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Artificial Intelligence (AI) plays a crucial role in defect prediction within the context of 

Industry 4.0. By leveraging advanced machine learning algorithms, AI analyzes vast 

amounts of data from industrial processes to detect patterns indicative of potential faults. 

This predictive capability not only enhances maintenance efficiency but also minimizes 

downtime by enabling proactive interventions. In this paper, the authors evaluated the 

performance of three distinct training functions for ANNs used to diagnose bearing faults 

in a turbogenerator set: Levenberg-Marquardt, Bayesian Regularization, and Scaled 

Conjugate Gradient. The turbogenerator generated the dataset for this study, which was 

made up of a variety of input and output parameters. Based on the correlation coefficient 

(R) between the predicted and actual target values, each training function's performance

was assessed. The results we achieved show that the output parameters of the

turbogenerator set could be correctly predicted by all three training functions. However, the

Bayesian Regularization algorithm had the lowest mean squared error (MSE) at epoch

1000, indicating that it had the best overall performance. The results produced indicated

how each training function performed over time. According to these results, the Bayesian

Regularization approach might be the best choice for forecasting the turbogenerator sets'

output characteristics during bearing defect diagnostics. The results of this work show that

choosing an adequate training function for ANN models is crucial for maximizing the

accuracy of turbogenerator set predictions, notably in the diagnosis of bearing faults.

Researchers and professionals in the field of diagnosing bearings faults and turbogenerator

set problems may find these studies helpful.
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1. INTRODUCTION

Numerous industries, including manufacturing, power 

generation, transportation, and aerospace, depend heavily on 

rotating machinery. The most frequent parts used in rotating 

machinery are bearings, which support the shafts and 

guarantee a steady rotation. However, there are numerous 

faults that can affect bearings, including wear, cracks, defects, 

and lubrication problems. These faults can result in 

performance loss, downtime, and even catastrophic failures. 

For rotating machinery to be reliable, safe, and efficient, 

bearing defects must be identified and treated as soon as 

possible. Numerous methods, including vibration analysis, 

acoustic emission monitoring, temperature measurement, and 

oil analysis, have been developed over time for diagnosing 

bearing faults [1-4].  

Due to its capacity to capture the dynamic behavior of the 

bearing and its surrounding components, vibration analysis 

has emerged as the most popular and efficient method among 

these techniques. 

The complexity and nonlinearity of the vibration signals, 

the presence of various noise sources, and the variation in the 

signal characteristics across various bearing types, sizes, and 

operating conditions, however, present significant challenges 

for signal processing and analysis in vibration analysis. 

Advanced signal processing and machine learning approaches 

have thus been suggested as a solution to these problems and 

an increase in the precision and dependability of bearing defect 

diagnostics. Numerous researchers have examined these 

techniques [5-8]. 

Due to its capacity to recognize intricate patterns in data and 

make reliable predictions based on them, artificial neural 

networks (ANNs) have become a potent and adaptable tool for 

bearing failure diagnostics. ANNs are made up of 

interconnected processing units (neurons) that can perform 

nonlinear transformations of input data and are modelled after 

the structure and operation of the human brain. ANNs are 

capable of analyzing a variety of data types, including 

temperature measurements, vibration signals, and acoustic 

emissions, to pinpoint the critical characteristics that signify 
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bearing failures [9]. 

In this study, we concentrate on the implementation of 

ANNs for bearing defect diagnostics using vibration signals as 

the main data source. We start by giving a general review of 

the various bearing failure types, their sources, and how they 

affect vibration signals. We go over the frequency content, 

time-domain properties, and statistical parameters of vibration 

signals that are important for bearing fault diagnostics. 

Following that, we review the various ANN types. Thus 

ANN’s different models have been widely used by many 

researches [10-14] that have been employed for bearing fault 

diagnosis. We discuss the benefits and drawbacks of each 

method as well as the major elements that affect how well it 

performs, including the network design, training algorithm, 

and feature selection. We also discuss how challenging it is to 

choose the right network parameters and improve the 

performance of the network. 

