
Classification of Surface Defects in Steel Sheets Using Developed NasNet-Mobile CNN and

Few Samples

Yousra Kateb* , Abdelmalek Khebli , Hocine Meglouli

Laboratory of Electrification of Industrial Enterprises, Faculty of Hydrocarbons and Chemistry, University of M’hamed

Bougarra Boumerdes, City of the Independence, Boumerdes 35000, Algeria

Corresponding Author Email: y.kateb@univ-boumerdes.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380232 ABSTRACT

Received: 4 June 2023

Revised: 27 November 2023

Accepted: 29 December 2023

Available online: 24 April 2024

Rolled steel is a major product of ferrous metalworking. It is a popular metal structure

construction technology. Though a big amount of the finished product may be flawed, the

process of manufacturing must be improved. It is critical to correctly classify hot-rolled

strip faults. As a result, in recent years, numerous machine-learning-based automated visual

inspection (AVI) systems have been created. However, these approaches lack several

critical components, such as insufficient RAM, which causes complexity and slowness

during implementation. Long execution durations, in general, cause the process to be

delayed or completed later than expected. A shortage of faulty samples is also a significant

difficulty in steel defect detection, as the imbalance between the huge number of non-

defective photos and the defective ones causes the algorithm to be unfair in categorization.

To address these three issues, a deep CNN model is created in this study. The backbone

architecture is a pre-trained NasNet-Mobile that has been fine-tuned with particular

parameters to be compatible with the required data. Despite having 27 times less data than

other articles' datasets, the model detects steel surface photos with six defects with 99.51%

accuracy, exceeding earlier methodologies. This study is useful for surface fault

classification when the sample size is small, the software is not quite as effective, or time

is limited. Avoiding these issues will help the steel industry improve safety and end product

quality while also saving time and money.

Keywords:

few samples, image classification, NasNet-

mobile, pre-trained CNN, steel surface

inspection

1. INTRODUCTION

Hot-rolled strip steel is widely utilized in automobile

manufacture, aircraft, and light industries as one of the steel

industry's key products [1, 2]. One of the most important

indications of strip steel's market competitiveness is surface

quality. Because of the raw material's influence, the strip steel

surface will unavoidably change due to the materials, rolling

method, and external environment. In the manufacturing

process, oxide scale, inclusions, scratches, and other

imperfections emerge that are not visible. It not only has a

negative effect on appearances, but it also decreases fatigue

resistance. However, these faults cannot be completely

avoided by improving the technique over time [3]. Therefore,

the surface fault categorization may be utilized as a reference

throughout the production operation. The objective of

increasing yield and minimizing manufacturing costs is

achieved through suitable adjustment. A lot of issues arise

during the real-time examination of steel surfaces. Some of

these issues include the following:

Hazardous location: Putting inspection equipment

(illumination system, camera, and certain signal processing

equipment) in hot rolling mills is extremely dangerous. The

presence of dust, grease, grime, water droplets, and vapor is

common. Furthermore, the lighting system and cameras must

be protected from stress and vibration. On a daily, monthly,

and annual basis, heavy equipment is moved in and out of the

site. The aforementioned concerns necessitate the adoption of

appropriate physical and environmental safeguards for site

equipment.

Operation speed: The high working speed of surface

inspection equipment is generally 20 m/s for flat steel goods

and 100 m/h for long products, necessitating the use of

sophisticated image processing equipment and software with

a short execution time.

Surface defect types: Surface flaws in steel merchandise are

quite diverse, with nine primary classes and 29 subclasses.

These flaws are not governed by norms, and their features and

categorization differ between factories and operators, as well

as their appearance, which might alter according to variances

in the manufacturing process.

HRC (hot roll coil) is the most common finished steel form

in the world and an important raw material for manufacturers.

It is a vital substance that necessitates precise and quick spot

pricing and analysis. Many factors, ranging from raw material

costs to global trade agreements, eventually influence the

pricing of the carbon steel products customers purchase. The

three main factors are described:

Firstly, steel starts with iron ore, scrap, coking coal, and

natural gas. These resources' prices are influenced by the

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 681-691

Journal homepage: http://iieta.org/journals/ria

681

https://orcid.org/0000-0001-5055-3752
https://orcid.org/0000-0003-0825-3283
https://orcid.org/0000-0001-7639-6927
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380232&domain=pdf

producing countries and traded on exchanges such as CME

(Chicago Mercantile Exchange). Secondly, the macro-

economic factors influencing supply and demand dynamics

have a significant effect. For example, when the US

administration imposed a 25% tax on steel in early 2018, the

price of HRC increased in the United States. Thirdly,

depending on the end-use of a product, HRC is subjected to a

variety of mill treatments, many of which add value but come

at an additional expense.

Steel surface inspection currently falls into two categories:

conventional techniques and deep learning techniques. In the

traditional category, features are extracted using Support

Vector Machine (SVM) [4], Random Forest [5], k-nearest

neighbor (KNN) [6], and many different other classifiers.

However, because there are no obvious guidelines for the

distribution of flaws on the steel images, extracting the

features is challenging, resulting in difficulties utilizing the

detection algorithm as well as poor recognition accuracy. The

deep learning approaches are mainly based on convolutional

neural networks; these CNNs are used to classify defective

surfaces on steel products [7]. Here, features are extracted

directly from the image, which results in high accuracy, high

speed, and more adaptability [8].

