. The classification accuracy (%) for several state-of-the-art steel surface fault classifiers taking into account the triplet 

model lightness vs. running time vs. data size 

 
Method Accuracy Model Lightness (nbr of prmtrs) Time (ms) Per Inference step Data Size 

[34] 96.91% 25.6 million 58.2 87704 

[33] 98.56% 25.6 million 77.1 12568 

[41] 97.27% 60 million 10.3 26334 

Our method (Developed NasNet-Mobile) 99.51% 5.3 million 27.0 1800 

 

Table 6. The evaluation of classification error depending on various activation functions, the model uses the name of the 

activation function wrapped in parenthesis 

 
Method Error Rate (%) 

CNNs (Sigmoid) 12.8721 

CNNs (Hyperbolic Tangent) 18.1129 

CNNs (ReLUs) 

Recall 
9.5018 

CNN (LUs) 0.6292 

Our method (ELUs) 0.028 
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According to Table 5, we can obviously say that our model 

beats the aforementioned models regard to accuracy, while it 

achieves a 99.51%, which is higher in comparison with other 

accuracies. The proposed NasNet-Mobile can reach very 

satisfying results with lower model parameters and running 

time, as well as it doesn’t require large data: 48 times lower 

than the model [34], 7 times lower than the model [33] and 14 

times lower than the model [41]. Our model seems to be the 

lighter (only 5.3 million parameters which is so low compared 

to DeCAF model [41] with 60 million parameters and 25.6 

million parameters of residual neural network [22].  

Finally, the running time of our network is faster than the 

other's executing time. As we can see, it is three times less than 

the model [33] and 2.5 times less than the model [22]. The 

error rate of our model is the lowest compared to other models 

error rates. In Table 6, the error rate of our model is 0.028, 

which is 22 times less than the CNN method with LU’s 

activation function. This means that our model can learn better 

with fewer errors and better accuracy. 

 

 

5. CONCLUSIONS 

 

In this paper, we have suggested a novel method based on 

the pre-trained NASNet-Mobile CNN to classify defects in 

steel sheets. Here are the main findings of the research: 

The issue of accurate classification when the memory is 

insufficient is set using the NASNet-Mobile network, which 

has a small number of parameters compared to other CNNs 

(5.3 million parameters). The top layers of this CNN were 

frozen, which helped to use less memory and calculations 

without losing weight. The long executing time dilemma is 

fixed using the free GPU available on the Google Colab 

Platform. The problem of dataset scarcity is addressed in this 

paper and solved due to the potency of this CNN, which can 

get the necessary features of the image due to its long depth 

(389 layers), which can extract more features even though the 

dataset number is tiny. 

The modification of hyper-parameters gave an 

improvement to the model when fine-tuned. We found out that 

the ADAMAX optimizer is better than the ADAM optimizer 

in this modified NasNet-Mobile architecture. Thus, we could 

note a slight improvement in both accuracy and error rate. The 

Adam optimizer adjusts weights in inverse proportion to the 

scaled L2 norm of previous gradients, whereas AdaMax 

expands this to the infinite norm of previous gradients. 

The model has been justified, and the last block was entirely 

removed and outright replaced with a new block. Hence, other 

modifications were adopted to match the requirements of steel 

image features. An ELU activation function was set in the 

convolution layers. We meant to use this activation function, 

and this is to exploit its advantages. This activation function 

helps solve the dying RELU problem where the gradient value 

is 0 on the graph's negative side. As a consequence, the 

weights and biases of certain neurons are not updated 

throughout the backpropagation process. This can result in 

dead neurons that are never triggered. By inserting a log curve 

for negative input values, ELU can address the RELU dying 

problem. It then assists the network in adjusting weights and 

biases in the proper direction. The ELU activation function can 

increase model performance and network robustness. It 

likewise gradually smoothies until its output equals zero, 

whereas RELU dramatically smoothes. 