Then, we review the prior research on bearing defect 

diagnostics with ANNs, highlighting the most recent 

developments and flagging the principal difficulties and areas 

of untapped potential for further study. By highlighting the 

benefits and drawbacks of various strategies and outlining the 

crucial variables that affect their effectiveness, we offer a 

critical assessment of the existing studies.  

This paper concludes by presenting the results of our own 

empirical study, which evaluates the effectiveness of several 

ANN models for bearing problem identification using 

vibration signals. Our work seeks to add to the body of 

knowledge on the use of ANNs for bearing failure diagnostics 

and to offer maintenance engineers and technicians useful 

advice for enhancing the dependability and safety of rotating 

machinery. In this section, we go over the experimental setup, 

data collection and preprocessing, network architecture, 

parameter selection, training and validation procedures, and 

performance evaluation measures. The report also addresses 

the implications of our results for further investigation and 

real-world applications. The standard techniques for 

predicting bearing defects are [15]: 

Vibration analysis: To identify and diagnose defects, this 

method requires studying the bearing vibration signals. To 

identify specific fault frequencies and patterns in the signals, 

it frequently employs techniques including time-domain 

analysis, frequency-domain analysis, and wavelet analysis. 

Acoustic emission analysis: With this technique, faults are 

found and diagnosed by examining the acoustic emission 

signals produced while bearings are in use. To locate specific 

fault frequencies and patterns in the signals, signal processing 

techniques are often used. 

Oil analysis: This method uses lubricating oil analysis to 

find and identify defects in bearings. To find potential 

problems, it usually entails monitoring the quantities of 

different pollutants, like metal fragments and debris, in the oil. 

Thermography: To monitor changes in bearing 

temperature while they are in use, this technique employs 

infrared cameras. It can be used to spot possible issues, 

including overheating, which might point to a bearing issue. 

Artificial neural networks (ANNs): To detect and identify 

bearing defects, this method involves training machine 

learning models, such as ANNs. To recognize certain fault 

patterns and forecast when a defect is likely to occur, ANNs 

can be trained on data from a variety of sources, such as 

vibration signals or the findings of an oil analysis. 

 

 

2. SIGNAL DETECTION AND CLASSIFICATION 

 

The process of locating and differentiating various sorts of 

signals in each dataset is referred to as signal detection and 

classification. To ascertain a signal's kind or origin, this entails 

examining its characteristics, such as its frequency, amplitude, 

and waveform [16]. The mathematical equations commonly 

used in signal processing and classification: 

 

2.1 Signal processing 

 

It involves modifying signals to draw out essential 

information from them. A change in a physical quantity that 

carries information is known as a signal. Filtering, modulation, 

compression, and feature extraction are just a few of the 

processes that can be employed in signal processing to 

enhance the signal's quality or extract certain information from 

it [17]. 

Fourier Transform: 

Signals in the frequency domain can be analyzed using the 

Fourier transform. To understand a signal's frequency content 

and to carry out operations like filtering and compression, it 

enables us to represent a signal as the sum of its sinusoidal 

components. 

 

𝑭(𝝎) = ∫ 𝒇(𝒕)𝒆(−𝒊𝝎𝒕)𝒅𝒕  (1) 

 

where: 

F(ω): represents the frequency-domain representation of the 

signal, also known as the spectrum 

ω: the angular frequency. It corresponds to the rate of 

change of phase in the sinusoidal component. 

f(t): This is the time-domain representation of the signal, 

also known as the waveform. It tells us the value of the signal 

at each point in time. 

Discrete Fourier Transform (DFT): 

 

𝐗[𝒌] = ∑ 𝑿(𝒏)𝒆(−𝒊𝟐𝝅𝒏𝒌 𝑵⁄ )  (2) 

 

where: 

N: the length of the signal 

We can basically divide a discrete-time signal into its 

frequency components using the DFT equation. We determine 

the frequency-domain representation of the signal by adding 

the products of each sample in the signal and the associated 

twiddle factor at each frequency. 