As a consequence, improving surface defect classification

accuracy in hot-rolled strips in order to minimize the

frequency of human intervention in defect classification may

result in considerable economic and social benefits. On the one

hand, quality inspectors may avoid working late at night,

which is good for their health. On the other hand, mistakes

caused by fatigue and other variables of quality inspectors will

be significantly minimized, boosting the performance and

productivity of the strip steel and offering higher advantages

to the steel factory. In brief, the paper's contributions are as

follows:

• A steel surface dataset of 1800 samples is

suggested from the NEU Kaggle Competition for

steel surface detection launched three years ago

(NEU-CLS). The dataset contains more than

87000 digital photos of steel defects. In this work,

we decided to use only a tiny number of pictures

(only 300 images per class) to assess the efficacy

of our suggested method.

• We apply the NasNet-Mobile CNN-based model

using the improving techniques that will be

explained in Section 2 to classify defects of six

types in steel flats. NASNet-Mobile is chosen

because it is a simple transfer learning model with

only 5.3 million parameters, which makes it

computationally cheap and fast to operate. As well

as it offering a good balance of more acceptable

performance while remaining calculations

affordable, making it a good simple transfer

learning model to use.

• We vary a number of hyper-parameters to test the

viability of our method, and then we present the

experiments and analyze the findings in Section 3.

• Section 4 summarizes the conclusions.

Significance of the research:

The key objective of this study is to assist small industries

in pursuing the defect detection process using such little

software and a few samples of defected images in a shorter

time. This will lead to the good development of small mills

and fewer potential operators. This research would be carried

out with more improvement according to the client’s needs.

2. RELATED WORK

Experts tended to identify problems manually, which was

imprecise and error-prone [9]. Furthermore, as a result of the

identical flaws, various expert judgments will be formed,

leading to incorrect types and classes of strip steel flaws,

diminishing defect detection reliability. Recognition results

based on researchers' subjective judgments are generally

inadequate [10, 11].

To overcome the limitations of manual identification,

researchers have addressed a number of solutions based on

machine learning technology.

Meta-learning-based method. It trains a meta model to

acquire the knowledge of multiple tasks, such as the Model-

Agnostic Meta-Learning algorithm (MAML) proposed by

Finn et al. [12] and the Long Short Term Memory network

(LSTM) developed by Ravi and Larochelle [13]. Existing

meta-learning algorithms often use an LSTM or Recurrent

Neural Network (RNN) structure within the model, however

these algorithms have significant temporal complexity and

sluggish running speed. As a result, it is inappropriate for

industrial use.

The Grayscale Covariance Matrix (GLCM) as well as the

Discrete Shear Transform were used to suggest a classification

approach [14]. (DST). After obtaining multi-directional shear

characteristics from the pictures, a GLCM calculation is done.

It then performs an important aspect analysis involving high-

dimensional feature vectors before being passed into a support

vector machine (SVM) to identify surface faults in strip steel.

The fundamental disadvantage of the GLCM technique is its

large matrix dimensionality, which necessitates the use of

highly capable software.

In the study [15], The authors presented a unique multi-

hyper-sphere SVM with extra information (MHSVM+)

approach for revealing hidden information in defective data

sets using an additive learning model. It has a higher

classification accuracy on defect datasets, particularly

damaged datasets. However, SVM algorithm underperforms

in large data sets with noise and overlapping target classes, and

underperforms when features exceed training data samples.

The authors [16] designed a one-class classification

technique made up of generative adversarial networks (GAN)

[17] and SVM. It trains an SVM classifier with GAN-

generated features. It further enhances the loss function,

thereby improving the stability of the model. Regrettably, the

aforementioned standard Machine Learning techniques often

need substantial feature engineering, which greatly raises costs

[18].

Traditional machine learning-based algorithms, as

previously indicated, are frequently impacted by defect size

and noise. Furthermore, this method's accuracy is insufficient

to fulfill the practical criteria of automated defect

identification. Some elements must be created by hand, as well

as the scope of the application is highly limited.

Deep learning-based techniques, notably convolutional

neural networks (CNN), have experienced great success in

image classification tasks in recent years [19, 20]. CNN has

great characterization capabilities [21, 22] and is very

successful at recognizing strip surface flaws [6, 8, 17].

Authors [23] built on GoogLeNet [24] and improved it

slightly by including identity mapping. To minimize

overfitting, the dataset was augmented using the data

augmentation approach.

SqueezeNet [25] was applied in the study [26] to present an

682

end-to-end effective model. The multiple receptive field

scheduling, which may provide scale-related high-level

features, was added to SqueezeNet. It is beneficial to low-level

feature training and it can classify strip steel surface faults fast

and consistently. One of SqueezeNet's key disadvantages is its

low accuracy when compared with larger and more

complicated models.

Authors [27] proposed a modified AlexNet [28] and SVM-

based intelligent surface defect inspection system for hot-

rolled steel strip pictures. Due to receptive field limitations,

CNN-based classification models have excellent fitting ability

but poor global representation ability. Obtaining a significant

number of fault samples in complicated industrial situations is

difficult, therefore increasing the dataset has become a

pressing issue that must be addressed. The attention

mechanism, on the contrary, has been shown to enable the

model to focus on more significant information, resulting in

higher recognition accuracy. In contemporary research,

however, attention mechanisms are rarely used to define strip

steel surface defects [29].