A dropout (0.2) was added after each fully connected layer, 

and a global average pooling was placed before the dense layer, 

which helped minimize time and memory during the model 

implementation. Learning rate scheduling enables us to make 

use of larger steps for the first couple epochs, then gradually 

lower the number of steps as the weights approach their ideal 

value. 

More improvements can be achieved by gathering more 

training data and/or strengthening the network's architecture 

and fine-tuning its hyper-parameters instead of raising the 

training epochs under the present structure, which might result 

in overtraining. 

In general, we can conclude that the suggested algorithm 

can be adopted in image processing tasks such as classification 

tasks to overcome the main three challenges : time 

consumption, memory insufficiency, and limited data 

confronts in small mills and non-powerful operators. 

 

 

ACKNOWLEDGMENT 

 

This work is supported by the GOOGLE Colaboratory, free 

provided GPU, PYTHON community as well as open access 

GITHUB and Kaggle databases. 

 

 

REFERENCES  

 

[1] Yi, L., Li, G., Jiang, M. (2017). An end-to-end steel strip 

surface defects recognition system based on 

convolutional neural networks. Steel Research 

International, 88(2): 1600068. 

https://doi.org/10.1002/srin.201600068 

[2] Kateb, Y., Meglouli, H., Khebli, A. (2020). Steel surface 

defect detection using convolutional neural network. 

Algerian Journal of Signals and Systems, 5(4): 203-208. 

https://doi.org/10.51485/ajss.v5i4.122 

[3] Neogi, N., Mohanta, D.K., Dutta, P.K. (2014). Review of 

vision-based steel surface inspection systems. EURASIP 

Journal on Image and Video Processing, 2014(1): 1-19. 

https://doi.org/10.1186/1687-5281-2014-50 

[4] Zhang, M., Zheng, H.F., Hao, N.I. (2019). Ultrasonic 

image defect classification based on support vector 

machine optimized by genetic algorithm. Acta 

Metrologica Sinica, 40: 887-892. 

[5] Du, P., Samat, A., Waske, B., Liu, S., Li, Z. (2015). 

Random forest and rotation forest for fully polarized 

SAR image classification using polarimetric and spatial 

features. ISPRS Journal of Photogrammetry and Remote 

Sensing, 105: 38-53. 

https://doi.org/10.1016/j.isprsjprs.2015.03.002 

[6] Kim, C., Choi, S., Kim, G., Joo, W. (2006). 

Classification of surface defect on steel strip by KNN 

classifier. Journal of the Korean Society for Precision 

Engineering, 23(8): 80-88. 

[7] Wang, J., Luo, L., Ye, W., Zhu, S. (2020). A defect-

detection method of split pins in the catenary fastening 

devices of high-speed railway based on deep learning. 

IEEE Transactions on Instrumentation and Measurement, 

69(12): 9517-9525. 

https://doi.org/10.1109/TIM.2020.3006324 

[8] Li, Z., Tian, X., Liu, X., Liu, Y., Shi, X. (2022). A two-

stage industrial defect detection framework based on 

improved-YOLOv5 and optimized-inception-resnetv2 

models. Applied Sciences, 12(2): 834. 

689



 

https://doi.org/10.3390/app12020834 

[9] Vannocci, M., Ritacco, A., Castellano, A., Galli, F., 

Vannucci, M., Iannino, V., Colla, V. (2019). Flatness 

defect detection and classification in hot rolled steel 

strips using convolutional neural networks. In: Rojas, I., 

Joya, G., Catala, A. (eds) Advances in Computational 

Intelligence. IWANN 2019. Lecture Notes in Computer 

Science(), vol 11507. Springer, Cham. 

https://doi.org/10.1007/978-3-030-20518-8_19 

[10] Wu, C., Ju, B., Wu, Y., Lin, X., Xiong, N., Xu, G., Li, H., 

Liang, X. (2019). UAV autonomous target search based 

on deep reinforcement learning in complex disaster scene. 

IEEE Access, 7: 117227-117245. 

https://doi.org/10.1109/ACCESS.2019.2933002 

[11] Luo, Q., He, Y. (2016). A cost-effective and automatic 

surface defect inspection system for hot-rolled flat steel. 

