
Hybrid P2P-Based Architecture for Remote Software Utilization

Abdelhalim Baaziz* , Abir Achache

Laboratoire de Gestion Electronique de Documents (LabGED), Computer Science Department, University Badji Mokhtar-

Annaba, Annaba PO-Box 12, 23000, Algeria

Corresponding Author Email: baazizhalim@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380227 ABSTRACT

Received: 10 October 2023

Revised: 1 February 2024

Accepted: 3 March 2024

Available online: 24 April 2024

The world presents us with two contradictory situations. Firstly, most people encounter the

problem of lacking necessary hardware and/or software resources. Secondly, some

individuals or organizations possess these resources but fail to utilize them to their full

potential. The proposed solution is to provide underutilized resources to those who require

them. However, it is important to ensure that there is no illegal copying or pirating of

software. Instead, the owners of these resources can offer their services by processing data

remotely. The Peer-to-peer (P2P) paradigm is used primarily for collaborative systems over

a network. This article proposes a Hybrid P2P-Based collaborative architecture that

employs HTTP transport to provide data remote-treatment services. In our peer-to-peer

(P2P) solution, one peer provides a service, such as a software application capable of

processing specific data, while another peer actively searches for this software and sends

its own data to be processed by it. In this scenario, the second peer can utilize the software

without encountering piracy issues, given that the first peer executes the software locally

and adheres to the appropriate license. By employing HTTP for communication, it enables

collaborative interaction among heterogeneous peer platforms. This system enables

individuals without essential hardware and/or software resources to leverage the resources

provided by others. The simulation results conducted using PeerSim simulator, are

encouraging, indicating that the proposed architecture can serve as a reliable solution for

collaboration between peers. The outcomes of the simulation demonstrate a significant level

of satisfaction across the essential metrics we defined to assess the effectiveness of our

solution. particularly in terms of responsiveness to requests, resulting in approximately 80%

satisfaction and 20% dissatisfaction rates for requests.

Keywords:

SaaS, SOA, HTML, P2P, service invocation,

remote-processing, PeerSim

1. INTRODUCTION

Software as a Service (SaaS) stands out as a modern trend

within the cloud computing domain of the information

technology sector. This innovative model aims to dissociate

software ownership from its usage. By providing software

functionality through distributed services that can be

configured and bound upon delivery, numerous existing

constraints related to software evolution, deployment, and

utilization can be effectively addressed. This approach has

gained significant momentum in recent years, indicating its

success as a new software distribution model [1-5]. Two

conflicting scenarios exist in our world. While many

individuals experience a shortage of hardware and software

resources, others or organizations possess these resources yet

they remain underutilized. The SaaS model can be used to

address this issue. The aim is to provide these underutilized

resources to those who need them the most, without resorting

to illegal copying or pirating software. Instead, the owner

offers their service by remotely processing data. This approach

is feasible due to the SaaS model, where applications are

hosted remotely by the provider and delivered as a service

upon end-users' requests via the Internet, utilizing a utility

pricing model. This results in reduced possession costs,

allowing customers to eliminate concerns related to software

package licenses, installation, and updates [6, 7].

Both the academic and industrial sectors have devoted

considerable attention to Peer-to-Peer (P2P) systems as a

promising alternative model. It holds potential to substantially

enhance the design of large-scale distributed systems and

facilitate the evolution of Internet architectures. These systems

collectively accumulate extensive resources, which expand as

the demand for them increases. This expansion happens as

new nodes, which create additional demand, also contribute

fresh resources to the distributed system. This process fosters

a mutually beneficial cycle of growth and expansion [8-13].

Currently, the majority of Peer-to-Peer (P2P) systems are

primarily used for simple content sharing, such as sharing files.

However, this functionality is fundamentally different from

service sharing. While numerous projects have aimed to

harness the resources within these systems to offer services,

the most prevalent P2P solutions are frequently utilized for

sharing files that have been restricted due to piracy, including

audio and video files, as well as software.

The shift from a Cloud SaaS system to a P2P-based system,

which provides resources as SaaS, serves as a strategy to

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 631-641

Journal homepage: http://iieta.org/journals/ria

631

https://orcid.org/0000-0003-3525-8549
https://orcid.org/0000-0002-4807-0492
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380227&domain=pdf

mitigate the absence of Cloud infrastructure. This transition

also allows peers to actively contribute to enhancing the

system's functionality. In computer network environments, the

majority of programmers are usually highly skilled and

involved in intricate software development endeavors.

Frequently, numerous programmers collaborate actively to

create a single system product in a coordinated manner. This

collaborative model involves experienced programmers

sharing insights and closely collaborating to develop

sophisticated software, which stands in stark contrast to the

personal computer model, where a lone beginner typically

works independently [14]. However, in a Peer-to-Peer (P2P)

network, most users are typically beginners with little to no

experience or training in software development.

Service-Oriented Architecture (SOA) is a conceptual

framework centered on the definition of services and their

interactions [15]. The main idea of SOA is to describe all

functions as separate and self-contained services, each having

a well-defined and callable interface that can be combined in

specific sequences to create business processes [16]. Simply,

SOA is an architectural style that facilitates the integration of

various applications and resources as services through

standardized interfaces, enabling the exchange of structured

data and coordination among services to respond to changing

business requirements [17, 18]. The collaborative process

within SOAs can be depicted through Figure 1, which adheres

to the find, bind, and invoke paradigm. Within this process, a

service customer initiates a search for a fitting service by

querying the service registry with specific criteria. Should a

service matching the criteria be available, the registry

furnishes the customer with the interface contract and endpoint

address for that service. Ultimately, the customer invokes the

located service at the provider using the request/reply

procedure.