Traditional Machine Learning methods often require

considerable feature engineering, which raises the cost

significantly.

3. PROPOSED APPROACH

Our strategy consists of four main stages:

Step 1: we preprocess the data and organize it into six types

of defects (patches, crazing, pitted surface, scratches, rolled in

scale, inclusion). This dataset is available on the NEU Steel

detection competition website [30].

Step 2: we use the pre-trained CNN called NasNet-Mobile

as the backbone of the model with which we extract the image

features; the top layers will be frozen to use the ImageNet

saved weights. The last block is then fully erased and replaced

with an entirely new one (global average pooling, dropout,

exponential linear unit (ELU) to represent the dense layers, as

well as a Softmax function for the prediction and classification

layer).

Step 3: we fine-tune the model with the obtained weights

and switch between optimizers (ADAM optimizer, ADAMAX

optimizer) to get the best results.

Step 4: we make the comparison to pick up the best fine-

tuned model (we take into consideration the three metrics:

Accuracy vs. Executing time vs. Model lightness).

3.1 Steel surface defect dataset

The NEU surface defect database includes six types of hot-

rolled steel strip surface flaws: rolled-in scale (RS), inclusion

(In), patches (Pa), crazing (Cr), pitted surface and (PS) and

scratches (Sc) [30]. The database contains 1800 photos (300

for each surface fault type). Figure 1 depicts sample photos of

various common faults. The dataset collection was chosen

because it contains fewer photos than other databases,

allowing us to compare the performance of our technique with

this little quantity of data to other papers' datasets (Table 1).

A part of 80% of the data was randomly selected (there are

240 photos for each fault type.) in the NEU dataset to form the

training data. The other rest (20%) is used to validate the

classification of the network. All data was augmented using

“Image-Data-Generator” in Tensorflow [31] and Keras [32]

libraries. Rotation (0°, 45°, 90°, 180°), horizontal flipping,

shearing (0.2) and zooming (0.2). Each image's pixel values

were adjusted to fall within the range of [-1; 1] before being

fed into our network.

Table 1. Summary of number of data in previous works

Proposed Algorithm Image Modality Number of Images

Deep residual neural network [22] Severstal: Steel Defect Detection 87704

DenseNet, ResNet,U- Net [33] Severstal: Steel Defect Detection 12568

ResNet-50, ResNet-152 [34]
Severstal: Steel Defect Detection,

NEU steel database
9385

Our model: NASNet-Mobile NEU: Steel Defect Dataset 1800

Figure 1. Several metallic surface fault samples. (a) Crazing.

(b) Inclusion. (c) Patches. (d) Pitted surface. (e) Rolled in

scale. (f) Scratches [35]

3.2 Classification model—Improved NASNet-Mobile

The technique of automating the construction of neural

network topology in order to get the best outcomes on a certain

job is known as Neural Architecture Search (NAS). The task

is to develop the architecture with few resources and as little

human help as possible. Authors [36] created the NasNet

architecture, a neural architecture search network that trains to

obtain the most correct parameters from produced architecture

using a recurrent neural network (RNN) and reinforcement

learning. Designing a CNN architecture requires a long time

when the material is large, for instance the ImageNet dataset.

They subsequently developed an CNN framework capable of

searching for the best architecture in a small set of data and

then transferring the best architecture to be trained on huge

datasets; this architecture is known as "learning transferable

architectures". The NASNet-Mobile architecture may be

scaled based on data volume.

• Identity

• 1 × 7 then 7 × 1 convolution

• 3 × 3 average pooling

• 5 × 5 max pooling

• 1 × 1 convolution

• 3 × 3 depthwise-separable convolution

• 7 × 7 depthwise-separable convolution

• 1 × 3 then 3 × 1 convolution

683

(a)

(b)

Figure 2. (a) CIFAR10 dataset (left) and ImageNet (right) dataset architectures (b)Normal cell (left) and reduction cell (right)

[36]

• 3 × 3 dilated convolution

• 3 × 3 max pooling

• 7 × 7 max pooling

• 3 × 3 convolution

• 5 × 5 depthwise-separable convolutions [36]

3.2.1 Depthwise and pointwise convolutions

The NasNet-Mobile framework is based on depthwise

separable convolutions [37], a sort of factorized convolution

in which a conventional convolution is divided into a

depthwise convolution and also a 1 x 1 convolution known as

a pointwise convolution. NasNet-Mobile use depthwise

convolution in order to apply an individual filter for each input

channel. The pointwise convolution then combines the

depthwise convolution outputs with a 1 x 1 convolution. A

conventional convolution filters and mixes inputs in a single

step to generate a new set of outputs. This is divided into two

layers by the depthwise separable convolution, one for

filtering and another for combining. This factorization

significantly reduces processing and model size. Depthwise

separable convolutions are made up of two layers, which are

depthwise and pointwise. We use depthwise convolutions

(input depth) to set up a single filter for each input channel.

The depthwise layer output is then linearly mixed using

pointwise convolution, which is a basic 1 x 1 convolution (Eq.

(1)).