Robotics and Computer-Integrated Manufacturing, 38: 

16-30. https://doi.org/10.1016/j.rcim.2015.09.008 

[12] Finn, C., Abbeel, P., Levine, S. (2017). Model-agnostic 

meta-learning for fast adaptation of deep networks. In 

International Conference on Machine Learning, pp. 

1126-1135.  

[13] Ravi, S., Larochelle, H. (2016). Optimization as a model 

for few-shot learning. In International conference on 

learning representations. International Conference on 

Learning Representations.  

[14] Ashour, M.W., Khalid, F., Abdul Halin, A., Abdullah, 

L.N., Darwish, S.H. (2019). Surface defects 

classification of hot-rolled steel strips using multi-

directional shearlet features. Arabian Journal for Science 

and Engineering, 44: 2925-2932. 

https://doi.org/10.1007/s13369-018-3329-5 

[15] Gong, R., Wu, C., Chu, M. (2018). Steel surface defect 

classification using multiple hyper-spheres support 

vector machine with additional information. 

Chemometrics and Intelligent Laboratory Systems, 172: 

109-117. 

https://doi.org/10.1016/j.chemolab.2017.11.018 

[16] Liu, K., Li, A., Wen, X., Chen, H., Yang, P. (2019). Steel 

surface defect detection using GAN and one-class 

classifier. 2019 25th International Conference on 

Automation and Computing (ICAC), Lancaster, UK, pp. 

1-6. https://doi.org/10.23919/IConAC.2019.8895110 

[17] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. 

(2020). Generative adversarial networks. 

Communications of the ACM, 63(11): 139-144. 

https://doi.org/10.1145/3422622 

[18] Li, S., Wu, C., Xiong, N. (2022). Hybrid architecture 

based on CNN and transformer for strip steel surface 

defect classification. Electronics, 11(8): 1200. 

https://doi.org/10.3390/electronics11081200 

[19] Krapac, J., Meglouli, H. (2021). Représentations 

d'images pour la recherche et la classification d'images. 

Doctoral dissertation, Automatique Appliquée et 

Traitement du Signal, Université M'hamed Bougara - 

Boumerdes Algeria. 

[20] Kateb, Y., Meglouli, H., Khebli, A. (2023). Coronavirus 

diagnosis based on chest X-ray images and pre-trained 

DenseNet-121. Revue d'Intelligence Artificielle, 37(1): 

23-28. https://doi.org/10.18280/ria.370104 

[21] Meglouli, H., Bentabet, L., Airouche, M. (2019). A new 

technique based on 3D convolutional neural networks 

and filtering optical flow maps for action classification in 

infrared video. Journal of Control Engineering and 

Applied Informatics, 21(4): 43-50. 

[22] Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J., 

Brezina, J. (2020). Steel surface defect classification 

using deep residual neural network. Metals, 10(6): 846. 

https://doi.org/10.3390/met10060846 

[23] Liu, Y., Geng, J., Su, Z., Zhang, W., Li, J. (2019). Real-

time classification of steel strip surface defects based on 

deep CNNs. In: Jia, Y., Du, J., Zhang, W. (eds) 

Proceedings of 2018 Chinese Intelligent Systems 

Conference. Lecture Notes in Electrical Engineering, vol 

529. Springer, Singapore. https://doi.org/10.1007/978-

981-13-2291-4_26 

[24] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. 

(2015). Going deeper with convolutions. In Proceedings 

of the IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 1-9. 

[25] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., 

Dally, W.J., Keutzer, K. (2016). SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and< 0.5 MB 

model size. arXiv preprint arXiv:1602.07360. 

https://doi.org/10.48550/arXiv.1602.07360 

[26] Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M.Y., 

Cao, Y. (2019). A deep-learning-based approach for fast 

and robust steel surface defects classification. Optics and 

Lasers in Engineering, 121: 397-405. 

https://doi.org/10.1016/j.optlaseng.2019.05.005 

[27] Boudiaf, A., Benlahmidi, S., Harrar, K., Zaghdoudi, R. 