Figure 1. Collaborations SOA

Web services are services that meet certain characteristics,

including being self-contained, modular, and loosely coupled,

and are accessible over the internet. The standardization of

these services is supervised by four organizations: the World

Wide Web Consortium (W3C), the Organization for the

Advancement of Structured Information Standards (OASIS),

the Liberty Alliance, and the Web Service Interoperability

Organization (WS-I). Although WS-I does not function as a

standardization body, it offers installation-ready packages of

Web services known as "profiles," along with tools and

guidelines for their implementation.

The initial Web services profile, known as the basic profile,

is centered around three primary standards: Simple Object

Access Protocol (SOAP), Web Service Description Language

(WSDL), and Universal Description Discovery and

Integration (UDDI). These standards are respectively defined

by W3C and OASIS. SOAP is a decentralized communication

protocol that uses XML for exchanging structured information

between the requester and the service provider in a distributed

environment. WSDL is a description language based on XML

grammar that defines network services as a collection of

communication endpoints, allowing them to exchange

messages. UDDI is a service directory that provides the

fundamental infrastructure for discovering and publishing

Web services. It adopts a standard approach for service

location and invocation, as well as the management of

metadata related to these services. By relying on these three

standards, services can be defined, discovered, and invoked in

terms of their interfaces instead of their implementations [7,

16, 19, 20].

These concepts can be difficult for users who are not

experienced in programming. This is especially true in a social

P2P network intended for the general public, where users often

lack experience in programming. The complexity is further

increased when it comes to services, their composition, and

invocation.

Certainly, P2P users are typically individuals who may not

be familiar with advanced methods for utilizing services. In

such instances, a user-friendly system with simple user

interfaces can assist these users in easily performing and

utilizing the SaaS. Given the assumption that many users of

social P2P networks lack programming experience, we

propose an HTML hybrid P2P-based solution. A hybrid P2P

network incorporates index server (monitor) centrally storing

information about resource locations, and it relies on this index

server for conducting searches. Based on the SOA paradigm,

the service publishing, searching and binding of software

offered by peers, are fully automated and managed by the

hybrid P2P monitor manager. The solution allows users who

are unable to process their data locally due to resources

scarceness to search throughout the hybrid-P2P monitor the

wanted software and then utilize it remotely by sending its data

to be processed by the software’s owner.

In this context, invoking the service entails executing the

software with the given data, leading to the generation of a link

pointing to an HTML page that displays the outcomes. Similar

to WSDL, we employ XML-based automated procedures with

HTTP support to facilitate various stages of our solution. Due

to the users' limited programming experience, we have

designed a comprehensive automated solution that assists

them in navigating through distinct phases, including

publishing, searching, binding, and invoking. While our

proposed solution remains specific, we conform to the three

mentioned standards, implementing them with our unique

approach.

The following paper is structured as follows: Section 2

provides a review of the related literature. In Section 3, we

introduce the architecture and components of our proposed

system, along with the automated mechanisms for service

publishing, finding, invoking, and request/reply. Section 4

describes the experimental framework and presents the results

obtained. Security, profile establishment, and incentive

mechanisms are discussed in Section 5. Lastly, Section 6

concludes the paper and outlines future research directions.

2. RELATED WORK

In the following section, we will examine a representative

sample of pertinent solutions that are related to our proposed

632

approach. These systems can be categorized into:

2.1 Cycle sharing systems on grid infra-structures

These systems facilitate the execution of parallel

applications on remote computers [21]. For instance, the

Institutional Grid Globus [22] serves as a technology for grid

deployment. It offers mechanisms for communication,

authentication, network information, and data access.

However, its authentication and authorization models target

institutions, posing challenges for regular users in deploying

applications atop the Grid. In contrast, Condor [23] enables the

integration and utilization of remote workstations. It optimizes

workstation utilization, enhances available resources for users,

and operates effectively in a distributed ownership setting. In

Condor, jobs necessitate executable binary code and

compatible machines for execution.

2.2 P2P access to computing cycles available remotely

One example of a solution that combines Grid and Peer-to-

Peer models is GridP2P [24], a platform designed for

distributed cycle sharing. Its objective is to leverage parallel

execution of common applications by allowing regular users

to access remote idle cycles, which can significantly speed up

the performance of everyday applications. Additionally, users

can also contribute their own spare cycles when not in use.

Another decentralized P2P network for sharing computing

cycles is presented by Mason and Kelly [25], which can be

used to develop applications using the Microsoft .NET

Remoting infrastructure. Developers can benefit from a

familiar programming model by using the Microsoft .NET

Remoting infrastructure, as it allows for the potential of

porting existing .NET Remoting and Java RMI applications

with relative ease. Furthermore, Galatopoullos et al. [26] have

devised a middleware architecture enabling the execution of

composite services by amalgamating private and public

services across P2P overlay networks. This middleware

harnesses off-the-shelf P2P technologies to tackle challenges

like pervasive service connectivity and distributed group

management and trust. It facilitates genuine peer-to-peer

execution of composite services by routing SOAP messages

end-to-end, obviating the need for service-level intermediaries

or centralized service registries. Moreover, this architecture

segregates the runtime and connectivity layers, enabling the

incorporation of different runtimes and P2P overlays.

The solutions we have discussed indicate that a certain

degree of expertise in programming is necessary in order to

fully utilize them. However, our target audience consists of

individuals with limited control and technical proficiency. Our

aim is to provide these individuals with the opportunity to

utilize shared resources in the simplest manner possible.