𝐺𝑘,𝑙,𝑚 = ∑ �̂�𝑖,𝑗 ∗ 𝐹𝑘+𝑖−1, 𝑖+𝑗−1, 𝑚

𝑖,𝑗

 (1)

684

Figure 3. Convolution cell block acquired via RNN

exploration

K is the depthwise convolutional kernel with a size of Dk x

Dk x M Where the mth filter in 𝐾 ̂is applied to the mth channel

in F to output the mth channel of the filtered output feature map

Ĝ. As shown in Figure 2(a) and Figure 2(b), RNN merges two

hidden layers to move on to the following hidden layer.

We study modifications in architectural configuration of

each reference structure empirically (Section II). We use

transfer learning from network models trained on ImageNet

[38] in the simplified CNN framework by removing the block

and replacing it with a new block containing global average

pooling, dropout, dense, as well as a Softmax function for the

last prediction layer to forecast the steel defect class (Figure

3). For the first part of training (before fine-tuning), the whole

architecture is frozen except for the final created block.

Following that, we unfreeze the model's top so that it may train

again to the desired goal (steel fault classification). This avoids

the network from over-fitting throughout training and allows

its model to learn quicker and for a longer period of time,

resulting in improved generalization. Using the light-weight

NasNet architecture provides various advantages, including

improved model training, being less prone to short dataset

over-fitting, and being deployable in other embedded systems.

3.2.2 NASNet-Mobile-based defect classification

a. The reason of choosing NASNet-Mobile:

There are three main reasons of taking this CNN as the

backbone of our model. Firstly, its lightness as it takes only 23

MB in the memory which is too smaller in comparison with

other models (VGG16 takes 549 MB, ResNet52 takes 232 MB,

NASNet-Large takes 343 MB…etc.). Secondly, the number of

parameters, this model is built with only 5.3 million

parameters which is comparatively very small (for example

the VGG16 is built with 143.7 million parameters, it is then 27

times larger than our NASNet-Mobile model). The last reason

is that this model takes only 27 ms per inference step in a CPU

and 6.7 ms per inference step in a GPU, it is then 60 times less

than the EfficientNetB7 (with 1578.9 ms per inference step).

b. Modified NASNet-Mobile:

NasNet-Mobile's basic model is pre-trained with 1,056

output channels for ImageNet [38] recognition. This

architecture's core experimentation is around the amount of

regular cells in the model. We employed three reduction cells

with three regular cells in our modified NASNet-Mobile

design (Figure 4). The total number of parameters is 4,376,022,

of which only 106,306 (2.42% are trainable) and the rest are

frozen.

Figure 4. General structure of the proposed approach

We use the pre-trained NASNet-Mobile framework as the

backbone building design, which consist six cells (reduced and

normal), followed by a newly constructed defect classification

block that includes a convolution layer, dropout, dense, and

global average pooling. The activation function is "ELU"

rather than "ReLU" in the first dense layer. ELU, or

Exponential Linear Unit, is a function that converges cost to

zero faster and produces more accurate results [39]. In contrast

to other activation functions, ELU contains an extra alpha

constant that needs to be positive, as seen in Eq. (2).

𝑅(𝑧) = {
𝑧 𝑤ℎ𝑒𝑛 𝑧 > 0
𝛼. (exp(𝑧) − 1) 𝑤ℎ𝑒𝑛 𝑧 < 0

 (2)

ELU is extremely similar to RELU, with the exception of

the negative inputs. They are both in identity function form for

non-negative inputs. ELU, on the other hand, smoothies

progressively until their output equals −𝛼 , whereas RELU

smoothies substantially (Figure 5). The reason for using ELU

instead of ReLU as an activation function is because ELU

smoothes out gradually till it reaches 𝛼 , whereas RELU

smoothes out dramatically. Furthermore, unlike ReLU, ELU

can provide negative outputs.

c. Advantages of exponential linear unit ELU

The ELU is a continuous and differentiable activation

function that offers faster training times compared to other

685

linear non-saturating functions like ReLU with its other

different versions (Leaky-ReLU (LReLU) and Parameterized-

ReLU (PReLU).). It doesn't suffer from dying neurons,

exploding or vanishing gradients. As compared to other

activation functions like ReLU, Sigmoid, and Hyperbolic

Tangent, it achieves more accuracy.

Steel surface defect classifier variables can be updated by

reducing a multi-class loss function known as Categorical

crossentropy (Eq. (3)).

𝐿𝑂𝑆𝑆 = − ∑ 𝑦𝑖 ∗ log �̂�𝑖

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 (3)

where, 𝑦𝑖 represents the i-th scalar value in the model output,

𝑦𝑖 indicates the equivalent goal value, and output size refers to

the number of scalar values in the output of the model.

Figure 5. Graph showing the difference between ELU

(green) and ReLU (red) activation functions [39]

d. Model optimization for Steel surface defect

Following the development of the basic NasNet-Mobile

model for steel surface defect inspection, we propose many

viable strategies for improving accuracy and reducing

execution time. First, data augmentation is used to get more

features to be learnt by the model. Second, a new block, which

we already defined, is added at the bottom of the model for the

prediction part, this block will help improve accuracy and

reduce model parameters and executing time. Third, we switch

between optimizers to find the best one (ADAM and

ADAMAX). Finally, the learning rate is reduced using the

exponential decay as in Eq. (4) then we apply the early

stopping when the model accuracy cannot improve anymore.

