

Augmenting Document Classification Accuracy Through the Integration of Deep Contextual

Embeddings

Rama Krishna Paladugu1,2* , Gangadhara Rao Kancherla1

1 Department of Computer Science and Engineering, Acharya Nagarjuna University, Guntur 522510, India
2 Department of Computer Science and Engineering, R.V.R. & J.C. College of Engineering, Guntur 522019, India

Corresponding Author Email: mails4prk@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290123

ABSTRACT

Received: 22 May 2023

Revised: 25 August 2023

Accepted: 6 October 2023

Available online: 27 February 2024

 Document classification, a fundamental process within the field of natural language

processing, has benefitted from the recent advancements in deep learning, particularly in

enhancing accuracy. Traditional text clustering methods, such as bag-of-words models,

exhibit domain specificity and struggle to handle vast data volumes. They also face

limitations in elucidating sophisticated patterns and intricate word and phrase relationships

within textual data. These constraints may adversely affect the accuracy of text clustering,

subsequently impacting downstream applications like information retrieval, document

classification, and natural language processing. This paper proposes a novel text

classification model, termed Deep Contextual Embeddings Model (DCEM), designed to

improve document classification accuracy. The DCEM integrates pre-trained deep

contextual embedding architectures (e.g., GPT-2) with text clustering algorithms (e.g., K-

Means). It employs contextual embedding models to enhance document clustering accuracy

by capturing context and semantic depth, improving data structure comprehension, and

eliminating noise for more precise results. Experimental results, derived from the

application of DCEM on AG News, Reuters-21578, and IMDB reviews datasets, indicate a

significant improvement in document classification accuracy (81.09%), compared to

traditional text clustering and document classification methods.

Keywords:

Deep Contextual Embedding Models, text

clustering algorithms, document

classification, natuaral language processing

and machine learning

1. INTRODUCTION

The field of Natural Language Processing (NLP) has

garnered substantial attention in recent research, largely due to

the advent of deep learning techniques. A central task within

NLP is document classification, defined as the process of

assigning categories to documents based on their respective

contents or characteristics. Traditional text clustering methods,

such as bag-of-words models, have historically been prevalent

in achieving this task [1, 2]. However, these conventional

approaches face limitations. They often struggle to detect

sophisticated patterns and interdependencies within textual

data, and typically exhibit domain specificity and an inability

to handle large data volumes [3].

The constraints of traditional text clustering models become

evident in real-world scenarios, such as the processing of

customer feedback. Consider a company inundated with

diverse customer feedback in the form of product reviews,

customer service inquiries, and social media posts. Here,

traditional text clustering methods, including bag-of-words

models [4, 5], may fail to accurately group similar feedback

due to inherent deficiencies in capturing context and meaning.

For instance, when a customer review encapsulates both

positive and negative aspects of a product, a bag-of-words

model might categorize the feedback based on word frequency

rather than capturing the holistic sentiment or meaning. This

could potentially lead to misclassification, causing the

company to overlook valuable insights. Recent advancements

in deep learning have shown potential in surmounting these

challenges by utilizing Deep Contextual Embedding Models

(DCEMs) [6-9] for text representation. Through the

integration of DCEMs, companies can more accurately discern

the context and meaning of customer feedback, leading to

improved categorization and, ultimately, superior

understanding of customer sentiment and needs. These models

generate embeddings that capture the contextual information

of each word and phrase in a document, thereby enabling

clustering algorithms to group similar documents with higher

accuracy.

In recent years, deep learning methodologies have

demonstrated considerable potential in enhancing the accuracy

of natural language processing tasks, including text clustering

and document classification [10-12]. Notably, the pre-training

of deep bidirectional transformers [6, 8], as epitomized by the

BERT model proposed by Devlin et al. [6], has made

significant strides in language understanding. Further,

Convolutional Neural Networks (CNNs) have been

extensively utilized for text categorization, capitalizing on

word order to enhance performance [3]. Attention-based

models, such as the Transformer model proposed by Vaswani

et al. [13], have also demonstrated their efficacy in capturing

intricate patterns and relationships within textual data. Despite

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 235-246

Journal homepage: http://iieta.org/journals/isi

235

https://orcid.org/0000-0002-2747-624X
https://orcid.org/0000-0002-6106-8477
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290123&domain=pdf

these advancements, traditional text clustering methods, such

as bag-of-words models, retain their prevalence across various

domains, although their limitations in capturing contextual

information and managing extensive data volumes are well

documented [11].

The primary objective of this research is to devise an

innovative deep contextual embedding model to address the

constraints of existing contextual models and enhance the

accuracy of deep text clustering and document classification.

The proposed methodology integrates pre-trained contextual

models with clustering algorithms, aimed at augmenting the

quality of clusters and document classification accuracy.

High-level semantic features are extracted from text

documents using pre-trained models and subsequently

employed as input for clustering algorithms, thus grouping

similar documents. This integration improves the capacity to

capture the context and semantics of words and phrases, in

addition to unravelling the underlying structure and

relationships within the text data. Furthermore, it aids in the

interpretation and understanding of latent representations in

clustering, simultaneously identifying and eliminating noise

and outliers, thereby leading to enhanced clustering

performance. The novelty of this research paper lies in its

integration of pre-trained Deep Contextual Embedding

Models (such as GPT-2) with traditional clustering algorithms

(e.g., K-Means, DBSCAN), thereby improving text clustering

and document classification accuracy and effectively

addressing the limitations of conventional methods.

In order to substantiate the proposed methodology, a series

of experiments were undertaken utilizing several publicly

accessible datasets, including AG News, Reuters-21578, and

IMDB reviews. The datasets were selected based on several

criteria such as relevance, accessibility, volume, complexity,

cleanliness, and their representative nature of real-world data.

The effectiveness of text clustering algorithms and

document classification accuracy was assessed using a variety

of performance metrics. These included the Silhouette score,

Calinski-Harabasz index, Davies-Bouldin index,

Homogeneity, Completeness, Normalized mutual information,

Accuracy, Precision, Recall, and F1-Score. This assessment

was conducted on several labeled datasets with ground truth

labels to evaluate the performance of the clustering algorithm.

Such experimental evaluation proved pivotal in determining

the optimal combination of contextual embedding models for

text clustering and document classification accuracy.

The proposed methodology has potential implications

across several domains, including data analysis, information

extraction, and target recommendation systems. By integrating

Deep Contextual Embedding Models (DCEMs) with text

clustering algorithms, it is anticipated that the efficiency and

accuracy of downstream NLP tasks can be significantly

enhanced. In summary, this research represents a significant

progression in the field of document classification,

highlighting the potential utility of employing DCEMs for a

range of NLP applications.

2. LITERATURE SURVEY

This section undertakes a comprehensive survey of the

existing literature, with a specific focus on identifying the

limitations of traditional text clustering methods and

discussing the advancements in Deep Contextual Embedding

Models.

2.1 Traditional methods

An extensive survey of text clustering algorithms, inclusive

of traditional and deep learning-based methodologies, is

provided by Liang et al. [11]. Their study underscored the

limitations of conventional methods, such as the inability to

extract textual semantics and their suboptimal accuracy in

classification tasks.

Meanwhile, Wei et al. [14] propose a novel model for text

document clustering, leveraging term frequency-inverse

document frequency (TF-IDF) weighting and cosine similarity

[15]. While this approach was observed to surpass basic

clustering methods, it failed to account for the semantic

meaning of words.