3. THE PROPOSAL ARCHITECTURE

Developing a system that enables users to access the

hardware and software tools of other users is a viable solution

that addresses various issues such as illegality, heterogeneity,

limited computing/memory capacity, and software

unavailability. Our goal is to create a fully automated system

that simplifies interaction and utilization of services provided

by the system, requiring minimal effort from users.

To grasp the system, consider the following scenario: a user

wishes to process data but lacks the required resources

(hardware and/or software). Another user possesses these

resources, and they are currently underutilized. In this context,

the idea is to bring these users together to collaborate, allowing

the first user to leverage the potential resources of the second

user. The initial user sends their data to be processed by the

second user, who subsequently forwards the resulting output

back to the first user. These users form a set of peers that can

collaborate between them.

These peers are overseen by a central monitor, which serves

as the central node in a centralized peer-to-peer network.

The proposed solution involves building a centralized peer-

to-peer (P2P) network and integrating it with a web application

that incorporates key concepts such as service supply and

publication (software), service research, discovery and request,

and client-to-software supplier data exchange. By deploying

this solution on the Internet, the system is designed to function

through web interfaces that utilize the HTTP protocol, which

is universally supported by various operating systems, thus

effectively addressing the problem of heterogeneity.

The system's architecture comprises three fundamental

entities, depicted in Figure 2, which operate within a minimal

infrastructure. These entities are: (1) Software Suppliers, who

provide their software as a service for others to use, (2)

Software Requesters, who utilize the software to process their

data remotely, and (3) Monitors, who serve as system

managers and oversee its operations. The system's overall

architecture is depicted in Figure 3.

Figure 2. Solution entities

Figure 3. Global P2P architecture

3.1 Exchange process description

The following section outlines the various exchanges that

occur between the three entities:

3.1.1 Registration and login

Operation 0, as shown in Figure 3, involves user registration

and login to the system. The primary objective of this step is

to update the @IPs of software suppliers so that requested

633

services can be located. Since users can have different @IPs

across sessions, it is essential for the Monitor to maintain

accurate information on the addresses of listed services at all

times.

3.1.2 Publishing shared software

Operation 1 and 2, as depicted in Figure 3, enable software

suppliers to edit and publish their software on the monitor to

be shared with others. This process is carried out through a

web interface provided by the monitor, which software

suppliers can access. The web interface (form) allows

suppliers to define the software they wish to share and its

location path on the local drive. They can also provide a

description of the software's capabilities and specify the

parameters and arguments required to run the software. This

information is used by the indexing module (system registry),

which creates two programs (scripts) to be installed in the

software provider. One of the scripts is the web interface used

by the client to request the service, while the other is the script

that runs the shared software and sends the results back to the

client, as shown in Figure 4.

Figure 4. Publishing step

3.1.3 Searching for software

This step (Operation 3, Figure 3) enables clients to search

for desired software by entering a description or browsing a

pre-determined list through a web page available on the main

site of the monitor. The search result is presented as a web

page containing direct links to the web pages created during

the publishing of services by the software supplier. When the

client clicks on the link, he is redirected to the web page

associated with the requested service at the software supplier,

resulting in a direct interaction between the client and software

supplier, as shown in Figure 5.

Figure 5. Research step

3.1.4 Service request

During this step (Operation 4 and 5, Figure 3), the client and

software supplier establish a direct connection. After the client

selects the desired service, he clicks on the link provided by

the software supplier, which allows him to download the

appropriate web page form automatically created by the

monitor during the publishing step. The web page form

prompts the client to input the data to be processed and select

the required parameters, if any, to run the software. The

software supplier defines the possible parameters during the

publishing step.

After receiving the data from the client, the second script

(which was created by the monitor during the publishing step)

is executed. This script launches the software, retrieves the

results, and generates a dynamic web page that includes a link

to the results. The link is then returned to the client, who can

use it to download the results (as illustrated in Figure 6).

Figure 6. Service request step

3.2 Forms and data

A centralized database at the monitor level consisting of a

set of records is used to store information on all shared

software. Each record (Figure 7) contains essentially the

designation of the software, its category (for easy searching),

its description, @ the IP address and port of the software

supplier's web server, and the designation of the web page:

interface between the client and the software supplier (the link).

All this information is collected during the publishing step.

Figure 7. DB record

There are three main forms:

1) publishing form;

2) research form;

3) service request form.

The first two are part of the web application hosted in the

monitor while the latter is dynamically created at the software

supplier during the publishing step, and is associated with the

shared software (for each shared software, a form is created).

During the publishing phase, the software supplier contacts

the monitor by requesting the "Publishing Form" web page.

This form asks the software supplier to inform some fields.

Then, the script generator (Figure 8) generates automatically

with the data extracted from the publishing form, two files

634

(HTML, PHP) which will be saved in the www directory of

the software supplier's web server:

1) HTML file (software execution form): interface between

the client and the software supplier, the file is saved in the

software supplier as a web page.

2) PHP file: which launches the selected software, also

registered in the software supplier.

The software supplier must have a web server to run both

scripts (PHP and HTML).

The XML file (Figure 9) is an intermediary between the

publishing form and the script generator.

Figure 8. Indexing module details

The XML file’s tags are descripted in Table 1.

Table 1. Script generator XML file's tags

Tag Description

Software The beginner of the file

Designation
Indicate the line command used to launch the

software

Locate
The path of the software in the software

supplier drive

Parameters
Indicate the beginning of the parameters used

to execute the software

Input Indicate the input section

Output Indicate the output section

Argement_nbr
a value that indicates the number of

arguments (1...n).