The model restores the best weights.

y = a(1 − b)x (4)

where, y represents the final value, a represents the initial

value, b represents the decay factor, in addition x is the value

of time that has elapsed.

4. EXPERIMENTS AND RESULTS

4.1 Model implementation

Our method is deployed under the publicly available Python

framework from Google Colaboratory [40]. Tesnorflow [31],

Keras, Matplotlib, NumPy, and Glob are the main libraries

used in this implementation. We took 80% of the photos in the

NEU (NEU) collection as training data (240 images for every

single fault category) and 20% as validation data. Before as

well as after fine-tuning the network, performance is evaluated.

Table 2 shows the values of the hyperparameters used to train

this CNN.

The experiments were performed with Windows 10

Professional on the Intel® Core (TM) i5 7200U, 64-bit

platform with 8GB of RAM and NVIDIA RTX 2070, as we

took advantage of the free available GPU on the Google Colab

Platform. The training with the surface defect dataset was so

fast. It took only 3414 seconds (56 minutes and 54 seconds) to

train the model before fine-tuning and 528 seconds after fine-

tuning (8 minutes and 48 seconds).

Table 2. Hyperparameters used to train the NasNet-Mobile convolutional neural network

Hyperparameters Before Fine-Tuning After Fine-Tuning

 Number of epochs 20 100

Steps per epoch 6 6

Number of trainable parameters 106,306 4,376,022

Learning rate mode Max Exponential decay

Restore best weights True True

Learning rate value Min = 1 e-8

Max = 0.01

Patience = 3

Factor = 25%

Min = 0.01

Max = 0.1

Steps = 20

Factor 50%

Early stopping Patience = 10

Min delta = 0.005

Patience = 10

Loss Categorical crossentropy Categorical crossentropy

Optimizer ADAM ADAMAX

Table 3. Performance metrics of NasNet-Mobile in the training and validation dataset before fine-tuning

Metrics Training Dataset Validation Dataset

Accuracy 99.51% 97.78%

Loss 0.028 0.064

Precision 99.51% 98.60%

Recall 99.51% 97.78%

Area under the curve AUC 100% 99.96%

686

4.2 Model evaluation

Our model was running twice, once without fine-tuning the

parameters and again with fine-tuning the parameters. The

following deep learning metrics are used to assess the model:

accuracy, loss, recall, AUC, FP, FN, TP, TN, and precision.

With different datasets for training and validation, we compare

these measures before and after fine-tuning.

a. Performance of the model before fine-tuning

The results are shown in the following tables and graphs,

along with an analysis of each one.

The metrics in Table 3 show very promising results in both

the training and validation datasets. We can note a slight

decrease between them, and this is because the model learns

from the training data, which makes it more reliable, but

according to the validation data, we know that it has only 20%

of the total data, and the model has never learned from it. Since

evaluating the model on the training dataset might produce in

biased results, it is tested using a held-out sampling to offer an

impartial evaluation of its competence. Strategies that may be

utilized to mitigate the difference in performance include

model fine-tuning and dataset augmentation to ensure the

model can learn additional features.

Figure 6. Accuracy and loss curves before fine-tuning the

NasNet-Mobile

Figure 6 displays the training as well as validation curves of

the optimization for NasNet-Mobile developed with the

previously stated dataset of 1800 photos enhanced through

Image Data Generator (These findings were achieved before

to fine tuning). The training spanned 20 epochs, including a

break at the 12th. We can notice a declining trend as the

number of epochs grows, which is followed by validation loss

and training loss (Figure 7). During the learning phase, the

model appears to identify the visual prominence of the

reference picture and the candidate image. As a result, the loss

attained during training tends to decrease. The images were

chosen at random during the testing phase. These images are

from a different class that has never been shown to the network

during training. Consequentially, we observe that as the

training steps progress, the accuracy of the set to be tested

follows that of the set used for training while remaining only

slightly inferior. This shows that the algorithm, which was

trained on cases of the training set, predicts the cases that

weren't in the training set correctly.

Figure 7. Precision and accuracy curves before fine-tuning

the NasNet-Mobile

Precision is the proportion of properly classified examples

(5), while recall (also known as sensitivity) is the proportion

of recovered relevant instances (6). Relevance thus determines

precision and recall.

Precision =
TP

TP+FP
 (5)

Recall =
TP

TP+FN
 (6)

Accuracy =
TP+TN

TP+TN+FP+FN
 (7)

As we can see in the previous curves (Figure 8) and in

(Table 3), the best-achieved precision is about 99.51% in the

training and 98.6% for the validation. The recall is about

99.51% for training and 97.78% for validation dataset. These

results were obtained before the fine-tuning.

b. Performance of the model after fine-tuning

Table 4. Performance metrics of NasNet-Mobile in the training and validation dataset after fine-tuning

Metrics Training Dataset Validation Dataset

Accuracy

Loss

100%

0.0245

98.06%

0.0729

Precision 100% 98.04%

Recall 100% 97.50%

Area under the curve AUC 100% 99.44%

Figure 8. Training with validation loss

687

Figure 9. Accuracy (left) and loss (right) curves for fine-tuned NasNet-Mobile CNN

Figure 10. Precision and recall loss in the fine-tuned model

The training process was early stopped, as shown in Figure

9, because there was no improvement during three consecutive

epochs. We can clearly see the instability of both accuracy and

loss in the training and validation datasets, as shown in Table

4, even though the accuracy of the model can reach 100%,

which is very good compared with such a small amount of data

(only 300 images per class, whereas 240 for training and 60

for validation). This instability is caused by the absence of

batch normalization in the experiments (Figures 9 and 10).