A traditional text clustering algorithm integrating evidence

accumulation clustering and concept generation is proposed by

Wong et al. [16]. Despite its innovative approach, it was noted

that the method required a large number of parameters and was

heavily reliant on a fixed set of predefined concepts.

In a distinct approach, Mohammed et al. [17] propose a text

document clustering methodology utilizing the firefly

algorithm. Although it was found to outperform general

clustering algorithms, the model necessitated the tuning of

several parameters.

Karol et al. [18] presented a text clustering method that

amalgamates fuzzy clustering with particle swarm

optimization (PSO) [19]. Despite surpassing traditional

clustering methods in terms of accuracy, stability, and

robustness, this method was found to be computationally

demanding and required the tuning of multiple parameters.

2.2 Deep contextual embedding methods

The literature review underscores a critical gap, namely, the

disregard for semantic meaning of words [2-5] in several of

the methods reviewed. Recent scholarly endeavors have

concentrated on deep learning-based strategies [11, 12] and

alternative techniques such as topic modeling and graph-based

clustering [20]. Deep Contextual Embedding Models [6-9]

have emerged as a promising avenue for text clustering,

delivering state-of-the-art results.

An enhanced text clustering algorithm utilizing Deep

Contextual Embedding Models with attention mechanisms is

introduced by Wei et al. [21]. Notably, this approach

contributes to the improvement of cluster quality and stability.

Subsequently, Zhang et al. [22] presented a novel text

clustering technique rooted in Deep Contextual Embedding

Models, employing a self-attention mechanism to enhance

clustering accuracy.

A fresh deep contextual embedding model for text

clustering is put forth by Tan et al. [23]. This model,

leveraging a sparse auto-encoder and a skip-gram model,

displays improved clustering accuracy compared to

conventional methodologies. Mehta et al. [24] proposed a

unique text clustering approach using Deep Contextual

Embedding Models and word mover’s distance (WMD),

demonstrating superior clustering accuracy than traditional

clustering algorithms. By incorporating contextual

information and a feature selection algorithm, Ravi and

Kulkarni [25] succeeded in enhancing text clustering

performance using Deep Contextual Embedding Models.

They utilized a regularization technique to tackle the challenge

of high dimensionality inherent in text data.

In 2019, a novel language model titled Conditional

236

Transformer Language Model (CTRL) was introduced by

Keskar et al. [7]. CTRL's distinct ability to generate text based

on user-defined attributes, offering nuanced control over style,

tone, and content, renders it a suitable model for various NLP

tasks like text classification, summarization, and query-

response. This stands in contrast to previous language models

that were limited to text generation. In the same year, Devlin

et al. [6] presented BERT, a pre-trained deep bidirectional

transformer model. The study exhibited BERT's superior

performance across multiple NLP tasks, establishing it as a

state-of-the-art model.

ROBERTa, introduced by Liu et al. [8] in 2019, is trained

on a substantial volume of input data using an approach similar

to BERT. However, the use of larger batch sizes and more

training data than BERT resulted in a higher-performing

model. ELECTRA, a pre-training method for NLP developed

by Google researchers [9], employs a generator-discriminator

approach to pre-training text encoders, with the generator

being a masked language model trained to predict masked

tokens, similar to BERT [6].

This literature review underscores advancements in deep

learning-based techniques for NLP tasks [6-9], such as text

clustering and document classification. Although these models

have advanced NLP tasks, they still exhibit limitations in

capturing contextual information, handling dimensionality,

domain dependency, and interpretability. The identification of

these research gaps motivates the present study to improve the

prominence of semantic meaning in text clustering algorithms

and suggests potential avenues for future research.

3. PROPOSED METHOD

The novelty of our integrated approach lies in combining

pre-trained Deep Contextual Embedding Models (e.g., GPT-2)

with clustering algorithms (e.g., K-Means, DBSCAN) to

effectively captures contextual information, improves

clustering performance, and addresses the limitations of

traditional methods, resulting in more accurate and context-

aware document analysis.

Traditional text clustering methods, such as model based

text clustering [26] and feature based text clustering [27],

which struggle to accurately categorize and group similar

feedback due to their limitations in extracting the context and

meaning of words and phrases. To address the limitations of

conventional text clustering methods in the realm of deep text

clustering, pre-trained deep contextual models, such as BERT

[6], GPT-2 [10], and RoBERTa [8] were introduced and they

have shown remarkable success in deep text clustering. These

models learn contextualized representations of words, which

capture the meaning and context of words in a sentence or

document. However, the standalone contextual models (i.e.

BERT, GPT-2 and RoBERTa etc.) are having certain

limitations when it comes to deep text clustering. Some of

these limitations include: Lack of clustering and

interpretability abilities, Ambiguity in capturing document

similarities, Limited domain knowledge and ability to handle

noise and outliers.

In general, the standalone contextual models are designed

for NLP tasks like text generation, classification, and

sentiment analysis but not for deep text clustering on their own.

Moreover the contextual model may produce latent

representations in clustering, which are difficult to interpret

and understand [28, 29]. As contextual models are trained on

large amounts of generic data and they may not have specific

domain knowledge relevant to the text being clustered, which

leads to the suboptimal clustering results. The contextual

models are optimized for generating coherent and fluent

sentences and paragraphs in language modeling [30]. Hence

they are unable to effectively handle the noise and outliers

(irrelevant data points) in text data clustering. Due to the lack

of a direct mechanism for modeling the document-level

similarity [31], the contextual models may not be able to

effectively capture the similarities between documents.

To overcome the limitations of standalone contextual

models, this paper proposes an integrated deep contextual

embedding model, in which the pre-trained contextual models

are integrated with clustering algorithms, to increase the

cluster quality and document classification accuracy. In this

method, pre-trained models [32] are employed to extract high-

level semantic features from text documentsand these

extracted features are then used as input to the clustering

algorithms [33] to group similar documents. Integration of

clustering algorithms with pre-training contextual models will

enhance the ability to capture the context and meaning of

words and phrases along with the underlying structure and

relationships in the text data. This integration will also help to

interpret and understand the latent representations in clustering

along with identifying and removing noise and outliers,

leading to better clustering performance. The proposed model

provides a more robust and generalizable approach to text

clustering, reduces the need for manual feature engineering,

and offers superior performance compared to traditional and

standalone contextual text clustering models.

3.1 Deep contextual text clustering model

In the context of deep text clustering and document

classification, the proposed model (Figure 1) for integrating

pre-trained contextual models [6-8] with clustering algorithms

is designed in several steps are: Dataset selection, Data pre-

processing, word embedding’s, Positional encoding, Semantic

Features Extraction, Feature vector dimensionality reduction,

Text clustering and Document classification.

3.1.1 Data selection

As part of the “Integration of pre-trained contextual models

with clustering algorithms” project for deep text clustering and

document classification, we selected the popular text datasets

for experimentation and evaluation.

Each dataset ‘ 𝐷 ’ comprises multiple

documents {𝑑1, 𝑑2, 𝑑3 … 𝑑𝑛} spanning different

categories {𝑐1, 𝑐2, 𝑐3 … 𝑐𝑛} , making them widely used

benchmarks in NLP research for text classification and

clustering tasks. These datasets are particularly well-suited for

evaluating the performance of text clustering and classification

algorithms due to their extensive size and diverse range of

topics.