Argement_type
To indicate if the argument is of type "file"

or a simple "value"

Attribute_nbr
A value that indicates the number of

attributes (1…n)

Attribute The attribute section

Attribute_name Attribute designation (name)

Attrib To indicate the attribute information

Forced
To indicate if the attribute is optional or

required

Value If the input or the output is just a single value

Type
To indicate if the type of output is a file or a

simple value

The PHP script's main task:

1) Launch the corresponding software with the settings

defined in the XML file. The launch is executed by a line

command done by the PHP instruction "string exec (string

command [, array & $ output [, int & $ return_var]])."

2) Generate dynamic HTML file that allows the client to

retrieve the results of treatment.

In such a scenario of software search and invocation, the

client contacts the monitor by requesting the "Software Search

Form" web page. This form asks the client to define some

keywords that will allow the monitor to find the adequate

software. Once this is done, the monitor responds with the

following web page which consists of a list of possible

proposals. The client has only to choose one of the proposed

software by clicking on the corresponding link to be redirected

to the HTML web page of the software supplier "Software

Execution Form". At this moment, the monitor is no longer in

Part, the interaction is solely between the client and the

software supplier. Once the treatment is finished, the software

supplier answers the client via a web page inviting him to

download the result of the treatment.

Figure 9. XML file used by the script generator

3.3 Service composition

Sometimes the treatment requested by a client cannot be

provided by a single software supplier. In this case, we need

to use multiple servers that will succeed to achieve the desired

result. In this case, the monitor makes research by needs. The

client makes a request stating what he has as input data and

what he wants as output result.

The monitor will establish as far as possible, a sequence of

software suppliers that will carry out the treatment.

Indeed, Software is seen as a black box that has data as input

and result as output. A sequence is viewed as a succession of

software where the outcome of one is the input of the other

(Figure 10).

Figure 10. Succeeded treatment

Figure 11. A second PHP script created in the software

supplier

635

To allow a client to beneficiate of this kind of process, a

new research interface is defined in the monitor web

application that will allow the client to do research by "Need".

This solution is only possible if the software suppliers publish

their software without any parameters except the input and

output data parameters and specifying the nature of each

parameter. During the publishing step, the monitor provides

the software servers the opportunity to participate in a

sequential treatment, if this is the case; another script is created

in the software suppliers (Figure 11).

This script will allow an involved server in a sequential

treatment, to retrieve an XML file transmitted by the previous

server for treatment, and then send a modified version of the

XML file towards the next server (Figure 12).

The monitor has a module result by which it stores the

results obtained after sequential treatment. In fact, the last

server cannot communicate with the client for the simple

reason that the client has no way of contact. So, the result is

transmitted to the monitor who will save it until the client

requests it.

Table 2. Sequential Treatment XML file's tags

Tag Description

Treatment
Indicates the section treatment for each server

involved

Data
Section where to put the input data and the

output result

Command The command to launch the software

Next-server The next software supplier to invoke

Client Indicates the client Id that did the request

Figure 12. Sequential treatment

Sequential treatment process:

When the client chooses to make a need-based request

application, he interacts with the monitor by invoking the web

page "Software Search Form (Sequential Processing)". This

interface provided by the monitor allows the client to declare

what he has as input data and what he wants as result data

(output). The monitor looks in its database at the opportunity

of making this request and establishes various sequential

processing scenarios depending on server's profiles (to be

examined later). It creates a new interface (form) to ask the

client to choose between several solutions that can be

classified according to certain criteria (not covered in this

study). Once the client has chosen the solution in the search

result interface and has provided the data file, the monitor

starts sequential processing by creating a structured XML file,

as shown in Figure 13, with a "treatment" entries tag (Table 2)

for each server visited.

Figure 13. Sequential treatment XML file

The monitor starts integrating the client data into the first

"data" tag and the command to launch the software (software

name) into the first command tag, this to be executed by the

first server and the address of the next server. It did the same

thing for the following servers, except that the data tags are

empty. In the last server "treatment" tag, the monitor indicates

that the next server is the monitor itself.

At the end of the file, it inserts a treatment for himself where

it is stated: the END command (end of treatment) and client

ID to associate the data result to the client that made the

request.

Each software supplier, when it receives this XML file, look

for the first "treatment" tag, it completely removes the tag from

the file after pulling data to be processed, the software to run

and @IP of the next software supplier. After treatment, it

incorporates the results at the first "data" tag. The modified

XML file is sent to the next software supplier, the Figure 14

illustrates this process.

Figure 14. The process of analyze and extraction in a

sequential treatment at a software supplier level

The result module (Figure 15) is composed of two units; the

first one consists of analyzing and extracting data from the

XML file received from the last software supplier involved in

the sequential treatment. From this file, the result data and the

client ID who did the request are extracted, and then saved in

the monitor database until the client reaches them. The second

636

unit consists of an HTML interface that allows the client to

reach his results.

Figure 15. Monitor result module

The client is not notified that the treatment result is ready.

He has to do it by himself by invoking the monitor's webpage

"Result research (sequential treatment)". This webpage

indicates the client while he introduces his ID if the treatment

that he requested is completed or not yet. If it is the case, he

can download the result by clicking the corresponding link.

4. EVALUATION AND ANALYSIS OF RESULTS

In this section, we outline the experimental setup and

methodology employed to assess the architecture introduced

in Section 3.

4.1 Experimental setting

We have implemented a fully automated web system where

users no longer need to program; all is assisted by HTML

coded interfaces. The PeerSim simulator is used as an

experimental framework.

