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The use of electroencephalogram signals in brain-computer interface Applications is widely 

used in Neuroscience. EEG records electrical activity in the brain but can also capture 

unwanted electrical activities called artifacts. They can originate from environmental noise, 

experimental errors, and physiological sources. To address these challenges, EEG Data 

Analysis involves different data preprocessing and statistical techniques. This systematic 

review conducted on more than 25 papers, aims to provide an overview of various types of 

artifacts such as extrinsic and intrinsic artifacts and methods available for removing those 

artifacts from EEG signals. Each approach presents unique advantages and challenges, 

contributing to the enhancement of the quality and reliability of EEG data for accurate 

analysis and interpretation. 
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1. INTRODUCTION

Brain wave analysis, a field of study spanning several 

decades, has made significant strides in understanding brain 

function through the study of electrical activities of our brain 

[1].This progress has led to valuable insights into cognitive 

processes, emotional states, and neurological disorders, 

impacting fields such as psychology, medicine, human-

computer interaction [2-4]. Nonetheless, the presence of 

artifacts poses a challenge in the examination of brain wave 

signals. This review seeks to discuss some of the frequently 

employed techniques for the elimination of artifacts from these 

signals. 

Artifacts can distort the genuine neural activity, leading to 

misinterpretation of the underlying brain signals. They may 

introduce spurious patterns that can compromise the accuracy 

of quantitative EEG measures. Additionally, the diverse nature 

of artifacts, such as those stemming from muscle activity, eye 

movements, or external interferences, makes their 

identification and removal a complex task. Furthermore, in 

real-world scenarios, it is often difficult to eliminate all 

artifacts, necessitating the development of robust methods to 

minimize their impact on the reliability and validity of EEG 

data. 

The research in EEG analysis has not only advanced our 

understanding of brain function but also expanded its 

applications across various domains [5, 6]. The utilization of 

these methods in brain-computer interfaces (BCIs) enables 

researchers to conduct more precise analysis of brain signals 

and explore the impact of mental states on BCI data. By 

employing advanced artifact removal techniques, researchers 

can effectively clean EEG signals, reducing noise and 

unwanted electrical activities that may interfere with the 

accuracy of BCI analysis [7]. This, in turn, allows for a more 

thorough investigation into the relationship between mental 

states and BCI performance. Through the use of machine 

learning, deep learning, and statistical approaches, researchers 

can uncover valuable insights into how different mental states 

that influence the patterns and characteristics of EEG signals 

recorded in BCIs [8]. The ability to extract meaningful 

information from EEG data while minimizing artifacts 

significantly enhances the precision and reliability of BCI 

research. In addition to its applications in BCI, EEG plays a 

pivotal role in the fields of Neurofeedback and Brain Training. 

Neurofeedback and Brain Training heavily rely on the use of 

EEG to gain deeper understanding and control over brain 

activity. By employing EEG analysis researchers can gain 

valuable insights into the intricate workings of the brain, 

allowing for targeted interventions and customized training 

programs which are helpful for Anxiety and Post-Traumatic 

Stress Disorders [9, 10]. 

One of the primary challenges encountered in EEG analysis 

is the presence of noise or artifacts in the acquired signals, 

which can hinder accurate interpretation and analysis. 

Artifacts can originate from various sources, both external and 

internal to the body, and their removal or mitigation is crucial 

for reliable EEG analysis [11]. In recent years, significant 

efforts have been made to develop advanced artifact removal 

methods using machine learning deep learning and statistical 

approaches. 

2. LITERATURE REVIEW

2.1 Artifacts 

EEG recordings capture electrical signals from the brain 
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including ECG, EOG, and EMG, but they also include other 

unwanted electrical activities known as artifacts. Removing 

EMG artifacts poses a challenge due to their higher amplitude, 

wide frequency spectrum, and broad anatomical distribution. 

These artifacts can arise from various muscle movements near 

the head. EMG artifacts have a wide frequency range and can 

be observed across different locations on the scalp. ECG and 

EOG artifacts are more confined to specific areas and can be 

effectively eliminated using reference channels. However, 

removing EMG artifacts using reference channels is 

challenging due to their intricate distribution across multiple 

muscles [12]. 