3.1.2 Pre-processing

After dataset selection process, the next step involves in

preprocessing the text data with respective techniques [34],

which is crucial to increase the cluster quality and document

classification accuracy in further steps. As part of this, the

unwanted characters or symbols from the text data (i.e.

punctuation marks, emojis, special characters, and HTML tags

etc.) are removed using the regular expressions. To make

simplify the clustering process, the input text data 𝑑𝑖 is

237

converted into the input token (i.e., individual words or

phrases) sequences. Frequently occurring stop words (i.e.

“the”, “and”, “is”, etc.) are eliminated and the unique words

are stemmed from the input token sequences to reduce the

processing complexity.

Figure 1. Block diagram of the Deep Contextual Embedding Models based text clustering

3.1.3 Word embedding

After pre-processing, different techniques are used to

convert the text (tokens) into numerical representations for

clustering. In case of our pre-trained contextual models, the

input token sequences are converted into the “word embedding

vectors” using a transformer-based neural network [35]. word

embedding vectors is to represent words and phrases in a

continuous, semantically meaningful space. These word

embeddings are essential for capturing contextual information,

understanding the relationships between words, and enhancing

the accuracy of text clustering and document classification

tasks. They enable the integration of pre-trained deep

contextual models with clustering algorithms, providing a

foundation for improved document analysis.

The word embedding’s [36] generated by the contextual

models is used to extract high-level semantic features for text

clustering and document classification.

Let's take a sequence of words, denoted as 𝑊 =
{𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛} , where ‘𝑛 ’ represents the length of the

sequence. Each word in the sequence is represented by a 𝑑 -

dimensional vector, denoted as, where 𝑑 represents the

dimension of the embedding space. The embedding for

the 𝑖𝑡ℎ word in the sequence is denoted as 𝑒𝑖 =
{𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3, … 𝑒𝑖𝑑}.

3.1.4 Positional encoding

In our approach, we incorporate the order of words in the

input sequence by implementing positional encoding [37]. By

employing this technique, we are able to encode details

regarding the position of each token in the input text, which

allows our model to capture the sequential information and

contextual meaning of the words. The positional encoding is a

vector that is added to the input embedding’s before they are

fed into the multi-head attention mechanism. The formula for

the positional encoding is:

model

,2 2
sin

10000

i j j

d

i
PE

 
  
 

 
 

=  
 
 

 (1)

mod

,2 1
2

cos

10000 el

i j
j

d

i
PE +  

 
 
 

 
 

=  
 
 

 (2)

where, ′𝑖′ is the position of the word in the input sequence, ′𝑗′
is the index of the dimension in the embedding vector, and

𝑑model is the dimension of the embedding vector. This

equation is to incorporate the positional encoding 𝑃𝐸(𝑖,𝑗) to the

generated embedding’s for 𝑖𝑡ℎ word and 𝑗𝑡ℎ dimension is

defined as:

2 /

(,)

2 /

sin , if j is even
10000

cos , if j is odd
10000

j d

i j

j d

i

PE
i

  
  

  
= 

      

(3)

The positional encoding values are now added to the

original embedding vector for each word to create the final

embedding vectors, which has to be processed by the

subsequent layers of the proposed model.

At this moment, the contextual model has to generate a

hidden state for each token in the input text, which captures

the contextualized meaning [35] of the token based on its

context within the sentence. For each token of the position

encoded final embedded vector, our pre-trained contextual

238

model generates a sequence of hidden states, 𝐻 =
{ℎ1, ℎ2, ℎ3 … ℎ𝑛} , where each ℎ𝑖 is a 𝑑 -dimensional vector

representing the hidden state at position‘𝑖’. The hidden states

are generated by iteratively applying multi-head self-attention

and feed-forward layers, with each layer utilizing the output of

the previous layer to produce a more refined representation of

the input text.

3.1.5 Semantic features extraction

When applying pre-trained contextual models [6, 9] in the

context of deep text clustering with clustering algorithms [26],

multi-head self-attention is utilized to capture the high-level

semantic features of each word in the input text. The multi-

head attention mechanism [38] is considered as a type of the

self-attention mechanism where instead of using a single set of

learned matrices to generate queries, keys, and values,

multiple sets of these matrices are used. The attention

computation is performed multiple times in parallel, each time

using a different set of matrices. The ultimate output is

achieved by concatenating the results of each attention head

and then passing them through a linear transformation.

The pre-trained contextual model generates word

embedding’s along with positional encodings, which are then

fed as input to the multi-head self-attention layer.The word

embedding’s (𝐸) in self-attention are fed through learnable

weight matrices 𝑊𝑄 , 𝑊𝐾 𝑎𝑛𝑑 𝑊𝑉 of the linear transformation

to create the queries (𝑄), keys (𝐾), and values (𝑉) vectors as:

* , * *Q K VQ W E K W E and V W E= = = (4)

These vectors are then split into multiple

heads (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … ℎ𝑒𝑎𝑑𝑛), and each head computes the

attention score between the queries and keys to obtain the

attention weights. The output of each attention head is

obtained by computing a weighted sum of the values using the

attention weights. The hidden states produced by the multi-

head self-attention mechanism in our model can be

represented as:

1(, ,) (,..,) O

nM Head Q K V Concat head head W− = (5)

where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) , and 𝑊𝑖

𝑄 ∈

ℜ
𝑑model∗𝑑𝑘 , 𝑊𝑖

𝐾 ∈ ℜ
𝑑model∗𝑑𝑘 , 𝑊𝑖

𝑉 ∈ ℜ
𝑑𝑚𝑜𝑑 𝑒𝑙

∗𝑑𝑣
, 𝑊𝑂 ∈

ℜ
ℎ𝑑∗𝑑𝑚𝑜𝑑 𝑒𝑙.

In this equation, 𝑄, 𝐾, 𝑉 ∈ ℜ
𝑛𝑣

∗𝑑𝑚𝑜𝑑𝑒𝑙 represents the input

query, key, and value matrices, where 𝑑𝑘 denotes the

dimensions of the key and value vectors for each head, ‘𝑛’

represents the count of attention heads, and 𝑑model represents

the dimensionality of the input embedding’s. Multi-head

attention model is to capture complex semantic features and

relationships within the text data. Multi-head attention allows

the model to focus on different parts of the input text

simultaneously, enabling it to extract diverse and informative

contextual information. This is crucial for improving the

performance of text clustering and document classification, as

it helps in understanding the nuances, nuances, and subtle

patterns in textual data, ultimately leading to more accurate

results. In Multi-Head attention model the attention for each

head is evaluated as:

Attention(, ,) _
T

k

QK
Q K V soft max V

d

 
=  

 
 

(6)

In this context, the dimensionality of the key vector is

denoted as 𝑑𝑘, and a scaling factor √𝑑𝑘 is applied to prevent

the dot product from becoming too large, which can impact the

soft-max function. The soft-max function is then applied to the

dot product of the query 𝑄 and key vectors 𝐾𝑇 along the

second axis to obtain the attention weights. The resulting

attention weights are then multiplied by the value matrix 𝑉 to

obtain the final output.

3.1.6 Feature vector dimensionality reduction

The output of the contextual model may result in high-

dimensional feature vectors. To enhance computational

efficiency and reduce the dimensionality of these vectors,

dimensionality reduction techniques like Principal Component

Analysis (PCA) [39] or t-Distributed Stochastic Neighbor

Embedding (t-SNE) [40] can be employed. The choice of

dimensionality reduction technique should depend on the data

characteristics and analysis objectives. In this study, we have

opted for the linear technique, and PCA is used for

implementing the dimensionality reduction process.