Batch normalization enhances the training process by reducing

internal covariate shifts, improving stability, and optimizing

the model. It also improves generalization by normalizing

layer activations, reducing overfitting, and reducing initial

weight sensitivity. Batch normalization also allows for higher

learning rates, accelerating the training phase as well as

minimizing the need for precise initialization (no batch

normalization layer was included in our architecture in the first

experiment). To overcome this issue, we should address model

fine-tuning, like adding different batch normalization layers

and training the model again.

4.3 Comparative study

In this part, we will compare our model to prominent steel

surface inspection methodologies already in use. We take into

consideration not only the accuracy but also the terms of

execution time, model lightness (number of parameters), and

data size.

Table 5. The classification accuracy (%) for several state-of-the-art steel surface fault classifiers taking into account the triplet

model lightness vs. running time vs. data size

Method Accuracy Model Lightness (nbr of prmtrs) Time (ms) Per Inference step Data Size

[34] 96.91% 25.6 million 58.2 87704

[33] 98.56% 25.6 million 77.1 12568

[41] 97.27% 60 million 10.3 26334

Our method (Developed NasNet-Mobile) 99.51% 5.3 million 27.0 1800

Table 6. The evaluation of classification error depending on various activation functions, the model uses the name of the

activation function wrapped in parenthesis

Method Error Rate (%)

CNNs (Sigmoid) 12.8721

CNNs (Hyperbolic Tangent) 18.1129

CNNs (ReLUs)

Recall
9.5018

CNN (LUs) 0.6292

Our method (ELUs) 0.028

688

According to Table 5, we can obviously say that our model

beats the aforementioned models regard to accuracy, while it

achieves a 99.51%, which is higher in comparison with other

accuracies. The proposed NasNet-Mobile can reach very

satisfying results with lower model parameters and running

time, as well as it doesn’t require large data: 48 times lower

than the model [34], 7 times lower than the model [33] and 14

times lower than the model [41]. Our model seems to be the

lighter (only 5.3 million parameters which is so low compared

to DeCAF model [41] with 60 million parameters and 25.6

million parameters of residual neural network [22].

Finally, the running time of our network is faster than the

other's executing time. As we can see, it is three times less than

the model [33] and 2.5 times less than the model [22]. The

error rate of our model is the lowest compared to other models

error rates. In Table 6, the error rate of our model is 0.028,

which is 22 times less than the CNN method with LU’s

activation function. This means that our model can learn better

with fewer errors and better accuracy.

5. CONCLUSIONS

In this paper, we have suggested a novel method based on

the pre-trained NASNet-Mobile CNN to classify defects in

steel sheets. Here are the main findings of the research:

The issue of accurate classification when the memory is

insufficient is set using the NASNet-Mobile network, which

has a small number of parameters compared to other CNNs

(5.3 million parameters). The top layers of this CNN were

frozen, which helped to use less memory and calculations

without losing weight. The long executing time dilemma is

fixed using the free GPU available on the Google Colab

Platform. The problem of dataset scarcity is addressed in this

paper and solved due to the potency of this CNN, which can

get the necessary features of the image due to its long depth

(389 layers), which can extract more features even though the

dataset number is tiny.

The modification of hyper-parameters gave an

improvement to the model when fine-tuned. We found out that

the ADAMAX optimizer is better than the ADAM optimizer

in this modified NasNet-Mobile architecture. Thus, we could

note a slight improvement in both accuracy and error rate. The

Adam optimizer adjusts weights in inverse proportion to the

scaled L2 norm of previous gradients, whereas AdaMax

expands this to the infinite norm of previous gradients.

The model has been justified, and the last block was entirely

removed and outright replaced with a new block. Hence, other

modifications were adopted to match the requirements of steel

image features. An ELU activation function was set in the

convolution layers. We meant to use this activation function,

and this is to exploit its advantages. This activation function

helps solve the dying RELU problem where the gradient value

is 0 on the graph's negative side. As a consequence, the

weights and biases of certain neurons are not updated

throughout the backpropagation process. This can result in

dead neurons that are never triggered. By inserting a log curve

for negative input values, ELU can address the RELU dying

problem. It then assists the network in adjusting weights and

biases in the proper direction. The ELU activation function can

increase model performance and network robustness. It

likewise gradually smoothies until its output equals zero,

whereas RELU dramatically smoothes.

A dropout (0.2) was added after each fully connected layer,

and a global average pooling was placed before the dense layer,

which helped minimize time and memory during the model

implementation. Learning rate scheduling enables us to make

use of larger steps for the first couple epochs, then gradually

lower the number of steps as the weights approach their ideal

value.

More improvements can be achieved by gathering more

training data and/or strengthening the network's architecture

and fine-tuning its hyper-parameters instead of raising the

training epochs under the present structure, which might result

in overtraining.