(2022). Classification of surface defects on steel strip 

images using convolution neural network and support 

vector machine. Journal of Failure Analysis and 

Prevention, 22(2): 531-541. 

https://doi.org/10.1007/s11668-022-01344-6 

[28] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012). 

Imagenet classification with deep convolutional neural 

networks. Communications of the ACM, 60(6): 84-90. 

https://doi.org/10.1145/3065386 

[29] Hao, Z., Li, Z., Ren, F., Lv, S., Ni, H. (2022). Strip steel 

surface defects classification based on generative 

adversarial network and attention mechanism. Metals, 

12(2): 311. https://doi.org/10.3390/met12020311 

[30] Song, K., Yan, Y. (2022). Steel Surface: NEU-CLS. 

https://www.kaggle.com/kaustubhdikshit/neu-surface-

defect-database.  

[31] Girija, S.S. (2016). Tensorflow: Large-scale machine 

learning on heterogeneous distributed systems. Software, 

39(9). http://arxiv.org/pdf/1603.04467.pdf. 

[32] Keras. GitHub. (2015). GitHub. 

https://github.com/fchollet/keras. 

[33] Damacharla, P., Rao, A., Ringenberg, J., Javaid, A.Y. 

(2021). TLU-net: A deep learning approach for 

automatic steel surface defect detection. In 2021 

International Conference on Applied Artificial 

Intelligence (ICAPAI), Halden, Norway, pp. 1-6. 

https://doi.org/10.1109/ICAPAI49758.2021.9462060 

[34] Konovalenko, I., Maruschak, P., Brevus, V., 

Prentkovskis, O. (2021). Recognition of scratches and 

abrasions on metal surfaces using a classifier based on a 

convolutional neural network. Metals, 11(4): 549. 

https://doi.org/10.3390/met11040549 

[35] Lv, X., Duan, F., Jiang, J.J., Fu, X., Gan, L. (2020). Deep 

metallic surface defect detection: The new benchmark 

and detection network. Sensors, 20(6): 1562. 

690



 

https://doi.org/10.3390/s20061562 

[36] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V. (2018). 

Learning transferable architectures for scalable image 

recognition. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Salt Lake 

City, UT, USA, pp. 8697-8710. 

https://doi.org/10.1109/CVPR.2018.00907 

[37] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., 

Wang, W., Weyand, T., Andreetto, M., Adam, H. (2017). 

Mobilenets: Efficient convolutional neural networks for 

mobile vision applications. arXiv preprint 

arXiv:1704.04861. 

https://doi.org/10.48550/arXiv.1704.04861 

[38] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, 

L. (2009). Imagenet: A large-scale hierarchical image 

database. In 2009 IEEE Conference on Computer Vision 

and Pattern Recognition, Miami, FL, USA, pp. 248-255. 

https://doi.org/10.1109/CVPR.2009.5206848 

[39] Ide, H., Kurita, T. (2017). Improvement of learning for 

CNN with ReLU activation by sparse regularization. In 

2017 International Joint Conference on Neural Networks 

(IJCNN), Anchorage, AK, USA, pp. 2684-2691. 

https://doi.org/10.1109/IJCNN.2017.7966185 

[40] Van Rossum, G., Drake, F.L. (1995). Python Reference 

Manual (Vol. 111, pp. 1-52). Amsterdam: Centrum voor 

Wiskunde en Informatica. 

[41] Ren, R., Hung, T., Tan, K.C. (2017). A generic deep-

learning-based approach for automated surface 

inspection. IEEE Transactions on Cybernetics, 48(3): 

929-940. https://doi.org/10.1109/TCYB.2017.2668395 

 

 

NOMENCLATURE 

 

AI Artificial Intelligence 

CNN Convolutional neural network 

DNN Deep neural network 

TP True positive 

TN True negative 

FP False positive 

FN False negative 

CPU Central Processing Unit 

GPU Graphic Processing Unit 

 

 

 

691