PCA is a widely used linear method for reducing

dimensionality. It converts high-dimensional data into a

lower-dimensional space while preserving the maximum

possible variance in the data. This dimensionality reduction

technique ensures that the clustering algorithms can operate

more efficiently and effectively. The reduced feature vectors

obtained through PCA can be used for further analysis such as

clustering or classification. Let ‘ 𝑋 ’ be the original high-

dimensional feature vectors of shape (𝑛_samples, 𝑛_features).

The initial process in PCA is to center the data ‘ 𝑋𝐶 ’ by

subtracting the mean from each feature:

()CX X X= − (7)

After centering the data, the covariance matrix 𝑆 can be

calculated with number of samples 𝑛 and mean of the

centereddata 𝑋𝐶 as:

() ()
1

*
1

T

C CS X X
n

=
−

 (8)

The eigenvectors (𝑣) and eigenvalues (𝜆) of the covariance

matrix can be computed as:

Sv v= (9)

The top 𝑘 eigenvectors can be selected based on the highest

𝑘 eigenvalues. The data can then be projected onto the new

basis formed by these top 𝑘 eigenvectors as shown in below:

RX XW= (10)

where, 𝑋 is the original data, 𝑊 is the matrix of top 𝑘

eigenvectors, and 𝑋𝑅 is the transformed data with reduced

dimensionality.

3.1.7 Text clustering

Following dimensionality reduction, clustering algorithms

such as K-means, Hierarchical Clustering, or DBSCAN can be

applied to group similar documents based on the extracted

high-level features [33]. K-means clustering [41] is a widely

used unsupervised clustering algorithm that partitions data

points into K clusters based on their similarity. In the context

239

of our contextual-based text clustering, the feature vectors

obtained from the pre-trained contextual models after PCA

reduction are utilized as input data points for clustering. The

k-means algorithm can be defined as follows:

(1) Initialization: Randomly select K cluster centroids from

the data points.

(2) Assignment: Allocate the data points with the closest

centroid.

(3) Update: Update all centroids by computing the data

points mean of them.

(4) Repeat: Continue with steps 2-3 until convergence is

achieved.

The Elbow Method [41] involves running K-Means for a

range of K values and calculating the sum of squared distances

(inertia) of data points to their assigned centroids for each K.

A plot of K against inertia is created, and the "elbow point"

where the inertia starts to level off is considered as the optimal

K. Silhouette analysis measures how similar each data point in

one cluster is to the data points in the same cluster compared

to the nearest neighboring cluster. For each K value, a

silhouette score is calculated, and the K that results in the

highest silhouette score is chosen as the optimal number of

clusters. In the case of k-means clustering, the distance

between two data points is frequently defined using the

Euclidean distance metric [41], which can be expressed as:

() ()
2

, ,

1

,
n

i j i k j k

k

d x x x x
=

= − (11)

In above context the 𝑥𝑖and 𝑥𝑗 are two data points, 𝑛 is the

dimensionality of the feature vectors (𝑋𝑅), 𝑥𝑖,𝑘 and 𝑥𝑗,𝑘 are the

corresponding ‘𝑘’ components of the obtained feature vectors

for 𝑥𝑖 and 𝑥𝑗 , respectively. The objective of k-means

clustering is to minimize the total sum of squared distances

between data points and the centroids to which they are

assigned, as expressed by the following equation:

()
2

1 1

,
N K

ij i j

i j

w d x c
= =

 (12)

where,‘ 𝑁 ’ is considered asthe count of data points, 𝐾 is

clusters count value, 𝑐𝑗 is the centroid of the 𝑗𝑡ℎ cluster, and

𝑤𝑖𝑗 = 1 , if data point 𝑥𝑖 is assigned to cluster 𝑗 , or 0

otherwise.The k-means algorithm converges when the cluster

assignments no longer change, i.e., the centroids no longer

move. The ideal number of clusters, denoted as K, can be

determined through techniques such as the elbow method or

silhouette analysis.

3.1.8 Document classification

After the k-means clustering [41] is performed on the lower-

dimensional feature vectors, the resulting clusters can be

treated as different classes or categories for document

classification. At this moment, we perform the document

classification process on each cluster by assigning a label to

the entire cluster. The best way to do this is by computing the

centroid [42] of each cluster and using it as a representative

vector for that cluster. Then, for each document in the cluster,

we can compute its similarity to the centroid vector using a

similarity metric such as cosine similarity. The similarity score

can be used to assign the document to the appropriate class.

The equation for computing the centroid vector for a cluster 𝐶

is:

1
centroid()

| |
i

i C

C X
c 

=  (13)

where, 𝐶 is considered as the documents count in the cluster,

and 𝑋𝑖 represents the feature vector of document 𝑖. Once the

centroid vector is computed, the comparison score amongst the

document 𝑋𝑖 and its centroid vector 𝒄𝐶 can be calculated using

cosine similarity:

()similarity , i
i

i

x
x

x


= C

C

C

c
c

c
 (14)

where, ‘.’ represents the dot product amongst the two vectors,

and ‘|.|’ represents the Euclidean model of a vector. Based on

the obtained similarity scores, we can assign each document in

the cluster to a class with the highest score. In this way the

total documents are classified based on the contained cluster

similarity scores.

4. EXPERIMENTAL ANALYSIS

Experimental evaluation plays a vital role in Deep

Contextual Embedding Models-based text clustering to assess

algorithm performance in accurately clustering text data. The

primary aim of the experimental evaluation is to identify the

optimal combination of contextual embedding models for text

clustering and document classification using the selected

datasets. The evaluation process is typically carried out on

various labeled datasets where the ground truth labels are

utilized to measure the clustering algorithm’s performance.

This section provides a step-wise description of the

experimental evaluation process.

4.1 Dataset selection

In this paper, the datasets used for text clustering are

generally collections of documents, which can be categorized

into various domains and topics. These datasets are utilized as

a benchmark to evaluate and compare the performance of the

proposed deep contextual models with their counterparts in

terms of clustering accuracy, efficiency, and reliability.

Several publicly available datasets are used in this text

clustering research are the AG News dataset [43], Reuters-

21578 [44] dataset and the IMDB reviews [45] dataset. While

selecting these datasets we have considered the research

problem relevance, accessibility, volume and complexity.

Additionally, the quality of the data, including its cleanliness

and representativeness of the real-world data, should be taken

into account when selecting a dataset.

4.2 Clustering and classification metrics

Evaluation metrics are crucial in measuring the

effectiveness of the clustering algorithm in accurately

grouping the text data and improving the overall classification

accuracy. In our experiments, multiple metrics are employed

to assess the performance of text clustering algorithms,

including: Silhouette score [46], Calinski-Harabasz index [47],

Davies-Bouldin index [48], Homogeneity [49], Completeness

[50] and Normalized mutual information [51].