Artifacts in EEG data can have a negative impact on its 

quality, and it is important to understand the different types of 

artifacts in order to effectively remove them. Artifacts can 

originate from environmental noise, experimental errors, and 

physiological sources. 

Extrinsic Artifacts: These artifacts come from external 

factors such as the environment and experimental errors. They 

can be classified as follows: 

• Environmental Artifacts: These artifacts can be 

eliminated using simple filtering techniques since their 

frequency is inconsistent with the desired EEG signals. 

• Experimental Errors: Proper procedures and planning 

can help reduce experimental errors, making them 

relatively easier to address. 

• Instrument Artifacts: These artifacts arise from 

electrode misplacement and cable movements. They 

can be mitigated through proper procedures and 

planning. 

• Electromagnetic Interference: External 

electromagnetic interference from the surroundings can 

affect EEG recordings. However, such artifacts can be 

easily filtered out due to their distinguishable 

frequency band. 

• Volume Conduct Artifact: These artifacts can be 

introduced due to the coherence between channels 

while observing brain activity across multiple different 

channels. Techniques such as Independent 

Components Analysis can be used to address this type 

of artifact [13]. 

Intrinsic Artifacts: These artifacts arise from physiological 

sources within the body. They are more challenging to remove 

and often require specific algorithms. The major physiological 

artifacts affecting EEG data include: 

• Ocular Artifacts: Ocular artifacts are significant 

sources of artifacts in EEG recordings. They are caused 

by eye blinks and eye movements, which can spread 

over the scalp to affect EEG activity. These artifacts 

result from changes in the orientation of the retina and 

cornea dipole during eye movements, as well as ocular 

conductance due to the contact between the cornea and 

eyelid during blinks. Ocular artifacts can contaminate 

both EEG and electrooculogram (EOG) signals. 

Removing these artifacts can be challenging due to 

bidirectional interference between EEG and EOG. 

• Muscle Artifacts: Muscle activity can contaminate 

EEG data and poses a difficult problem to address. 

Muscle artifacts can be caused by the contraction and 

stretch of muscles in proximity to the signal recording 

sites, as well as actions like talking, sniffs, and 

swallowing. These artifacts have a broad frequency 

distribution and are measured using electromyogram 

(EMG). They are particularly challenging to eliminate 

due to the statistical independence between EMG and 

EEG signals. 

• Cardiac Artifacts: They may occur when electrodes are 

positioned directly on or in close proximity to blood 

vessels. These artifacts result from heart's expansion 

and contraction activity. Pulse artifacts, with a 

frequency around 1.2Hz, can resemble EEG 

waveforms and are difficult to remove. On the other 

hand, electrocardiogram (ECG) measures the electrical 

signals produced by the heart and can be recorded 

alongside cerebral activity. ECG artifacts can be easily 

removed by utilizing the reference waveform. 

 

2.2 Methods 

 

Independent Component Analysis: Independent 

Component Analysis (ICA) is a computational method 

employed to separate a multivariate signal into distinct 

subcomponents that are statistically independent from one 

another. It was first introduced by Aapo Hyvärinen in his Ph.D. 

thesis in 1997 and popularized by Jean-Francois Cardoso and 

other researchers. The goal of ICA is to find a linear 

transformation that can separate a set of mixed signals into 

independent sources. This is achieved by identifying the 

sources' statistical properties, such as their non-Gaussian 

distribution, and using this information to derive an optimal 

transformation matrix. The resulting transformed signals can 

be used for various purposes, such as feature extraction, 

denoising, or classification [14]. 

Let the input EEG signal from N sensors be, 

 

𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑁] 𝑇 

 
Each EEG signal from channel c with a duration of t, is 

represented as a column vector. 

 

𝑦𝑐 = [𝑦(1), 𝑦(2), … , 𝑦(𝑡)]. 
 

Its goal is to discover a separate matrix U which satisfies, 

 

𝑆 = 𝑈𝑌 

 

In order to mitigate artifacts, artifact-free sources S' are 

obtained by removing artifact vectors from S. The spatial 

location on the scalp associated with each source is determined 

by calculating the row vectors of the unmixing matrix U. This 

information can then be used to create topographic maps of the 

source components using appropriate montages [15]. 