Wavelet Transform: 

 

𝐖(𝒂, 𝒃) = ∫ 𝒇(𝒕)𝚿∗a,b(t)dt (3) 

 

where: 

Ψ*: This is the complex conjugate of the analyzing wavelet 

function. The analyzing wavelet function is a mathematical 

function that oscillates around zero with a limited duration, 

and it is used to probe the signal at different scales and 

translations. 

a,b: the scale and the translation parameters respectively. 

Discrete Wavelet Transform (DWT): 

 

𝐖(𝒋, 𝒌) = ∑ 𝒉[𝒏]𝑿(𝟐𝒏 − 𝒌)𝟐(−𝒋/𝟐)  (4) 

 

We can basically decompose a discrete-time signal into its 

wavelet components using the DWT equation. At each level 

of decomposition, we acquire a set of coefficients that reflect 
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the signal's low-frequency and high-frequency components by 

convolution the signal with the scaling function and the 

wavelet function. The signal can then be rebuilt using these 

coefficients at any level of detail, or other signal processing 

operations like denoising or compression can be carried out. 

 

2.2 Signal classification 

 

Signal classification is to automatically determine a signal's 

type or characteristic from its features or properties [18]. 

Linear SVM: To determine the optimal separating 

hyperplane between two classes of data, the linear support 

vector machine (SVM) is a form of binary classification 

technique. 

The decision function for a linear SVM is defined by: 

 

𝒇(𝑿) = 𝑾𝑻𝑿 + 𝒃 (5) 

 

where: 

𝑊𝑇 is the transpose of the weight vector, which represents 

the orientation of the hyperplane that best separates the two 

classes. 

X is the input data vector. 

b is the bias term, which shifts the hyperplane away from 

the origin. 

Decision tree: It is a tree-like model where every branch 

node represents the outcome or decision, and each internal 

node represents a feature or attribute, a decision rule, or a 

threshold value for the associated feature. 

 

𝒚 = 𝒇(𝑿) (6) 

 

Feedforward neural network: A feedforward neural 

network, also referred to as a multilayer perceptron (MLP), is 

a kind of artificial neural network in which information travels 

in a single direction, from the input layer to the output layer. 

The network is made up of several interconnected layers of 

nodes, or neurons, where each neuron computes an output 

using an activation function and takes input from the layer 

above it. 

 

𝒚 = 𝒇(𝑾𝑻𝑿 + 𝒃) (7) 

 

In these equations, f represents the function or output of the 

algorithm, X represents the input signal or feature vector, and 

the other variables and functions represent various parameters 

or operations used in the algorithm. The exact variables and 

functions used depend on the specific approach or algorithm 

being used. 

 

 

3. ARTIFICIAL NEURAL NETWORK MODELS 

 

The structure and operation of the human brain served as 

the basis for the development of artificial neural networks 

(ANNs), a class of machine learning models. Layers of 

interconnected nodes or neurons make up ANNs, which 

process and send data through a network of weighted 

connections. They are utilized for a variety of tasks, such as 

audio and picture identification, natural language processing, 

and predictive modeling [19]. 

An ANN's input layer, one or more hidden layers, and 

output layer make up its fundamental structure. The input layer 

collects information from the surrounding world, which the 

hidden levels then process and use to produce predictions or 

judgments at the output layer. To minimize a cost function that 

gauges the discrepancy between the predicted and actual 

outputs, the weights of the connections between neurons are 

changed during training using a learning algorithm. 

The capacity of ANNs to learn intricate, non-linear 

correlations between inputs and outputs is one of their main 

advantages. Algorithms excel in tasks requiring pattern 

recognition, where the objective is to locate and categorize 

intricate patterns in big datasets. ANNs are also capable of 

processing data concurrently, which makes it ideal for tasks 

requiring real-time processing of significant data quantities 

[20]. 

ANNs have a number of shortcomings despite their efficacy. 

They could need a lot of data to work well and can be 

computationally expensive to train. It can be tricky to 

comprehend how ANNs produce their predictions since they 

can be challenging to interpret. 