Silhouette score (SIL) [46] is a widely used metric for

evaluating the quality of clustering algorithms. A higher

240

Silhouette score indicates better clustering performance. The

Silhouette score '𝑆𝑖𝑙(𝑚)' is calculated as variance among the

mean proximity to the closest cluster and the mean proximity

to all other clusters divided by the maximum of these two

values. The formula to evaluate the ‘𝑆𝑖𝑙(𝑚)’ is:

() avg()
Sil()

max(avg(), ())

bw m m
m

m bw m

−
= (15)

In above equation, ‘𝑚’ represents a sample, denotes the

average distance 𝑎𝑣𝑔(𝑚) between ‘𝑚 ’ and the remaining

points of the cluster, and represents the average distance

between ‘𝑚 ’ and the remaining points in the next closest

cluster. 𝑆𝑖𝑙(𝑚) can be vary from -1 to 1, with a score of -1

denoting erroneous clustering, a score of 0 denoting

overlapping clusters, and a score of 1 denoting dense, well-

separated clusters. Better clustering performance is thought to

be indicated by a score that is higher and closer to 1.

Calinski-Harabasz Index (CHI) [47] or Variance Ratio

Criterion, as a measure of clustering quality, is used in our

evaluation. For all clusters, it measures the proportion of

between-cluster variation to within-cluster variance, with a

higher value indicating improved clustering. The

mathematical definition is as follows:

()
()

()
1

n

n

T bw m n
CHI n X

T in n

−
=

−
 (16)

where, ‘𝑚’ is the number of data points, ‘𝑛’ is the total number

of clusters, 𝑇(𝑏𝑤𝑛) is the trace off between-cluster scatter

matrix, and 𝑇(in𝑛) is the trace off within-cluster scatter matrix.

The ‘CHI(𝑛)’ has a range of 0 to ∞, with a bigger value

indicating more successful clustering.

Davies-Bouldin Index (DBI) [48] is a popular tool for

assessing the effectiveness of clustering. It calculates the

average degree of similarity between each cluster and its

closest neighbor, taking the cluster's size into account. It is

defined as:

1
*tot m n

m

m

bw bw
DBI

N G n

 + 
=   
   

 (17)

where, n is the total number of clusters,
mbw is the average

distance between data points inside a cluster 𝑚 and its centroid,

and 𝐺𝑚𝑛 is the separation between cluster centroids of 𝑚 and

𝑛. The range of DBI scores is in ‘0’ to ‘∞’, where‘0’ indicating

perfect clustering, and higher values indicating poorer

clustering.

Homogeneity(HG) [49] is the degree to which measures the

data points in each cluster accurately correspond to a single

class. It is expressed as a score between 0.0 and 1.0, with a

higher score indicating more homogeneous labeling of clusters.

The mathematical formula to compute homogeneity score is

as follows:

()
1

()

H C K
HG

H C

  
= −  

  

∣
(18)

In the given equation, H(C|K) represents the conditional

entropy of the class labels given the cluster assignments, while

H(C) denotes the entropy of the class labels.

Completeness (COMP) [50] is a text clustering statistic that

measures how evenly all members of a class are distributed

among clusters. The equation for completeness is:

()
()

2

2

mn

m

Q
COMP

Q
=



 (19)

where, 𝑄𝑚𝑛 denotes the count of points in class ‘𝑚’ are also

appears in cluster 𝑛, and 𝑄𝑚 is the count of points in class ‘𝑚’.

The completeness resulting score is always between 0 and 1, a

higher completeness score indicates improved clustering

performance.

Normalized Mutual Information (NMI) [51] is another

often used clustering assessment metric is normalized mutual

information, which calculates the mutual information between

the true class labels and the predicted clusters, standardized by

the value of the entropy of the class labels and the value

of entropy of the predicted clusters is defined as:

()true pred / 2

MI
NMI

H H

 
 =

+  

 (20)

where, 𝑀𝐼 is the mutual information between the true class

labels and the predicted clusters, 𝐻true is the entropy of the true

class labels, and 𝐻pred is the entropy of the predicted clusters.

Apart from this text clustering metrics, we used the Accuracy,

Precision, Recall and F1-Score as the classification metrics to

evaluate the performance of document.

4.3 Experimental setup

To test the selected datasets (AG News dataset, Reuters-

21578 dataset and the IMDB reviews dataset) using Python

prototypes, an optimal hardware setup with at least 32 GB

RAM, a quad-core processor, and a GPU with at least 16 GB

VRAM is configure to run the Deep Contextual Embedding

Models. Python 3.6 or higher, PyTorch 1.6 or higher,

Transformers library, NumPy, pandas, and scikit-learn are

selected to design the proposed model.The experiments are

evaluated from a local machine connected to the cloud-based

platforms such as Google Colab or AWS EC2 instance with

similar hardware specifications. Additionally, to ensure

accurate results, it is preferred to fit the deep models on high

volume data and tune the hyper-parameters using a validation

set.

4.4 Comparative analysis

Recently, deep learning models have shown promising

results in deep text clustering with syntax and semantics. In

this comparative analysis, we will evaluate the performance of

different text clustering algorithms such as Agglomerative

Hierarchical Clustering (AHC) [52], Density-Based Spatial

Clustering (DBSC) [53], Mean Shift Clustering (MSC) [54],

Spectral Clustering(SC) [55], DBSCAN and KM, where each

usinga different deep learning models such as Language

Models (LM) [56], LatentDirichlet allocation (LDA) [57],

Recurrent Neural Network (RNN) [58] and CNNs [45].

241

Specifically, the results of various deep contextual models

such as LM+AHC, LDA+DBSCAN, CNN+KM, RNN+MSC,

BERT+SC, DCEM (GPT2)+DBSCAN, and DCEM

(GPT2)+KM are planned to evaluate and compare. The main

objective of this comparative analysis is to detect which

combination produces the high performance under various

metrics such as SIL, CHI, DBI, HG, COMP and NMI. We

selected the AG News, IMDB Reviews and Reuters-21578

benchmark datasets, to conduct the experiments with selected

deep learning models and metrics. Tables 1-3 are presenting

the obtained results from various deep text clustering models

on three selected datasets.

For the AG News dataset, DCEM (GPT2) with KM

performs the best, with a SIL score of 0.82, CHI of 37656, DBI

of 0.17, HG of 0.78, COMP of 0.79, and NMI of 0.79.On the

IMDB Reviews dataset, the best-performing model is DCEM

(GPT2)+DBSCAN, with a SIL score of 0.63, CHI of 86921,

DBI of 0.22, HG of 0.72, COMP of 0.68, and NMI of 0.54.On

the Reuters-21578 dataset, DCEM (GPT2) with KM again

performs the best, with a SIL score of 0.82, CHI of 19957, DBI

of 0.18, HG of 0.72, COMP of 0.64, and NMI of 0.69. Finally

the deep text clustering models that incorporate pre-trained

language models such as GPT2 and BERT generally

outperform traditional machine learning models like CNN and

RNN, as well as unsupervised clustering algorithms like

DBSCAN and KM, on all three datasets.

In order to showcase the overall clustering performance of

various models, the averages are evaluated at each metric is

shown in Table 4 and the same visualized in Figure 2.

The averaged results show that DCEM (GPT2)+KM

algorithm has the highest performance for all metrics. Both

DCEM (GPT2)+DBSCAN and DCEM (GPT2)+KM, which

are based on GPT2, achieve the highest performance in terms

of all metrics compared to other models. BERT+SC and

LM+AHC also showed good performance for most of the

metrics. However, LDA+DBSC, CNN+KM, and RNN+MSC

showed lower performance compared to other models. Finally,

the results obtained from the deep learning-based clustering

algorithms, such as DCEM (GPT2)+KM and DCEM

(GPT2)+DBSCAN, are promising methods for clustering

tasks. These results are assuring the higher accuracy in

clustering and documentation using the deep embedding

contextual models.