Independent components are extracted from the original 

signals. The reconstruction process involves discarding 

independent components that contain artifacts. In a study 

conducted by Jung et al., an enhanced version of ICA was 

proposed for analysing EEG and EPR data. They successfully 

eliminated EEG artifacts and compared their findings with 

regression techniques [16]. 

ICA is a superior and flexible technique for separating EEG 

signals from artifacts compared to PCA, which is restricted to 

orthogonal transformations. In ICA, the source signals are 

mixed together in a random and instantaneous manner. It is 

important that the dimensions of the observation signal are 

equal to or greater than those of the source signal [13]. 

ICA assumes statistical independence among sources, 

which might not hold in all scenarios. If sources are not strictly 

independent or the mixing process is nonlinear, ICA might not 
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effectively separate the sources. Artifacts such as muscle 

activity or electrode drifts might heavily influence low-

frequency bands, and if these bands are excluded before ICA, 

the method might not access the relevant information 

necessary for effective artifact removal. This limitation 

underscores the need for careful consideration of 

preprocessing steps before applying ICA. Adjusting or 

revisiting the frequency filtering methods to ensure that 

critical artifact information is retained can enhance the 

effectiveness of subsequent ICA-based artifact removal. 

Figure 1 shows the general Pipeline for ICA used for cleaning 

EEG signals. 

 

 
 

Figure 1. Independent Component Analysis 

 

 
 

Figure 2. Morphological Component Analysis 
 

Morphological Component Analysis: It is a mathematical 

framework for signal processing and data analysis that 

involves decomposing signals into their constituent 

morphological components [13]. MCA is particularly useful 

for analysing signals that contain both sparse and structured 

components. Figure 2 shows how these components are being 

separated to clean the EEG signal from the noise caused by the 

eye movements. 

If a signal ‘S’ consists of individual components ‘S1, S2, ...., 

SN’ and each of these components is represented in a sparse 

manner using the basis ‘b1, b2, …., bN’ respectively, the 

signal S can be expressed as: 

 

𝑠 = 𝑏1𝑎1 + 𝑏2𝑎2 + ⋯ + 𝑏N𝑎N 

 

The signal S can be represented as linear combination of its 

components, ‘S1, S2, .... , SN’ using projection coefficients 

‘a1, a2, ...., aN’. The components are represented sparsely with 

respect to the basis ‘b1, b2, ..., bN’. In this context, we consider 

a scenario where the signal ‘S’ (Raw EEG signal) is composed 

of two components, namely ‘s1’ (cleaned EEG signal) and ‘s2’ 

(the eye blink signal). It is crucial for the assumption of MCA 

(sparse coding) to hold that the dictionary of biases ‘b1, b2’ 

exists, such that each component in s is sparse in ‘b1’, and not 

as sparse in ‘b2’ [17]. 

Basic idea behind MCA is to represent a signal as a sum of 

morphological components, each of which has a specific shape 

or morphology [18]. These components can be thought of as 

building blocks that make up the signal. MCA seeks to identify 

these components and their corresponding coefficients by 

solving an optimization problem [19]. 

The optimization problem that MCA solves involves 

finding the sparsest representation of the signal in terms of the 

morphological components This objective is accomplished by 

minimizing the L1 norm of the coefficients while ensuring that 

the signal is decomposed into a combination of the 

morphological components, as specified by a given constraint 

[20]. The optimization problem can be solved using a variety 

of algorithms, including convex optimization techniques and 

greedy algorithms. 

MCA assumes that EEG signals are a linear combination of 

independent components, and deviations from this assumption 

can impact its efficacy. Additionally, MCA assumes 

stationarity of signals over time, which may not hold true in 

dynamic EEG scenarios. The method requires independence 

between components and assumes linearity in signal mixing. 

On the computational front, MCA can be intensive, 

particularly with numerous EEG channels, posing challenges 

for real-time applications. Furthermore, parameter tuning is 

critical and time-consuming. 
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Principal Component Analysis: It is a statistical technique 

used to retain most of the information of the dataset while 

reducing its dimension [21]. The principal components are 

found by calculating the eigenvectors of the covariance matrix 

of the data, which are then sorted based on their corresponding 

eigenvalues, with the highest eigenvalue representing the most 

significant source of variability.  The resulting components are 

orthogonal and uncorrelated, meaning that they are linearly 

independent from each other. Figure 3 shows that all principle 

components are orthogonal to each other. Also, PCA1 best 

represents the spread of the data. 