The PeerSim simulator is widely utilized for simulating

large-scale dynamic P2P networks [27]. It is capable of

simulating both structured and unstructured overlays

comprising millions of nodes [28]. PeerSim, written in Java,

was developed in part as part of the BISON project and is

available under the open-source GPL license [29]. PeerSim

supports two simulation paradigms: a cycle-based simulation,

where network nodes are randomly selected, and each node

protocol is invoked at each cycle [27, 30], and an event-based

simulation, where a set of events is scheduled over time, and

node protocols are invoked according to the order of message

delivery time [28]. In PeerSim, the network is conceptualized

as a collection of nodes, where each node possesses a fixed

identifier and a set of protocols accessible through the node

interface. The simulation incorporates initializers and controls

[27, 28]. Initializers are executed prior to the simulation, while

controls are executed during the simulation. These

components implement the Control interface and can modify

or supervise the different nodes during the simulation [28], the

collected statistics can be formatted and sent to a standard

output [27].

The proposed prototype underwent extensive evaluation

through numerous simulations utilizing the PeerSim cycle-

based model. The simulation lifecycle follows a defined

sequence: Initially, a simple ASCII configuration file is read,

comprising key-value pairs that encompass all simulation

parameters for the experiment's objects [27]. Subsequently,

the simulator configures the network by initializing the

network nodes and protocols. Network nodes and protocols are

instantiated by cloning using the "clone()" method of the

"Node" class. Essentially, a single instance is constructed

using the object's constructor, serving as a prototype from

which all network nodes are cloned. The initialization phase is

carried out by control objects, whose execution is scheduled

only at the outset of each experiment. Following initialization,

the cycle-driven engine invokes all components (protocols and

controls) once per cycle until the simulation concludes [27].

In our experiments, we employed a test configuration with a

fluctuating network size: 10,000, 20,000, 30,000, 40,000, and

50,000 nodes. The experimental framework does not account

for the composed treatment scenario. To adapt our solution to

the PeerSim simulator, we defined a set of classes outlining

the behavior of the primary actors in the experiment:

The central node (Monitor): is considered as the main

node of a hybrid p2p network and acts as an intermediary

between the different peer clients. It is embodied by a class

encompassing the global publishing, search, and result

sending modules. This class implements the Control interface,

with "execute()" serving as the primary method to disseminate

the central node's address to every peer in the network. The

Control is initiated solely once during the initialization phase.

This class makes use of the following data structure:

Global list of services: This static class comprises the

names of services along with their input and output parameters.

It acts as a reference point for peers to select a (random)

number of services they will either share or request.

Accessible by all peers, it ensures consistency and

accessibility throughout the system.

Global list of published services: This list contains all

services published by all peers and their identifiers. It is

located in the central node.

Peers (clients): Represented by a class, peers encapsulate

various modules (methods) enabling them to execute different

tasks such as communicating with the central peer, local and

central publishing, service search, service request, and result

sending. This class implements the "CDProtocol" interface

inherited from the Protocol class, incorporating the

"nextCycle" method() where we define the diverse tasks a peer

must undertake during its execution. Our solution

encompasses four potential scenarios, each with an equal

probability: 1) publishing of services, 2) searching for services,

3) deletion of services, and 4) peer inactivity. Each scenario

holds a probability of 0.25. This class relies on the following

data structure:

Local list of services: Generated from the global list of

services, it is unique to each peer. It is from this list that the

peer will choose the services he wants to share.

Local list of published services: this list contains the entire

shared services specific to each peer.

Observers: We represent performance indicators through

classes designed to extract the necessary measurements

(statistics) for analyzing and comprehending the behavior of

our network. Throughout each cycle, measurements are

captured and analyzed at the simulation's conclusion. We have

concentrated on five key performance indicators:

1) Success search: Indicates a positive value when the

central node discovers at least one peer publishing the

requested service during the search process.

2) Success result: Reflects the successful return of results

by suppliers following the execution of requested services.

3) Number of resource nodes: Represents the count of

nodes publishing the requested service.

4) Failure result: Denotes the inability of supplier nodes to

637

correctly deliver the requested service.

5) Failure search: Occurs when the central node fails to

find any service provider during the search for a requested

service.

Indicators Meaning:

1) Success search: This implies that as peers contribute

more resources, the collaboration within the network becomes

more accessible, and peers can better fulfill their needs. In

such a scenario, selfish behavior is absent and does not impact

the system's behavior.

2) Success result: This implies that the peers have finished

the service processing correctly. This means that more this

indicator is significant, more the system work without failures.

Also, it means that the services offered by the suppliers are

functioning correctly.

3) Number of resource nodes: More this indicator is

significant more there are peers who want to contribute to the

system with the same resource. This means that this resource

have a large probability to be available. In other terms, we can

utilize this indicator to study the issue of resources availability

and profile the supplier peers.

4) Failure search: This indicator is the opposite of the first

one (Success search). This implies that more this indicator is

bigger, less the collaboration within the network is accessible,

and consequently, peers cannot fulfill their needs. In such a

scenario, selfish behavior is present, resulting in a negative

impact on the system's behavior.

5) Failure result: This means that the service does not

delivery the result after invoking it, due to implementation

issues, data type or service declaration. More it is significant,

more the system is useless.

4.2 Result and discussion

Utilizing the PeerSim cycle-based model, we conducted

numerous simulations of the proposed prototype. The

forthcoming discussion will revolve around the metrics

introduced earlier.

Figure 16. Number of resource nodes

Figure 16 illustrates the fluctuation in the quantity of nodes

possessing the requested services per cycle throughout the

simulation duration. By examining the graph depicted in

Figure 16, it becomes evident that the number of nodes

offering demanded services has notably surged over time. This

trend is attributable to clients actively participating in service

publication and transitioning into service providers within the

system. Consequently, this expansion is poised to positively

influence the research process.