We evaluated that why the DCEM(GPT2)+KM generated

lower metric values on IMDB dataset compared to the Reuters

and AG News datasets can be attributed to several valid

reasons: i) The IMDB dataset consists of movie reviews,

which may be more diverse and complex in terms of language,

sentiment, and topics compared to the news articles in Reuters

and AG News datasets, making it harder to cluster accurately.

ii) Movie-related terms, names, and phrases used in IMDB

reviews may not be as well-suited for general-purpose word

embeddings like GPT-2, leading to difficulties in capturing

contextual information effectively.

As discussed in previous section, to classify the documents

after clustering, centroid of each cluster can be computed and

used as a representative vector for the cluster. Similarity

between the centroid vector [42] and each document in the

cluster can be measured using a similarity metric such as

cosine similarity. The document can be assigned to the

relevant class based on the highest similarity score. There are

several widely used metrics for evaluating the performance of

document classification, including Accuracy, Precision,

Recall, and F1-Score. After classifying the three datasets, the

unified metrics obtained from each contextual model are

presented in Table 5. The results from Table 5 show that, the

performance of different deep contextual models for document

classification using various metrics. The DCEM (GPT2) based

contextual model outperformed other models (Figures 2-3)

with an accuracy of 81.09% for DCEM (GPT2)+KM and

76.47% for DCEM (GPT2)+DBSCAN. These models also

showed higher precision and F1 scores compared to other

models. BERT+SC also performed well with an accuracy of

72.55%. However, LM+AHC showed lower accuracy than

other models, but it still achieved an accuracy of 68.22%. The

results suggest that the use of Deep Contextual Embedding

Models can improve the accuracy of document classification

using text clustering algorithms.A limitation we find from the

results evaluation is the need for ample labeled data for

effective deep contextual model training, which is challenging

in domains with limited labeled data. Evaluation assumes

ground truth labels, not always present in real-world scenarios,

affecting performance assessment.

Table 1. Experimental results of various deep text clustering models on AG News dataset

AG News

 SIL CHI DBI HG COMP NMI

LM+AHC 0.33 23040 0.46 0.67 0.51 0.47

LDA+DBSC 0.42 27612 0.34 0.51 0.49 0.34

CNN+KM 0.49 28626 0.49 0.57 0.43 0.43

RNN+MSC 0.61 24856 0.34 0.62 0.59 0.59

BERT+SC 0.65 35109 0.24 0.74 0.66 0.66

DCEM (GPT2)+DBSCAN 0.71 37792 0.22 0.81 0.69 0.69

DCEM (GPT2)+KM 0.82 37656 0.17 0.78 0.79 0.79

Table 2. Experimental results of various deep text clustering models on IMDB Reviews dataset

IMDB Reviews

 SIL CHI DBI HG COMP NMI

LM+AHC 0.54 72992 0.59 0.42 0.49 0.38

LDA+DBSC 0.57 73507 0.31 0.44 0.56 0.49

CNN+KM 0.49 65839 0.37 0.57 0.62 0.53

RNN+MSC 0.56 57168 0.34 0.51 0.58 0.43

BERT+SC 0.61 80750 0.32 0.65 0.61 0.49

DCEM (GPT2)+DBSCAN 0.63 86921 0.22 0.72 0.68 0.54

DCEM (GPT2)+KM 0.62 86608 0.24 0.74 0.64 0.56

242

Table 3. Experimental results of various deep text clustering models on Reuters dataset

Reuters-21578
 SIL CHI DBI HG COMP NMI

LM+AHC 0.56 12211 0.47 0.32 0.45 0.32

LDA+DBSC 0.73 14634 0.43 0.66 0.52 0.64

CNN+KM 0.51 15171 0.51 0.41 0.51 0.41

RNN+MSC 0.64 13173 0.43 0.33 0.29 0.38

BERT+SC 0.69 18607 0.24 0.65 0.59 0.62

DCEM (GPT2)+DBSCAN 0.78 20029 0.21 0.69 0.57 0.58

DCEM (GPT2)+KM 0.82 19957 0.18 0.72 0.64 0.69

Table 4. Average performance metrics of various deep text clustering models on three datasets

 SIL DBI HG COMP NMI

LM+AHC 0.48±0.13 0.51±0.07 0.47±0.15 0.48±0.06 0.39±0.16

LDA+DBSC 0.57±0.15 0.36±0.06 0.54±0.12 0.52±0.05 0.49±0.15

CNN+KM 0.50±0.02 0.46±0.09 0.52±0.08 0.52±0.09 0.46±0.06

RNN+MSC 0.60±0.06 0.37±0.06 0.49±0.16 0.49±0.14 0.47±0.10

BERT+SC 0.65±0.03 0.27±0.06 0.68±0.05 0.62±0.04 0.59±0.10

DCEM(GPT2)+DBSCAN 0.71±0.08 0.24±0.02 0.72±0.07 0.65±0.07 0.60±0.14

DCEM (GPT2)+KM 0.75±0.09 0.20±0.03 0.75±0.05 0.69±0.08 0.68±0.10

Table 5. Performance Metrics of document classification models

 Accuracy Precision Recall F1_Score

LM+AHC 68.22% 71.15% 68.52% 69.81%

LDA+DBSC 59.17% 60.00% 63.46% 61.68%

CNN+KM 63.02% 69.23% 63.16% 66.06%

RNN+MSC 57.74% 64.81% 59.32% 61.95%

BERT+SC 72.55% 73.91% 68.02% 70.83%

DCEM (GPT2)+DBSCAN 76.47% 78.72% 72.55% 75.51%

DCEM (GPT2)+KM 81.09% 84.12% 79.15% 81.55%

Figure 2. Visualization of the clustering performance of various deep text clustering models

Figure 3. Visualization of the classification performance of various deep contextual models

243

5. CONCLUSION

The key objectives of this study were to improve text

clustering and document classification accuracy by integrating

pre-trained Deep Contextual Embedding Models (DCEMs)

like GPT-2 with clustering algorithms. The methods involved

generating contextual embeddings, applying multi-head self-

attention, and dimensionality reduction. The overall findings

demonstrated that the integrated approach outperformed

traditional methods, achieving higher accuracy in text

clustering and document classification on datasets like AG

News, Reuters-21578, and IMDB reviews.

These findings from the experimental evaluation offer

valuable insights into the effectiveness of various

combinations of contextual embedding models for text

clustering and document classification, which can be used to

enhance the performance of text clustering algorithms.

Experiments proven that, the ability of DCEM based

clustering algorithms are effectively captured the semantic

information in text data, coupled with the power of deep

learning techniques, make them a potent tool for clustering and

classification tasks in various domains.

A potential future research direction is to explore semi-

supervised or unsupervised methods that reduce the reliance

on large labeled datasets for deep contextual model training.

Another direction is to investigate the potential benefits of

incorporating domain-specific knowledge into Deep

Contextual Embedding Models to improve their performance

on domain-specific text data.