 

 
 

Figure 3. All of the principle components are orthogonal to 

each other 

 

The assumptions used to approach PCA for optimum 

productivity include: 

• Linearity: it is assumed that the principal components 

(PCs) are formed by combining the original features in 

a linear manner. If this assumption is violated, PCA 

may not yield the anticipated outcomes or may not be 

suitable for the given data. 

• Large variance implies more structure: In PCA, 

variance plays a crucial role as it serves as a measure of 

the importance or significance of a specific dimension. 

Therefore, when applying PCA, dimensions with high 

variance are more likely to be selected as principal 

components. 

• Orthogonality: In PCA, the principal components are 

assumed to be orthogonal to each other. 

To use PCA for artifact removal in EEG signals, we can 

apply this equation to the data matrix X, where each row 

represents a time point and each column represents a different 

electrode [22]. The resulting U matrix contains the principal 

components, which represent the major sources of variation in 

the data. 

To remove artifacts, we can identify the principal 

components that correspond to the sources of variability we 

want to remove, such as eye blinks or muscle activity. We can 

then reconstruct the original data matrix ‘X’ by selecting only 

the principal components that correspond to neural activity 

and multiplying them by their corresponding coefficients [23]. 

The resulting reconstructed data matrix ‘X'’ can then be used 

for further analysis or visualization. 

PCA assumes linear relationships between variables in the 

data. However, EEG signals often contain nonlinear 

interactions that PCA might not fully capture. Complex 

nonlinear artifacts might not be effectively removed by PCA 

alone. It focuses on capturing variance as a measure of 

significance. However, this might not always correspond to 

the most relevant features for artifact identification and 

removal. Removing components based solely on variance 

might lead to discarding relevant information. principal 

components are orthogonal to each other. While this simplifies 

the computation, it might not accurately represent the complex 

relationships present in EEG data where different sources 

might not be strictly orthogonal. 

Wavelet Convolution: The analysis of time-frequency was 

performed by utilizing the Continuous Morlet Wavelet 

Convolution (CMW) technique alongside the Fast Fourier 

Transform (FFT) algorithm. The procedure entailed 

converting the original data into the frequency domain using 

FFT, creating complex Morlet wavelets corresponding to each 

frequency, computing dot products between the wavelets and 

the FFT of the data, and then converting the outcomes back 

into the time domain using inverse FFT. Figure 4 shows the 

general pipeline used to clean input EEG signals using wavelet 

convolution. 

This enabled the observation of variations in power over 

time. To demonstrate changes in power over time, the dot 

product results were converted back into the time domain 

using inverse FFT as follows: 

 

𝑇𝑥 = 𝐼𝐹𝐹𝑇(𝑓𝑓𝑡(𝐶) ⋅ 𝑓𝑓𝑡(𝑀𝑥)) 

 

In the equation, ‘T’ represents a time-series data for a 

specific channel that has been filtered using a wavelet at 

frequency ‘x’. The time-series data for all trials along with 

different phases is represented by ‘C’, and ‘M’ represents the 

complex Morlet wavelet at a specific frequency [24]. 

A wavelet can be thought of as a kernel in 1 dimension. 

They are like a sin wave which are tapered to 0 at the ends. We 

move the wavelet across the entire signal, and at each time 

point, we multiply the wavelet by the signal. The resulting 

product represents a coefficient for that wavelet scale at that 

specific time. We then adjust the wavelet and repeat the 

process [25]. 

 

 
 

Figure 4. General pipeline for wavelet convolution 

 

All waves can be thought of as time-frequency 

representations. The wavelet transform is used to do spectral 

analysis on various signals. In signal analysis using WT, it is 

crucial to select the wavelet and number of decomposition 

stages. This selection is based on retaining the portions of the 

signal that contain relevant frequencies for signal 

classification.  