In general, ANNs are a strong and adaptable class of 

machine learning models that have completely changed a 

variety of fields of study and industry. It is expected that 

ANNs will continue to play a significant role in determining 

the future of machine learning and artificial intelligence due to 

continual improvements in processing power and data 

accessibility [21]. 

There are three common types of learning algorithms used in 

machine learning: 

a) Supervised Learning:  

A model is trained using labeled data in this type of learning 

when the target output is known for each input. By modifying 

the model's parameters to reduce the discrepancy between 

projected and actual outputs, the algorithm develops the ability 

to map inputs to outputs. Linear regression, logistic regression, 

decision trees, random forests, and neural networks are typical 

types of supervised learning algorithms. 

b) Unsupervised Learning:  

In this kind of learning, unlabeled data are used to train a 

model while the desired output is unknown. By grouping 

together related data points or lowering the dimensionality of 

the data, the algorithm learns to recognize patterns or structure 

in the data [22]. Principal component analysis (PCA), 

hierarchical clustering, k-means clustering, and autoencoders 

are typical instances of unsupervised learning techniques. 

c) Reinforcement Learning:  

Training a model to interact with the environment and learn 

from input in the form of rewards or penalties constitutes this 

type of learning. By altering its policy or approach over time, 

the algorithm learns to do actions that maximize the 

cumulative reward [23]. Robotics, autonomous cars, and game 

play all frequently use reinforcement learning. 

There are also hybrid and meta-learning algorithms that 

incorporate or go beyond these three fundamental types of 

learning algorithms. While meta-learning algorithms may 

learn to adapt to new tasks or environments more effectively, 

hybrid algorithms may combine both supervised and 

unsupervised learning techniques. 

Depending on the precise network type and programming 

language used to create it, an Artificial Neural Network's 

(ANN) training function may vary. In order to reduce the error 

between the expected output and the actual output, the training 

function is typically used to optimize the weights and biases 

of the network. 

Some common training functions for ANNs include: 

Gradient Descent: This is a common optimization 
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technique for ANN training. It entails gradually shifting the 

network's weights and biases in the direction of the cost 

function's the finest descent [24]. 

Backpropagation: This is a specific form of gradient 

descent that is used to train lulti-layer ANNs. It involves 

propagating the error back through the network and adjusting 

the weights and biases accordingly [25]. 

Levenberg Marquardt: This common training approach 

for feedforward ANNs optimizes the network weights and 

biases by combining gradient descent and Gauss-Newton 

methods [26]. 

The cost function's Jacobian and Hessian matrices are 

computed as part of the procedure, and the update for the 

weights and biases is then determined using these matrices 

[27]. 

Here are the equations for the Levenberg-Marquardt 

algorithm: 

Compute the Jacobian matrix: 

 

J = ∂E ∂W⁄  (8) 

 

where, E is the cost function and W is the matrix of network 

weights and biases. 

Compute the Hessian matrix: 

 

H = JTJ + λI (9) 

 

where, λ is a regularization parameter that controls the step 

size of the algorithm, and I is the identity matrix. 

Calculate the update for the weights and biases: 

 

ΔW = −(H)−1JTE (10) 

 

Update the weights and biases: 

 

W = W + ΔW (11) 

 

Adjust the value of λ: 

If the error decreases, decrease λ to take larger steps. If the 

error increases, increase λ to take smaller steps. 

The weights and biases are updated iteratively via the 

Levenberg-Marquardt algorithm until convergence is 

achieved. It is a strong optimization algorithm with quick 

convergence that can handle challenging nonlinear problems. 

Bayesian Regularization: A Bayesian framework is used 

in this probabilistic method of training ANNs to regularize the 

network weights and biases and avoid overfitting [28]. 

The equations for Bayesian regularization are as follows: 

Define a prior probability distribution over the model 

parameters: 

P(W) where W is the vector of model parameters. 

Compute the likelihood of the data given the model 

parameters: 

 

𝑃(𝑦 𝑋, 𝑊)⁄  (12) 

 

where, y is the vector of observed target values, X is the matrix 

of input data, and Ww is the vector of model parameters. 

