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 Document classification, a fundamental process within the field of natural language 

processing, has benefitted from the recent advancements in deep learning, particularly in 

enhancing accuracy. Traditional text clustering methods, such as bag-of-words models, 

exhibit domain specificity and struggle to handle vast data volumes. They also face 

limitations in elucidating sophisticated patterns and intricate word and phrase relationships 

within textual data. These constraints may adversely affect the accuracy of text clustering, 

subsequently impacting downstream applications like information retrieval, document 

classification, and natural language processing. This paper proposes a novel text 

classification model, termed Deep Contextual Embeddings Model (DCEM), designed to 

improve document classification accuracy. The DCEM integrates pre-trained deep 

contextual embedding architectures (e.g., GPT-2) with text clustering algorithms (e.g., K-

Means). It employs contextual embedding models to enhance document clustering accuracy 

by capturing context and semantic depth, improving data structure comprehension, and 

eliminating noise for more precise results. Experimental results, derived from the 

application of DCEM on AG News, Reuters-21578, and IMDB reviews datasets, indicate a 

significant improvement in document classification accuracy (81.09%), compared to 

traditional text clustering and document classification methods. 

 

Keywords: 

Deep Contextual Embedding Models, text 

clustering algorithms, document 

classification, natuaral language processing 

and machine learning 

 

 

 

 
1. INTRODUCTION 

 

The field of Natural Language Processing (NLP) has 

garnered substantial attention in recent research, largely due to 

the advent of deep learning techniques. A central task within 

NLP is document classification, defined as the process of 

assigning categories to documents based on their respective 

contents or characteristics. Traditional text clustering methods, 

such as bag-of-words models, have historically been prevalent 

in achieving this task [1, 2]. However, these conventional 

approaches face limitations. They often struggle to detect 

sophisticated patterns and interdependencies within textual 

data, and typically exhibit domain specificity and an inability 

to handle large data volumes [3]. 

The constraints of traditional text clustering models become 

evident in real-world scenarios, such as the processing of 

customer feedback. Consider a company inundated with 

diverse customer feedback in the form of product reviews, 

customer service inquiries, and social media posts. Here, 

traditional text clustering methods, including bag-of-words 

models [4, 5], may fail to accurately group similar feedback 

due to inherent deficiencies in capturing context and meaning. 

For instance, when a customer review encapsulates both 

positive and negative aspects of a product, a bag-of-words 

model might categorize the feedback based on word frequency 

rather than capturing the holistic sentiment or meaning. This 

could potentially lead to misclassification, causing the 

company to overlook valuable insights. Recent advancements 

in deep learning have shown potential in surmounting these 

challenges by utilizing Deep Contextual Embedding Models 

(DCEMs) [6-9] for text representation. Through the 

integration of DCEMs, companies can more accurately discern 

the context and meaning of customer feedback, leading to 

improved categorization and, ultimately, superior 

understanding of customer sentiment and needs. These models 

generate embeddings that capture the contextual information 

of each word and phrase in a document, thereby enabling 

clustering algorithms to group similar documents with higher 

accuracy. 

In recent years, deep learning methodologies have 

demonstrated considerable potential in enhancing the accuracy 

of natural language processing tasks, including text clustering 

and document classification [10-12]. Notably, the pre-training 

of deep bidirectional transformers [6, 8], as epitomized by the 

BERT model proposed by Devlin et al. [6], has made 

significant strides in language understanding. Further, 

Convolutional Neural Networks (CNNs) have been 

extensively utilized for text categorization, capitalizing on 

word order to enhance performance [3]. Attention-based 

models, such as the Transformer model proposed by Vaswani 

et al. [13], have also demonstrated their efficacy in capturing 

intricate patterns and relationships within textual data. Despite 
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these advancements, traditional text clustering methods, such 

as bag-of-words models, retain their prevalence across various 

domains, although their limitations in capturing contextual 

information and managing extensive data volumes are well 

documented [11]. 

The primary objective of this research is to devise an 

innovative deep contextual embedding model to address the 

constraints of existing contextual models and enhance the 

accuracy of deep text clustering and document classification. 

The proposed methodology integrates pre-trained contextual 

models with clustering algorithms, aimed at augmenting the 

quality of clusters and document classification accuracy. 

High-level semantic features are extracted from text 

documents using pre-trained models and subsequently 

employed as input for clustering algorithms, thus grouping 

similar documents. This integration improves the capacity to 

capture the context and semantics of words and phrases, in 

addition to unravelling the underlying structure and 

relationships within the text data. Furthermore, it aids in the 

interpretation and understanding of latent representations in 

clustering, simultaneously identifying and eliminating noise 

and outliers, thereby leading to enhanced clustering 

performance. The novelty of this research paper lies in its 

integration of pre-trained Deep Contextual Embedding 

Models (such as GPT-2) with traditional clustering algorithms 

(e.g., K-Means, DBSCAN), thereby improving text clustering 

and document classification accuracy and effectively 

addressing the limitations of conventional methods. 