Figure 17 depicts the variation of two metrics, namely

Success_Search and Failure_Search, over the simulation

duration. Analysis of the statistics reveals that Success_Search

consistently exceeds Failure_Search throughout the entire

simulation period. Moreover, the results indicate a continuous

increase in the Success_Search metric over time, which is a

direct outcome of the concurrent increase in the number of

nodes possessing the resource. Notably, this metric begins to

stabilize from Cycle 17. Conversely, the Failure_Search

metric experiences a slight rise at the initial stages of the

simulation due to fewer service suppliers. Subsequently, it

declines from Cycle 3 and gradually approaches zero as the

simulation progresses.

(a) Success research

(b) Failure research

Figure 17. Success research vs. failure research

(a) Success result

(b) Failure result

Figure 18. Success result vs. failure result

638

Figure 18 illustrates the variation of two pivotal metrics,

Success_Result and Failure_Result, throughout the entire

simulation period. These metrics serve as crucial indicators

reflecting the system's ability to ensure resource availability.

Analyzing these figures, we observe that Success_Result

experiences continuous growth, peaking at the 25th cycle

before plateauing until the simulation's conclusion. This trend

is juxtaposed with the variation of Failure_Result, which

initially rises until the 8th cycle before exhibiting minor

fluctuations between increases and decreases, eventually

stabilizing towards the simulation's end with occasional

decreases. Furthermore, it is evident that the results of

Success_Result consistently surpass those of Failure_Result

by a significant margin.

Figure 19 illustrates the evolution of the percentage of

Success_Result and Failure_Result compared to the total

requests made throughout the entire simulation period. In the

initial 3 cycles, a notable surge in the percentage of

Success_Result is observed, peaking at 50%. Concurrently,

there is a rapid escalation in the percentage of Failure_Result,

also reaching 50%. Beyond the 3rd cycle, the percentage of

Success_Result continues to increment gradually, reaching a

maximum value of 80% before stabilizing until the

simulation's conclusion. Meanwhile, the percentage of

Failure_Result diminishes over time, displaying a trend

toward stabilization at around 20%.

(a) Percentage success result

(b) Percentage failure result

Figure 19. Percentage success result vs percentage failure

result

5. RELEVANT POINTS

5.1 Collaborations incentives

In collaborative systems, efforts are often directed towards

implementing mechanisms to enhance collaboration. Several

researchers have delved into the study of incentive

mechanisms for collaboration. For instance, to establish Grid

computing as a feasible business model, investigations have

focused on formulating and implementing economic models

and algorithms essential for fostering widespread adoption in

commerce and industry [31]. Some researchers advocate the

incorporation of market mechanisms to determine resource

prices [32].

When peer-to-peer systems, are more like social systems,

the researchers define simple rules of contribution [31]. Those

who are contributing to a common fund may have access to

this fund.

In the realm of incentive research, two distinct techniques

have emerged: soft incentives and hard incentives. Soft

incentives rely on a reputation system where peers receive

positive ratings based on their reliability, contribution, effort,

etc., resulting in better quality of service and higher priority

access to resources. Conversely, newcomers or those with

limited interaction receive lower ratings and develop poor

reputations [33, 34]. On the other hand, the hard incentive

system advocates for the implementation of external billing,

individual and collective invoicing, and micro-currency

approaches to incentivize resource sharing [35-41].

As we are currently implementing a collaborative P2P

system, we recommend the unitization of soft incentives

techniques by adopting the reputation system; we consider that

it is most suitable for a P2P network.

We can establish at the monitor a reputation's computation

module that consists to evaluate the degrees of contribution of

the peer. Whenever a software supplier peer agrees to process

data of another, his reputation is increased. If it ever happens

to him to seek treatment at another peer, the monitor would

recommend it to another peer and he will have the priority of

being served before others. a peer that does not contribute to

the system may face rejection of service or receive lower

priority. The recommendation made by the monitor to a peer

may be a code that the monitor sends with the link that the

client must follow in step search and invocation. The software

supplier, upon receipt of this code, may accept or decline the

request of the client. A method of evaluation can be integrated

into the monitor system to know if the software supplier has

indeed done its job.

In this case, according to the peer’s reputation’s evaluation

the monitor can block

5.2 Security

In P2P networks, file sharing stands out as the most

common operation. However, a significant security concern

arises when downloading files from other peers: the

uncertainty regarding the authenticity and integrity of the file.

While you may believe you are downloading a valuable utility,

there's a risk that the downloaded file contains malicious

content, such as a Trojan or backdoor, which could grant

unauthorized access to your computer. This issue is

particularly prevalent when downloading executable files. In

our system, this problem is mitigated since the data transferred

are non-executable and will never be executed by the software

supplier.

Given that the system is entirely automated and peer

exchanges involve only data, there is no risk of transmitting

malicious data. Even if peers attempt to send malicious data,

we can incorporate a detection mechanism, such as an

antivirus, to prevent such situations.

The primary security concern revolves around data

confidentiality. The key question is whether a peer can access

the data he has received for processing. For an inexperienced

639

peer, accessing the received data can be challenging since it is

transmitted automatically through the HTTP protocol.

However, for an experienced peer, it remains possible to

retrieve the data. In such a scenario, we can empower the

requesting peer to assess the confidentiality level of their data

and decide whether to send it or not.

5.3 Profile use

By profile, we intend to classify peers into categories.