REFERENCES

[1] Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E.,

Fraternali, P., Quarteroni, S. (2013). An introduction to

information retrieval. Web Information Retrieval, 3-11.
https://doi.org/10.1007/978-3-642-39314-3_1

[2] Salton, G., Buckley, C. (1988). Term-weighting

approaches in automatic text retrieval. Information

Processing & Management, 24(5): 513-523.

https://doi.org/10.1016/0306-4573(88)90021-0

[3] Aggarwal, C.C., Zhai, C. (2012). A survey of text

clustering algorithms. In: Aggarwal, C., Zhai, C. (eds)

Mining Text Data. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4614-3223-4_4

[4] Zhang, Y., Jin, R., Zhou, Z.H. (2010). Understanding

bag-of-words model: A statistical framework.

International Journal of Machine Learning and

Cybernetics, 1: 43-52. https://doi.org/10.1007/s13042-

010-0001-0

[5] Miles, S., Yao, L., Meng, W., Black, C.M., Miled, Z.B.

(2022). Comparing PSO-based clustering over

contextual vector embeddings to modern topic modeling.

Information Processing & Management, 59(3): 102921.

https://doi.org/10.1016/j.ipm.2022.102921

[6] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv Preprint arXiv:

1810.04805. https://doi.org/10.48550/arXiv.1810.04805

[7] Keskar, N.S., McCann, B., Varshney, L.R., Xiong, C.,

Socher, R. (2019). Ctrl: A conditional transformer

language model for controllable generation. arXiv

Preprint arXiv: 1909.05858.

https://doi.org/10.48550/arXiv.1909.05858

[8] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,

Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.

(2019). Roberta: A robustly optimized bert pretraining

approach. arXiv Preprint arXiv: 1907.11692.

https://doi.org/10.48550/arXiv.1907.11692

[9] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D. (2020).

Electra: Pre-training text encoders as discriminators

rather than generators. arXiv Preprint arXiv: 2003.10555.

https://doi.org/10.48550/arXiv.2003.10555

[10] Veyseh, A.P.B., Lai, V., Dernoncourt, F., Nguyen, T.H.

(2021). Unleash GPT-2 power for event detection. In

Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language

Processing, 1: 6271-6282.

https://doi.org/10.18653/v1/2021.acl-long.490.

[11] Liang, H., Sun, X., Sun, Y., Gao, Y. (2017). Text feature

extraction based on deep learning: a review. EURASIP

Journal on Wireless Communications and Networking,

2017(1): 1-12.. https://doi.org/10.1186/s13638-017-

0993-1

[12] Seifollahi, S., Piccardi, M., Jolfaei, A. (2021). An

embedding-based topic model for document

classification. Transactions on Asian and Low-Resource

Language Information Processing, 20(3): 1-13..

https://doi.org/10.1145/3431728

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.

(2017). Attention is all you need in Advances in neural

information processing systems. Search PubMed, 5998-

6008. https://doi.org/10.48550/arXiv.1706.03762

[14] Wei, C.P., Yang, C.S., Hsiao, H.W. (2008). A

collaborative filtering-based approach to personalized

document clustering. Decision Support Systems, 45(3):

413-428. https://doi.org/10.1016/j.dss.2007.05.008

[15] Li, X., Roth, D. (2002). Learning question classifiers.

COLING '02: Proceedings of the 19th international

conference on Computational linguistics 1: 1-7.

https://doi.org/10.3115/1072228.1072378

[16] Wong, W., Tsuchiya, N. (2020). Evidence accumulation

clustering using combinations of features. MethodsX, 7:

100916. https://doi.org/10.1016/j.mex.2020.100916

[17] Mohammed, A.J., Yusof, Y., Husni, H. (2015).

Document clustering based on firefly algorithm. Journal

of Computer Science, 11(3): 453-465.

https://doi.org/10.3844/jcssp.2015.453.465

[18] Karol, S., Mangat, V. (2013). Evaluation of text

document clustering approach based on particle swarm

optimization. Open Computer Science, 3(2): 69-90.

https://doi.org/10.2478/s13537-013-0104-2

[19] Silva Filho, T.M., Pimentel, B.A., Souza, R.M., Oliveira,

A.L. (2015). Hybrid methods for fuzzy clustering based

on fuzzy c-means and improved particle swarm

optimization. Expert Systems with Applications, 42(17-

18): 6315-

6328.https://doi.org/10.1016/j.eswa.2015.04.032

[20] Veremyev, A., Semenov, A., Pasiliao, E.L., Boginski, V.

(2019). Graph-based exploration and clustering analysis

of semantic spaces. Applied Network Science, 4: 1-26.

https://doi.org/10.1007/s41109-019-0228-y

[21] Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang,

L., Feng, X. (2020). Deep feature-based text clustering

and its explanation. IEEE Transactions on Knowledge

and Data Engineering, 34(8): 3669-3680..

https://doi.org/10.1109/TKDE.2020.3028943.

244

[22] Naseem, U., Razzak, I., Musial, K., Imran, M. (2020).

Transformer based deep intelligent contextual

embedding for twitter sentiment analysis. Future

Generation Computer Systems, 113: 58-69.

https://doi.org/10.1016/j.future.2020.06.050

[23] Tan, Z., Chen, J., Kang, Q., Zhou, M., Abusorrah, A.,

Sedraoui, K. (2021). Dynamic embedding projection-

gated convolutional neural networks for text

classification. IEEE Transactions on Neural Networks

and Learning Systems, 33(3): 973-982.

https://doi.org/10.1109/TNNLS.2020.3036192

[24] Mehta, V., Bawa, S., Singh, J. (2021). WEClustering:

Word embeddings based text clustering technique for

large datasets. Complex & Intelligent Systems, 7: 3211-

3224. https://doi.org/10.1007/s40747-021-00512-9

[25] Ravi, J., Kulkarni, S. (2023). Text embedding techniques

for efficient clustering of twitter data. Evolutionary

Intelligence, 1-11. https://doi.org/10.1007/s12065-023-

00825-3

[26] Zhang, X., Li, Y., Wang, B., Li, M. (2021). A survey on

model-based text clustering algorithms. Applied

Sciences, 11(5): 2402.

https://doi.org/10.3390/app11052402

[27] Xu, D., Tian, Y. (2015). A comprehensive survey of

clustering algorithms. Annals of Data Science, 2: 165-

193. https://doi.org/10.1007/s40745-015-0040-1

[28] Zhang, X., Chen, X., Feng, Y., Liu, F. (2020). Deep

learning based text clustering: A comprehensive review.

ACM Transactions on Intelligent Systems and

Technology (TIST), 11(2): 1-32.

https://doi.org/10.1145/3384743

[29] Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.

(2018). A survey of clustering with deep learning: From

the perspective of network architecture. IEEE Access, 6:

39501-39514.

https://doi.org/10.1109/ACCESS.2018.2855437

[30] Mudassar, S., Muhammad, K., Mahmood, T., Ahmad, I.,

Afzal, H. (2021). Deep learning for text clustering: A

comprehensive review. IEEE Access, 9: 5504-5544.

https://doi.org/10.1109/ACCESS.2020.3045989

[31] Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A.,

Lin, Y. (2018). Deep k-means: Re-training and parameter

sharing with harder cluster assignments for compressing

deep convolutions. In International Conference on

Machine Learning. PMLR, pp. 5363-5372.

https://doi.org/10.48550/arXiv.1806.09228

[32] Shi, T., Liu, Z. (2014). Linking GloVe with word2vec.

arXiv Preprint arXiv: 1411.5595.

https://doi.org/10.48550/arXiv.1411.5595

[33] Aggarwal, C.C., Zhai, C. (2012). A survey of text

clustering algorithms. Mining Text Data, 77-128.
https://doi.org/10.1007/978-1-4614-3223-4_4

[34] Kadhim, A.I., Cheah, Y.N., Ahamed, N.H. (2014). Text

document preprocessing and dimension reduction

techniques for text document clustering. In 2014 4th

International Conference on Artificial Intelligence With

Applications in Engineering and Technology, IEEE,

Kota Kinabalu, Malaysia, pp. 69-73.

https://doi.org/10.1109/ICAIET.2014.21

[35] Shao, T., Guo, Y., Chen, H., Hao, Z. (2019).