In general, we can conclude that the suggested algorithm

can be adopted in image processing tasks such as classification

tasks to overcome the main three challenges : time

consumption, memory insufficiency, and limited data

confronts in small mills and non-powerful operators.

ACKNOWLEDGMENT

This work is supported by the GOOGLE Colaboratory, free

provided GPU, PYTHON community as well as open access

GITHUB and Kaggle databases.

REFERENCES

[1] Yi, L., Li, G., Jiang, M. (2017). An end-to-end steel strip

surface defects recognition system based on

convolutional neural networks. Steel Research

International, 88(2): 1600068.

https://doi.org/10.1002/srin.201600068

[2] Kateb, Y., Meglouli, H., Khebli, A. (2020). Steel surface

defect detection using convolutional neural network.

Algerian Journal of Signals and Systems, 5(4): 203-208.

https://doi.org/10.51485/ajss.v5i4.122

[3] Neogi, N., Mohanta, D.K., Dutta, P.K. (2014). Review of

vision-based steel surface inspection systems. EURASIP

Journal on Image and Video Processing, 2014(1): 1-19.

https://doi.org/10.1186/1687-5281-2014-50

[4] Zhang, M., Zheng, H.F., Hao, N.I. (2019). Ultrasonic

image defect classification based on support vector

machine optimized by genetic algorithm. Acta

Metrologica Sinica, 40: 887-892.

[5] Du, P., Samat, A., Waske, B., Liu, S., Li, Z. (2015).

Random forest and rotation forest for fully polarized

SAR image classification using polarimetric and spatial

features. ISPRS Journal of Photogrammetry and Remote

Sensing, 105: 38-53.

https://doi.org/10.1016/j.isprsjprs.2015.03.002

[6] Kim, C., Choi, S., Kim, G., Joo, W. (2006).

Classification of surface defect on steel strip by KNN

classifier. Journal of the Korean Society for Precision

Engineering, 23(8): 80-88.

[7] Wang, J., Luo, L., Ye, W., Zhu, S. (2020). A defect-

detection method of split pins in the catenary fastening

devices of high-speed railway based on deep learning.

IEEE Transactions on Instrumentation and Measurement,

69(12): 9517-9525.

https://doi.org/10.1109/TIM.2020.3006324

[8] Li, Z., Tian, X., Liu, X., Liu, Y., Shi, X. (2022). A two-

stage industrial defect detection framework based on

improved-YOLOv5 and optimized-inception-resnetv2

models. Applied Sciences, 12(2): 834.

689

https://doi.org/10.3390/app12020834

[9] Vannocci, M., Ritacco, A., Castellano, A., Galli, F.,

Vannucci, M., Iannino, V., Colla, V. (2019). Flatness

defect detection and classification in hot rolled steel

strips using convolutional neural networks. In: Rojas, I.,

Joya, G., Catala, A. (eds) Advances in Computational

Intelligence. IWANN 2019. Lecture Notes in Computer

Science(), vol 11507. Springer, Cham.

https://doi.org/10.1007/978-3-030-20518-8_19

[10] Wu, C., Ju, B., Wu, Y., Lin, X., Xiong, N., Xu, G., Li, H.,

Liang, X. (2019). UAV autonomous target search based

on deep reinforcement learning in complex disaster scene.

IEEE Access, 7: 117227-117245.

https://doi.org/10.1109/ACCESS.2019.2933002

[11] Luo, Q., He, Y. (2016). A cost-effective and automatic

surface defect inspection system for hot-rolled flat steel.

Robotics and Computer-Integrated Manufacturing, 38:

16-30. https://doi.org/10.1016/j.rcim.2015.09.008

[12] Finn, C., Abbeel, P., Levine, S. (2017). Model-agnostic

meta-learning for fast adaptation of deep networks. In

International Conference on Machine Learning, pp.

1126-1135.

[13] Ravi, S., Larochelle, H. (2016). Optimization as a model

for few-shot learning. In International conference on

learning representations. International Conference on

Learning Representations.

[14] Ashour, M.W., Khalid, F., Abdul Halin, A., Abdullah,

L.N., Darwish, S.H. (2019). Surface defects

classification of hot-rolled steel strips using multi-

directional shearlet features. Arabian Journal for Science

and Engineering, 44: 2925-2932.

https://doi.org/10.1007/s13369-018-3329-5

[15] Gong, R., Wu, C., Chu, M. (2018). Steel surface defect

classification using multiple hyper-spheres support

vector machine with additional information.

Chemometrics and Intelligent Laboratory Systems, 172:

109-117.

https://doi.org/10.1016/j.chemolab.2017.11.018

[16] Liu, K., Li, A., Wen, X., Chen, H., Yang, P. (2019). Steel

surface defect detection using GAN and one-class

classifier. 2019 25th International Conference on

Automation and Computing (ICAC), Lancaster, UK, pp.

1-6. https://doi.org/10.23919/IConAC.2019.8895110

[17] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.

(2020). Generative adversarial networks.

Communications of the ACM, 63(11): 139-144.

https://doi.org/10.1145/3422622

[18] Li, S., Wu, C., Xiong, N. (2022). Hybrid architecture

based on CNN and transformer for strip steel surface

defect classification. Electronics, 11(8): 1200.

https://doi.org/10.3390/electronics11081200

[19] Krapac, J., Meglouli, H. (2021). Représentations

d'images pour la recherche et la classification d'images.