The transformation involves selecting time shifts ‘k’ and 

subsets ‘j’ of the wavelet ‘I(t)’, mathematically expressed as, 

 

𝐼𝑘,𝑗(𝑡) = √2𝐼(2𝑗𝑡 − 𝑘) 

 

then the wavelet ‘W’ can be done by, 

 

𝑊𝐼 = ⟨𝑓, 𝐼𝑗, 𝑘⟩ 
 

After decomposition of the raw EEG data with the help of 

wavelet transformation, components which do contain the 

artifacts are removed by setting a threshold. The artifact free 

signals can be regenerated using the remaining signal [26]. 
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limitations include signal dependency and the potential loss 

of relevant neural information. Assumptions of stationarity 

and artifact separability are required, and computational 

complexity, especially for large datasets, can be a challenge 

for real-time processing. 

 

 

3. CONCLUSION AND FUTURE WORK 

 

The aim of this review is to offer a concise examination of 

the techniques employed for removing these artifacts. This 

review discusses several approaches, like Independent 

Component Analysis (ICA), Morphological Component 

Analysis (MCA), Principal Component Analysis (PCA), and 

Wavelet Convolution. Each approach offers unique 

advantages and challenges. 

ICA allows for the separation of mixed signals into 

statistically independent subcomponents, aiding in the 

removal of artifacts. MCA, on the other hand, focuses on 

decomposing signals into their morphological components, 

making it effective for analysing signals with sparse and 

structured components. PCA reduces the dimensionality of the 

data while preserving variability, making it suitable for artifact 

removal by selecting principal components related to neural 

activity. Wavelet convolution enables time-frequency analysis, 

multiresolution analysis, and adaptive filtering, facilitating 

precise localization and removal of artifacts. 

Artifact removal techniques such as PCA, ICA, MCA, and 

wavelet convolution are employed in EEG data processing, 

each with distinct advantages and challenges. PCA may 

overlook low-amplitude artifacts, ICA assumes statistical 

independence of components, MCA extends ICA with 

additional constraints, and wavelet convolution may struggle 

with non-stationary artifacts. Common assumptions involve 

the accurate representation of neural activity and source 

independence. Computational complexities vary, with PCA 

involving eigenvalue decomposition, ICA requiring matrix 

factorization, and MCA's complexity depending on imposed 

constraints. The suitability of each method depends on the 

specific EEG data characteristics, necessitating careful 

consideration of limitations, assumptions, and computational 

demands in choosing an appropriate approach for artifact 

removal. 

Combining these techniques in a hybrid approach could 

leverage the strengths of each method while mitigating their 

individual limitations. For instance, a multi-stage process that 

uses PCA for initial artifact identification, followed by ICA 

for source separation, and MCA for refined artifact removal, 

may enhance overall effectiveness. Additionally, parameter 

tuning within each method, such as adjusting threshold values 

or refining constraints, could optimize performance based on 

specific dataset characteristics. Machine learning approaches, 

such as incorporating neural networks or deep learning 

architectures, could also be explored to adaptively learn and 

improve artifact removal. The dynamic adjustment of 

parameters based on real-time feedback or adaptive algorithms 

might further enhance the adaptability of these methods to 

diverse EEG datasets. 

The development of machine learning, deep learning, and 

statistical approaches has contributed to the advancement of 

artifact removal methods, enabling researchers to tackle 

various types of artifacts originating from environmental noise, 

experimental errors, and physiological sources. These 

methods not only enhance the reliability and quality of EEG 

data but also streamline the research process, enabling 

researchers to extract meaningful information and contribute 

to the advancement of neuroscience and its applications. With 

further advancements and refinement of these techniques, the 

field of BCI and EEG research will continue to progress, 

offering new possibilities and insights into brain function and 

its potential applications. 

Advancements in EEG artifact removal have broad 

implications, improving diagnostic accuracy in healthcare, 

enhancing signal reliability in brain-computer interfaces, and 

refining cognitive neuroscience research. The technology also 

benefits human-computer interaction, impacting mental 

workload assessment, driver fatigue detection, and adaptive 

learning systems. Moreover, it plays a crucial role in affective 

computing applications, influencing emotion recognition in 

virtual reality, gaming, and human-robot interaction. Overall, 

progress in this field contributes significantly to healthcare, 

neuroscience, and the efficacy of human-machine interfaces. 
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