Classify clients into a set of categories and software suppliers

into another set of categories, and then try to make a

correspondence between these two sets. When a client

manifests, the monitor is able to recognize his profile

(category), which means recognizing his intentions and even

deduce the category of software suppliers to whom he

corresponds better. This will allow the monitor to restrict his

research field and propose solutions that best will satisfy the

client's needs. Profiling the peers aims to enhance the system's

performance in terms of publishing and retrieving resources,

as well as satisfying peer requests. Through the classification

of requester peers and supplier peers, we can leverage

recommendation systems to suggest specific services to peers

and ensure service availability.

6. CONCLUSION

This article presents a SOA-P2P system based on HTML

that allows to persons who suffer for any reason, of lack of

hardware and/or software resources, achieve their needs by

transmitting their data to be treated remotely and return back

the results. Our goal is to bring to non-experienced user the

means to exploit others' resources with zero programming,

therefore bypassing software pirating, heterogeneity problem

and lack of resources. We developed a completely automated

system where the users no longer need to program. The all is

assisted by HTML coded interfaces. The experimental

findings have demonstrated that the proposed system can

attain a commendable success rate of up to 80%. These results

are promising and affirm that the proposed architecture has the

potential to serve as a dependable solution to challenges

associated with software illegality, heterogeneity, and

unavailability. We assert that our proposal introduces novel

contributions to the field. Nevertheless, it is evident that a

crucial concern lies in understanding the behavior of the

proposed system in large-scale scenarios, such as the current

Internet. Scalability, for instance, emerges as a pivotal aspect

warranting emphasis; a thorough analysis of potential

bottlenecks in the system is imperative.

Employing profile notions for sequential treatment can

enhance the composition of software suppliers. The sequential

treatment can be improved by applying the notion of profile

and strategies selection of software suppliers, based on

statistics taken during their interaction in the system. These

statistics allow the monitor to select peers that are less

involved and avoid those most solicited, thus there will be

charge equilibrium between peers in the system.

REFERENCES

[1] Turner, M., Budgen, D., Brereton, P. (2003). Turning

software into a service. Computer, 36(10): 38-44.

https://doi.org/10.1109/MC.2003.1236470

[2] Guo, P. (2009). A survey of software as a service delivery

paradigm. In TKK T-110.5190 Seminar on

Internetworking.

[3] Sandanayake, T.C., Jayangani, P.G.C. (2018). Current

trends in software as a service (SaaS). International

Journal for Innovation Education and Research, 6(2):

221-234.

[4] Kumar, K.K.M. (2014). Software as a service for

efficient cloud computing. International Journal of

Research in Engineering and Technology, 3(1).

[5] Sharma, K. (2018). Software as a service and cloud

security. Journal of Computer, 3(2).

[6] Kaur, B. (2015). Software as a service: A brief study.

International Research Journal of Engineering and

Technology (IRJET), 2(3).

[7] Kulkarni, G., Gambhir, J., Palwe, R. (2012). Cloud

computing-software as service. International Journal of

Cloud Computing and Services Science, 1(1): 11-16.

[8] Chang, T., Aharnad, M. (2004). GT-P2PRMI: Improving

middleware performance using peer-to-peer service

replication. In Proceedings. 10th IEEE International

Workshop on Future Trends of Distributed Computing

Systems, 2004. FTDCS 2004, Suzhou, China, pp. 172-

177. https://doi.org/10.1109/FTDCS.2004.1316610

[9] Maurya, R.K., Pandey, S., Kumar, V. (2016). A survey

of peer-to-peer networks. International Journal of

Advanced Research in Computer and Communication

Engineering, 5(4).

[10] Pourebrahimi, B., Bertels, K., Vassiliadis, S. (2005). A

survey of peer-to-peer networks. In Proceedings of the

16th annual workshop on Circuits, Systems and Signal

Processing, pp. 570-577.

[11] Chaudhary, M.N., Surolia, J. (2015). A survey on peer to

peer system applications. International Journal of

Innovative Computer Science & Engineering, 2(1): 16-

20.

[12] Steinmetz, R., Wehrle, K. (2005). Peer-to-peer systems

and applications. Springer.

[13] Kisembe, P., Jeberson, W. (2017). Future of peer-to-peer

technology with the rise of cloud computing.

International Journal of Peer to Peer Networks (IJP2P),

8(2/3): 45-54.

[14] Varma, P.C.V. (2005). Resource sharing. IEEE

Potentials, 5.

[15] Schulte, R.W., Natis, Y.V. (1996). Service oriented

architectures. Part 1 &2. http://www.gartner.com.

[16] Griffin, D., Pesch, D. (2007). A survey on web services

in telecommunications. IEEE Communications

Magazine, 45(7): 28-35.

https://doi.org/10.1109/MCOM.2007.382657

[17] Hack, S., Lindemann, M. (2007). Enterprise SOA

Einführen. Galileo Press. https://opus.bibliothek.fh-

aachen.de/opus4/frontdoor/index/index/docId/5287.

[18] Juric, M.B., Loganathan, R., Sarang, P., Jennings, F.

(2007). SOA Approach to Integration: XML, Web

Services, ESB, and BPEL in Real-World SOA Projects.

Edition Packt Publishing Ltd.

[19] Rathod, D. (2017). Performance evaluation of restful

web services and soap/wsdl web services. International

Journal of Advanced Research in Computer Science, 8(7):

415-420.

[20] Al-Shargabi, B., Sabri, A., El Sheikh, A. (2010). Web

service composition survey: State of the art review.

Recent Patents on Computer Science, 3(2): 91-107.