Apply Bayes' theorem to obtain the posterior probability 

distribution over the model parameters: 

 

𝑃(𝑊 𝑦, 𝑋)⁄ = 𝑃(𝑦 𝑋, 𝑊)⁄ 𝑃(𝑊)/𝑃(𝑦 𝑋)⁄  (13) 

 

where, 𝑃(𝑦 𝑋)⁄  is the marginal likelihood of the data, which 

acts as a normalization constant. 

Compute the posterior mean and covariance of the model 

parameters: 

 

μ_post = E(W y, X) = ∫ 𝑊 𝑃 (W y, X)dW⁄⁄   (14) 

 
∑ _𝑝𝑜𝑠𝑡 =

cov (W y, X) = ∫(W − μ_post) (W − μ_post)𝑇P (W y, X)dW⁄⁄   (15) 

 

Use the posterior mean as the estimate of the model 

parameters for making predictions. 

To prevent overfitting and enhance the generalization 

capabilities of the model, Bayesian regularization enables the 

posterior distribution to represent uncertainty in the model 

parameters. 

The Scaled Conjugate Gradient (SCG): The technique 

employs a common optimization strategy for training artificial 

neural networks (ANNs). Because it is a second-order 

optimization method, the second-order derivatives of the cost 

function are considered when optimizing the system [29]. 

The equations for the SCG algorithm are as follows: 

Initialize the network weights and biases: 

 

W = W0 (16) 

 

Compute the gradient of the cost function with respect to 

the network parameters: 

 

q = ∇C(w) (17) 

 

Set the initial search direction: 

 

d = −g (18) 

 

Set the scaling factor: 

 

𝜎 =
‖d‖2

dTg
  (19) 

 

Compute the trial weight change: 

 

∆w = σd (20) 

 

Compute the trail cost: 

 

Ctrial = C(w + ∆w) (21) 

 

Compute the actual change in cost: 

 

∆C = Ctrial − C(w) (22) 

 

If the cost decreases, update the weights and biases: 

 

w = w + ∆w (23) 

 

gnew = ∇C(w) (24) 

 

β = (‖gnew‖2 − gnew
T(gnew − g)) ‖g‖2⁄  (25) 

 

d = βd − gnew + g (26) 

 

g = gnew (27) 

 

σ = ‖d‖2 dTg⁄  (28) 
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Update the scaling factor and search direction accordingly 

and go to step 5. 

If the cost does not decrease, halve the scaling factor and go 

back to step 5. 

Until convergence is reached, the SCG algorithm iteratively 

updates the weights and biases. Large datasets and intricate, 

non-linear models can both be handled by this strong 

optimization approach. 

The specific problem being solved, and the nature of the 

data being used to train the network influence the choice of 

training function. Depending on the complexity of the network, 

the quantity and quality of training data, and the training 

function, different training functions may be successful [30-

33]. 

 

 

4. EXPERIMENT SET 

 

4.1 Set description 

 

The steam turbine, rotor, stator, exciter, cooling system, and 

control system were all components of the turboalternator 

employed in this study. With a maximum rated output of 58 

MW, the steam turbine was a single-stage impulse turbine. The 

stator held the coils of wire that generated the electrical output, 

while the rotor was constructed from several coils of wire 

wound around an iron core. 

On the same shaft as the primary generator, the exciter was 

a generator that supplied enough electricity to induce a 

magnetic field in the rotor. A cooling tower and a heat 

exchanger were used in the cooling system, which used water 

cooling to remove heat from the steam turbine and the 

electrical generator. 

The turboalternator's output and speed were controlled by 

the control system. Additionally, to controllers and other 

electronic components to adjust the steam flow rate and other 

parameters to maintain the desired output, it included sensors 

to measure various parameters like steam flow rate, steam 

pressure, and generator output. 

The turboalternator was run continuously at 3000 RPM. A 

power analyzer, a pressure transducer, and a flow meter were 

just a few of the tools used to gather data daily. 