Transformer-based neural network for answer selection

in question answering, IEEE Access, 7: 26146-26156.

https://doi.org/10.1109/ACCESS.2019.2900753

[36] Selva Birunda, S., Kanniga Devi, R. (2021). A review on

word embedding techniques for text classification.

Innovative Data Communication Technologies and

Application: Proceedings of ICIDCA 2020: 267-281.
https://doi.org/10.1007/978-981-15-9651-3_23

[37] Chen, P.C., Tsai, H., Bhojanapalli, S., Chung, H.W.,

Chang, Y.W., Ferng, C.S. (2021). A simple and effective

positional encoding for transformers. arXiv Preprint

arXiv: 2104.08698.

https://doi.org/10.48550/arXiv.2104.08698

[38] Sharaf Al-deen, H.S., Zeng, Z., Al-sabri, R., Hekmat, A.

(2021). An improved model for analyzing textual

sentiment based on a deep neural network using multi-

head attention mechanism. Applied System Innovation,

4(4): 85. https://doi.org/10.3390/asi4040085

[39] Migenda, N., Möller, R., Schenck, W. (2021). Adaptive

dimensionality reduction for neural network-based

online principal component analysis. PloS One, 16(3):

e0248896. https://doi.org/10.1371/journal.pone.0248896

[40] Devassy, B.M., George, S. (2020). Dimensionality

reduction and visualisation of hyperspectral ink data

using t-SNE. Forensic Science International, 311:

110194. https://doi.org/10.1016/j.forsciint.2020.110194

[41] Cui, M. (2020). Introduction to the k-means clustering

algorithm based on the elbow method. Accounting,

Auditing and Finance, 1(1): 5-8.

https://dx.doi.org/10.23977/accaf.2020.010102

[42] Abualigah, L., Gandomi, A.H., Elaziz, M.A., Hamad,

H.A., Omari, M., Alshinwan, M., Khasawneh, A.M.

(2021). Advances in meta-heuristic optimization

algorithms in big data text clustering. Electronics, 10(2):

101. https://doi.org/10.3390/electronics10020101

[43] Zhang, X., Zhao, J., LeCun, Y. (2015). Character-level

convolutional networks for text classification. Advances

in Neural Information Processing Systems, 28.

https://doi.org/10.48550/arXiv.1509.01626

[44] Lewis, D.D. (1997). Reuters-21578 text categorization

test-collection. https://doi.org/10.24432/C52G6M

[45] Yenter, A., Verma, A. (2017). Deep CNN-LSTM with

combined kernels from multiple branches for IMDb

review sentiment analysis. In 2017 IEEE 8th Annual

Ubiquitous Computing, Electronics and Mobile

Communication Conference (UEMCON), New York,

NY, USA, pp. 540-546.

https://doi.org/10.1109/UEMCON.2017.8249013

[46] Shahapure, K.R., Nicholas, C. (2020). Cluster quality

analysis using silhouette score. In 2020 IEEE 7th

International Conference on Data Science and Advanced

Analytics (DSAA), IEEE, Sydney, NSW, Australia, pp.

747-748.

https://doi.org/10.1109/DSAA49011.2020.00096

[47] Wang, X., Xu, Y. (2019). An improved index for

clustering validation based on Silhouette index and

Calinski-Harabasz index. In IOP Conference Series:

Materials Science and Engineering. IOP Publishing,

569(5): 052024. https://doi.org/10.1088/1757-

899X/569/5/052024

[48] Xiao, J., Lu, J., Li, X. (2017). Davies bouldin index based

hierarchical initialization K-means. Intelligent Data

Analysis, 21(6): 1327-1338.

https://doi.org/10.3233/IDA-163129

[49] Dubes, R.C., Zeng, G. (1987). A test for spatial

homogeneity in cluster analysis. Journal of Classification,

4: 33-56. https://doi.org/10.1007/BF01890074

[50] Yu, Y., Ren, J., Zhang, Q., Yang, W., Jiao, Z. (2020).

245

Research on tire marking point completeness evaluation

based on k-means clustering image segmentation.

Sensors, 20(17): 4687.

https://doi.org/10.3390/s20174687

[51] Knops, Z.F., Maintz, J.A., Viergever, M.A., Pluim, J.P.

(2006). Normalized mutual information based

registration using k-means clustering and shading

correction. Medical Image Analysis, 10(3): 432-439.

https://doi.org/10.1016/j.media.2005.03.009

[52] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A.

(2015). Efficient agglomerative hierarchical clustering.

Expert Systems with Applications, 42(5): 2785-2797.

https://doi.org/10.1016/j.eswa.2014.09.054

[53] Liu, Q., Deng, M., Shi, Y., Wang, J. (2012). A density-

based spatial clustering algorithm considering both

spatial proximity and attribute similarity. Computers &

Geosciences, 46: 296-309.

https://doi.org/10.1016/j.cageo.2011.12.017

[54] Carreira-Perpinán, M.A. (2015). A review of mean-shift

algorithms for clustering. arXiv Preprint arXiv:

1503.00687. https://doi.org/10.48550/arXiv.1503.00687

[55] Mokshin, V., Yakupov, D., Yakhina, Z. (2021).

Comparison of spectral clustering methods for graph

models of pipeline systems. In 2021 International

Russian Automation Conference (RusAutoCon), IEEE,

Sochi, Russian Federation, pp. 841-846.

https://doi.org/10.1109/RusAutoCon52004.2021.95374

94

[56] Irie, K., Zeyer, A., Schlüter, R., Ney, H. (2019).

Language modeling with deep transformers. arXiv

Preprint arXiv: 1905.04226.

https://doi.org/10.21437/Interspeech.2019-2225

[57] Blei, D.M., Ng, A.Y., Jordan, M.I. (2003). Latent

dirichlet allocation. Journal of Machine Learning

Research, 3(Jan): 993-1022.

https://doi.org/10.1145/34170564

[58] Irsoy, O., Cardie, C. (2014). Opinion mining with deep

recurrent neural networks. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language

Processing (EMNLP), Doha, Qatar, pp. 720-728.

http://dx.doi.org/10.3115/v1/D14-1080

NOMENCLATURE

Abbreviation Description

BERT
Bidirectional Encoder Representations from

Transformers

GPT-2 Generative Pre-trained Transformer 2

DBSCAN
Density-based spatial clustering of

applications with noise

AHC Agglomerative Hierarchical Clustering

NLP Natural Language Processing

DCEM Deep Contextual Embedding Models

LM Language Models

PCA Principal Component Analysis

t-SNE
t-Distributed Stochastic Neighbor

Embedding

CHI Calinski-Harabasz Index

DBI Davies-Bouldin Index

HG Homogenity

COMP Completeness

NMI Normalized Mutual Information

246