640

https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ramesh+Loganathan&text=Ramesh+Loganathan&sort=relevancerank&search-alias=books
https://www.amazon.com/Poornachandra-Sarang/e/B08PL7FBQZ/ref=dp_byline_cont_book_3
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Frank+Jennings&text=Frank+Jennings&sort=relevancerank&search-alias=books

[21] Silva, J.N., Ferreira, P., Veiga, L. (2010). Service and

resource discovery in cycle-sharing environments with a

utility algebra. In 2010 IEEE International Symposium

on Parallel & Distributed Processing (IPDPS), Atlanta,

GA, USA, pp. 1-11.

https://doi.org/10.1109/IPDPS.2010.5470410

[22] Foster, I., Kesselman, C. (1997). Globus: A

metacomputing infrastructure toolkit. The International

Journal of Supercomputer Applications and High

Performance Computing, 11(2): 115-128.

https://doi.org/10.1177/109434209701100205

[23] Litzkow, M.J., Livny, M., Mutka, M.W. (1987). Condor-

a hunter of idle workstations. University of Wisconsin-

Madison Department of Computer Sciences.

[24] Esteves, S., Veiga, L., Ferreira, P. (2010). Gridp2p:

Resource usage in grids and peer-to-peer systems. In

2010 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum

(IPDPSW), Atlanta, GA, USA, pp. 1-8.

https://doi.org/10.1109/IPDPSW.2010.5470917

[25] Mason, R., Kelly, W. (2003). Peer-to-peer cycle sharing

via .net remoting. In AusWeb 2003. The Ninth

Australian World Wide Web Conference.

[26] Galatopoullos, D.G., Kalofonos, D.N., Manolakos, E.S.

(2008). A P2P SOA enabling group collaboration

through service composition. In ICPS '08 Proceedings of

the 5th International Conference on Pervasive Services,

pp. 111-120.

[27] Jesi, G.P. (2005). HOWTO: Build a new protocol for the

PeerSim 1.0 simulator. Universität Trento, Italien.

[28] Surati, S., Jinwala, D.C., Garg, S. (2017). A survey of

simulators for P2P overlay networks with a case study of

the P2P tree overlay using an event-driven simulator.

Engineering Science and Technology, an International

Journal, 20(2): 705-720.

https://doi.org/10.1016/j.jestch.2016.12.010

[29] Naicken, S., Basu, A., Livingston, B., Rodhetbhai, S.

(2006). A survey of peer-to-peer network simulators. In

Proceedings of The Seventh Annual Postgraduate

Symposium, Liverpool, UK, p. 13.

[30] Ebrahim, M., Khan, S., Mohani, S.S.U.H. (2014). Peer-

to-peer network simulators: An analytical review. arXiv

preprint arXiv:1405.0400.

https://arxiv.org/abs/1405.0400

[31] Iyilade, J., Aderounmu, A., Adigun, M. (2007).

Incentives for resource sharing and cooperation in grid

computing system. In The 2007 International Conference

on Next Generation Mobile Applications, Services and

Technologies (NGMAST 2007), Cardiff, UK, pp. 191-

198. https://doi.org/10.1109/NGMAST.2007.4343420

[32] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.

(2002). Economic models for resource management and

scheduling in grid computing. Concurrency and

Computation: Practice and Experience, 14(13-15): 1507-

1542. https://doi.org/10.1002/cpe.690

[33] Vega, D., Meseguer, R., Freitag, F., Ochoa, S.F. (2013).

Effort-based incentives for resource sharing in

collaborative volunteer applications. In Proceedings of

the 2013 IEEE 17th International Conference on

Computer Supported Cooperative Work in Design

(CSCWD), Whistler, BC, Canada, pp. 37-42.

https://doi.org/10.1109/CSCWD.2013.6580936

[34] Vega d'Aurelio, D., Meseguer Pallarès, R., Freitag, F.,

Ochoa, S. (2014). Understanding collaboration in

volunteer computing systems. Journal of Universal

Computer Science, 20(13): 1738-1765.

http://dx.doi.org/10.3217/jucs-020-13-1738

[35] Ileri, O., Mau, S.C., Mandayam, N.B. (2005). Pricing for

enabling forwarding in self-configuring ad hoc networks.

IEEE Journal on Selected Areas in Communications,

23(1): 151-162.

https://doi.org/10.1109/JSAC.2004.837356

[36] Jakobsson, M., Hubaux, J.P., Buttyán, L. (2003). A

micro-payment scheme encouraging collaboration in

multi-hop cellular networks. In Financial Cryptography:

7th International Conference, FC 2003, Guadeloupe,

French West Indies, pp. 15-33.

https://doi.org/10.1007/978-3-540-45126-6_2

[37] Antoniadis, P., Le Grand, B. (2007). Incentives for

resource sharing in self-organized communities: From

economics to social psychology. In 2007 2nd

International Conference on Digital Information

Management, Lyon, France, pp. 756-761.

https://doi.org/10.1109/ICDIM.2007.4444315

[38] Santos, A., Fernández Anta, A., López Fernández, L.

(2013). Quid Pro Quo: A mechanism for fair

collaboration in networked systems. PloS One, 8(9):

e66575. https://doi.org/10.1371/journal.pone.0066575

[39] Zhang, Y., van der Schaar, M. (2014). Collective ratings

for online communities with strategic users. IEEE

Transactions on Signal Processing, 62(12): 3069-3083.

https://doi.org/10.1109/TSP.2014.2320457

[40] Rahman, R., Meulpolder, M., Hales, D., Pouwelse, J.,

Epema, D., Sips, H. (2010). Improving efficiency and

fairness in p2p systems with effort-based incentives. In

2010 IEEE International Conference on

Communications, Cape Town, South Africa, pp. 1-5.

https://doi.org/10.1109/ICC.2010.5502544

[41] Cohen, B. (2019). The BitTorrent Protocol Specification,

http://www.BitTorrent.org/beps/bep_0003.html.

641