The overall objective of the experimental setup was to test 

the performance of the system under various operating 

situations while simulating the real-world operating settings of 

a turboalternator. 

 

 
 

Figure 1. Schematic sketch of the turboalternator 

 

 
 

Figure 2. Process of data collection 
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The schematic sketch of the experimental testbed used to 

collect this data is shown in Figure 1. 

Table 1 presents the nominal working conditions declared 

in the turboalternator machine manufacturer's guide. 

 

Table 1. Nameplate of the studied turbogenerator 
 

Parameter Nominal Value 

Active power 58 MW 

Apparent power 68 MVA 

Power factor 0,85 

Speed 3000 rpm 

Voltage 10 kV 

Phases 3 

Frequency 50 Hz 

 

4.2 Data description 

 

The data was acquired using a set consisting of a vibration 

sensor, a turbine, bearings, and an acquisition system. The first 

step was to make sure the acquisition system was ready to 

accept and record data from the vibration sensor and that it had 

been calibrated. The turbine's bearings were then fitted with 

the vibration sensor to measure vibration and temperature. The 

data were recorded using a sufficient sampling rate and 

resolution when the acquisition equipment was turned on. 

After starting the turbine, data was gathered for enough time 

(2 years), considering the frequency of potential problems and 

the necessary level of prediction accuracy. Figure 2 describes 

in detail the steps for data collection. 

The recorded data was downloaded and kept in a secure 

location after data collection was finished to do additional 

analysis and processing. After collecting the data, it was 

evaluated to extract pertinent aspects and spot possible errors 

using the proper data processing and analysis procedures. 

Finally, depending on the recorded temperature and vibration 

levels, predictive models or algorithms that may detect and 

diagnose defects in the turbine bearings were created using the 

studied data. 

 

 

5. RESULTS 

 

In this section, the outcomes of our study evaluating the 

effectiveness of the three various training functions using the 

mean squared error (MSE) as the assessment metric are 

presented. 

 

5.1 Levenberg Marquardt 

 

Figure 3 describes the regression model using Levenberg-

Marquardt algorithm. The model fits the training data and the 

validation data very well with a regression coefficient 

respectively R= 0.9998 and R=0.9997, with a high degree of 

correlation between the predicted values and the actual values. 

For the test data, we have R=0.99985, this means that the 

model is able to make accurate predictions on the test data as 

well. 

Overall, these results suggest that the Levenberg-Marquardt 

algorithm had performed very well in fitting the model to the 

data, with high R values indicating a very good fit between the 

model and the observed data points. 

The Mean Squared Error (MSE) is a metric commonly used 

in the field of AI to quantify the average squared difference 

between predicted and actual values. It provides a measure of 

the overall accuracy of a predictive model by squaring the 

differences between predicted and observed outcomes, 

summing them, and then averaging across the dataset. MSE is 

particularly useful for regression tasks, helping assess how 

well a model's predictions align with the true values, with 

lower MSE values indicating better predictive performance. 

The MSE evolution over training (across various epochs) is 

shown in Figure 4. The best validation performance, as 

represented in the graph, was attained at epoch 9, which was a 

crucial stage in the training phase where the model's 

performance was optimized. These results indicate that the 

neural network was trained using the Levenberg-Marquardt 

method to produce moderately accurate predictions on the 

validation set, with the highest performance occurring at epoch 

9. 

 
Figure 3. Regression model using Levenberg-Marquardt 

algorithm 

 

 
 

Figure 4. Evolution of the mean squared error (MSE) 

 

Understanding the model's performance throughout the 

training phase and further optimizing it may benefit from this 

knowledge. 

 

5.2 Bayesian regularization 

 

Figure 5 presents the regression model using Bayesian 

Regularization algorithm. 
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Figure 5. Regression model using Bayesian Regularization 

algorithm 

 

For this model the training data has a regression coefficient 

respectively R= 0.9994. For the test data, we have R=0.99985. 

 

 
 

Figure 6. Evolution of the mean squared error (MSE) 

 

As shown in the Figure 6 above, the best training 

performance was achieved at epoch 1000. 