Doctoral dissertation, Automatique Appliquée et

Traitement du Signal, Université M'hamed Bougara -

Boumerdes Algeria.

[20] Kateb, Y., Meglouli, H., Khebli, A. (2023). Coronavirus

diagnosis based on chest X-ray images and pre-trained

DenseNet-121. Revue d'Intelligence Artificielle, 37(1):

23-28. https://doi.org/10.18280/ria.370104

[21] Meglouli, H., Bentabet, L., Airouche, M. (2019). A new

technique based on 3D convolutional neural networks

and filtering optical flow maps for action classification in

infrared video. Journal of Control Engineering and

Applied Informatics, 21(4): 43-50.

[22] Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J.,

Brezina, J. (2020). Steel surface defect classification

using deep residual neural network. Metals, 10(6): 846.

https://doi.org/10.3390/met10060846

[23] Liu, Y., Geng, J., Su, Z., Zhang, W., Li, J. (2019). Real-

time classification of steel strip surface defects based on

deep CNNs. In: Jia, Y., Du, J., Zhang, W. (eds)

Proceedings of 2018 Chinese Intelligent Systems

Conference. Lecture Notes in Electrical Engineering, vol

529. Springer, Singapore. https://doi.org/10.1007/978-

981-13-2291-4_26

[24] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-9.

[25] Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K.,

Dally, W.J., Keutzer, K. (2016). SqueezeNet: AlexNet-

level accuracy with 50x fewer parameters and< 0.5 MB

model size. arXiv preprint arXiv:1602.07360.

https://doi.org/10.48550/arXiv.1602.07360

[26] Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M.Y.,

Cao, Y. (2019). A deep-learning-based approach for fast

and robust steel surface defects classification. Optics and

Lasers in Engineering, 121: 397-405.

https://doi.org/10.1016/j.optlaseng.2019.05.005

[27] Boudiaf, A., Benlahmidi, S., Harrar, K., Zaghdoudi, R.

(2022). Classification of surface defects on steel strip

images using convolution neural network and support

vector machine. Journal of Failure Analysis and

Prevention, 22(2): 531-541.

https://doi.org/10.1007/s11668-022-01344-6

[28] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6): 84-90.

https://doi.org/10.1145/3065386

[29] Hao, Z., Li, Z., Ren, F., Lv, S., Ni, H. (2022). Strip steel

surface defects classification based on generative

adversarial network and attention mechanism. Metals,

12(2): 311. https://doi.org/10.3390/met12020311

[30] Song, K., Yan, Y. (2022). Steel Surface: NEU-CLS.

https://www.kaggle.com/kaustubhdikshit/neu-surface-

defect-database.

[31] Girija, S.S. (2016). Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. Software,

39(9). http://arxiv.org/pdf/1603.04467.pdf.

[32] Keras. GitHub. (2015). GitHub.

https://github.com/fchollet/keras.

[33] Damacharla, P., Rao, A., Ringenberg, J., Javaid, A.Y.

(2021). TLU-net: A deep learning approach for

automatic steel surface defect detection. In 2021

International Conference on Applied Artificial

Intelligence (ICAPAI), Halden, Norway, pp. 1-6.

https://doi.org/10.1109/ICAPAI49758.2021.9462060

[34] Konovalenko, I., Maruschak, P., Brevus, V.,

Prentkovskis, O. (2021). Recognition of scratches and

abrasions on metal surfaces using a classifier based on a

convolutional neural network. Metals, 11(4): 549.

https://doi.org/10.3390/met11040549

[35] Lv, X., Duan, F., Jiang, J.J., Fu, X., Gan, L. (2020). Deep

metallic surface defect detection: The new benchmark

and detection network. Sensors, 20(6): 1562.

690

https://doi.org/10.3390/s20061562

[36] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V. (2018).

Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake

City, UT, USA, pp. 8697-8710.

https://doi.org/10.1109/CVPR.2018.00907

[37] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Andreetto, M., Adam, H. (2017).

Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint

arXiv:1704.04861.

https://doi.org/10.48550/arXiv.1704.04861

[38] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei,

L. (2009). Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vision

and Pattern Recognition, Miami, FL, USA, pp. 248-255.

https://doi.org/10.1109/CVPR.2009.5206848

[39] Ide, H., Kurita, T. (2017). Improvement of learning for

CNN with ReLU activation by sparse regularization. In

2017 International Joint Conference on Neural Networks

(IJCNN), Anchorage, AK, USA, pp. 2684-2691.

https://doi.org/10.1109/IJCNN.2017.7966185

[40] Van Rossum, G., Drake, F.L. (1995). Python Reference

Manual (Vol. 111, pp. 1-52). Amsterdam: Centrum voor

Wiskunde en Informatica.

[41] Ren, R., Hung, T., Tan, K.C. (2017). A generic deep-

learning-based approach for automated surface

inspection. IEEE Transactions on Cybernetics, 48(3):

929-940. https://doi.org/10.1109/TCYB.2017.2668395

NOMENCLATURE

AI Artificial Intelligence

CNN Convolutional neural network

DNN Deep neural network

TP True positive

TN True negative

FP False positive

FN False negative

CPU Central Processing Unit

GPU Graphic Processing Unit

691