 

5.3 Scaled conjugate gradient  

 

Figure 7 describes the regression model using Scaled 

conjugate gradient algorithm. 

For the scaled conjugate gradient model, the training data 

and the validation had a regression coefficient respectively R= 

0.99867 and R=0.9988. For the test data, we have R=0.99835. 

The best validation performance of the scaled conjugate 

gradient algorithm was achieved at epoch 72 shown in Figure 

8. To analyze the three algorithms studied in the article, Table 

2 presents a comparison between the results to choose the best 

among the three algorithms. 

According to the values of the regression coefficients (Table 

1), the tree algorithms appear to have done a great job of fitting 

the model to the data. 

 
Figure 7. Regression model using scaled conjugate gradient 

algorithm 

 

 
 

Figure 8. Evolution of the mean squared error (MSE) 

 

Table 2. Technical comparison between the three algorithms 

 

Algorithm 
Regression of the Training 

Data 

Regression of the Validation 

Data 

Regression of the Testing 

Data 

Regression of 

All 

Levenberg-Marquardt 0.9998 0.9997 0.99985 0.99979 

Bayesian 

Regularization 
0.99994 - 0.99897 0.9998 

Scaled Conjugate 

Gradient 
0.99867 0.9988 0.99835 0.99864 
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The results we obtained show that the output parameters of 

the turbogenerator set could be correctly predicted by all three 

training functions.  

According to the results produced, the Bayesian 

Regularization approach had the lowest mean squared error 

(MSE) at epoch 1000 when comparing the performance of 

each training function over time. These findings imply that the 

Bayesian Regularization approach might be the best choice for 

forecasting the turbogenerator sets' output parameters. 

The outcomes do, however, imply that the Bayesian 

Regularization technique was successful in instructing the 

neural network to make predictions that were essentially 

accurate, with high overall performance across all data points. 

 

 

6. CONCLUSION AND PERSPECTIVES 

 

In this study, we evaluated the performance of three various 

ANN (artificial neural network) training functions when used 

on a turbogenerator set. The turbogenerator set provided the 

dataset for this study, which was made up of a variety of input 

and output parameters. In this study, Levenberg-Marquardt, 

Bayesian Regularization, and Scaled Conjugate Gradient were 

the three training functions employed. Based on the correlation 

coefficient (R) between the predicted and actual target values, 

each training function's performance was assessed. 

The results of this study show the significance of choosing 

a suitable artificial neural network training function when 

forecasting the turbogenerator set output characteristics. In 

this work, the Bayesian Regularization approach performed 

the best overall, and our findings may be helpful in future 

research to optimize the performance of ANN models for 

turbogenerator sets. 

The results of the article offer the possibility to: 

➢ Compare AI algorithms to identify the best 

algorithm that produces results with the smallest 

margin of difference. 

➢ Predict the vibrational behavior of the machine, 

especially the studied bearings. 

➢ Open a path to machine diagnostics in case of other 

issues. 

The results of this study open several new research 

directions for example the use of linear SVM to predict To 

determine the optimal parameters. Examining how various 

artificial neural network training algorithms perform using the 

turbogenerator set dataset could be one possible topic of 

research. Furthermore, there were few input and output 

parameters included in the dataset used in this study. Future 

studies might examine how adding extra parameters affects 

how well ANN models work. 

Examining the effectiveness of ANN models on different 

kinds of power producing machinery is another possible topic 

of research. It would be interesting to find out whether the 

results of this study generalize to other forms of power 

generation equipment as the turbogenerator set employed in 

this study is a particular sort of machinery. 

Furthermore, although the correlation coefficient between 

the predicted and actual target values was used in this study to 

evaluate the performance of the ANN models, future research 

may investigate other metrics. For instance, if the models are 

being used for diagnostic or predictive purposes, it may be 

beneficial to investigate their sensitivity and specificity. 

Overall, the results of this analysis show how artificial 

neural networks can be used to anticipate the turbogenerator 

sets' output characteristics and open up a number of new 

directions for further investigation. 
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