In order to substantiate the proposed methodology, a series 

of experiments were undertaken utilizing several publicly 

accessible datasets, including AG News, Reuters-21578, and 

IMDB reviews. The datasets were selected based on several 

criteria such as relevance, accessibility, volume, complexity, 

cleanliness, and their representative nature of real-world data. 

The effectiveness of text clustering algorithms and 

document classification accuracy was assessed using a variety 

of performance metrics. These included the Silhouette score, 

Calinski-Harabasz index, Davies-Bouldin index, 

Homogeneity, Completeness, Normalized mutual information, 

Accuracy, Precision, Recall, and F1-Score. This assessment 

was conducted on several labeled datasets with ground truth 

labels to evaluate the performance of the clustering algorithm. 

Such experimental evaluation proved pivotal in determining 

the optimal combination of contextual embedding models for 

text clustering and document classification accuracy. 

The proposed methodology has potential implications 

across several domains, including data analysis, information 

extraction, and target recommendation systems. By integrating 

Deep Contextual Embedding Models (DCEMs) with text 

clustering algorithms, it is anticipated that the efficiency and 

accuracy of downstream NLP tasks can be significantly 

enhanced. In summary, this research represents a significant 

progression in the field of document classification, 

highlighting the potential utility of employing DCEMs for a 

range of NLP applications. 

 

 

2. LITERATURE SURVEY 

 

This section undertakes a comprehensive survey of the 

existing literature, with a specific focus on identifying the 

limitations of traditional text clustering methods and 

discussing the advancements in Deep Contextual Embedding 

Models. 

2.1 Traditional methods 

 

An extensive survey of text clustering algorithms, inclusive 

of traditional and deep learning-based methodologies, is 

provided by Liang et al. [11]. Their study underscored the 

limitations of conventional methods, such as the inability to 

extract textual semantics and their suboptimal accuracy in 

classification tasks. 

Meanwhile, Wei et al. [14] propose a novel model for text 

document clustering, leveraging term frequency-inverse 

document frequency (TF-IDF) weighting and cosine similarity 

[15]. While this approach was observed to surpass basic 

clustering methods, it failed to account for the semantic 

meaning of words. 

A traditional text clustering algorithm integrating evidence 

accumulation clustering and concept generation is proposed by 

Wong et al. [16]. Despite its innovative approach, it was noted 

that the method required a large number of parameters and was 

heavily reliant on a fixed set of predefined concepts. 

In a distinct approach, Mohammed et al. [17] propose a text 

document clustering methodology utilizing the firefly 

algorithm. Although it was found to outperform general 

clustering algorithms, the model necessitated the tuning of 

several parameters. 

Karol et al. [18] presented a text clustering method that 

amalgamates fuzzy clustering with particle swarm 

optimization (PSO) [19]. Despite surpassing traditional 

clustering methods in terms of accuracy, stability, and 

robustness, this method was found to be computationally 

demanding and required the tuning of multiple parameters. 

 

2.2 Deep contextual embedding methods 

 

The literature review underscores a critical gap, namely, the 

disregard for semantic meaning of words [2-5] in several of 

the methods reviewed. Recent scholarly endeavors have 

concentrated on deep learning-based strategies [11, 12] and 

alternative techniques such as topic modeling and graph-based 

clustering [20]. Deep Contextual Embedding Models [6-9] 

have emerged as a promising avenue for text clustering, 

delivering state-of-the-art results. 

An enhanced text clustering algorithm utilizing Deep 

Contextual Embedding Models with attention mechanisms is 

introduced by Wei et al. [21]. Notably, this approach 

contributes to the improvement of cluster quality and stability. 

Subsequently, Zhang et al. [22] presented a novel text 

clustering technique rooted in Deep Contextual Embedding 

Models, employing a self-attention mechanism to enhance 

clustering accuracy. 

A fresh deep contextual embedding model for text 

clustering is put forth by Tan et al. [23]. This model, 

leveraging a sparse auto-encoder and a skip-gram model, 

displays improved clustering accuracy compared to 

conventional methodologies. Mehta et al. [24] proposed a 

unique text clustering approach using Deep Contextual 

Embedding Models and word mover’s distance (WMD), 

demonstrating superior clustering accuracy than traditional 

clustering algorithms. By incorporating contextual 

information and a feature selection algorithm, Ravi and 

Kulkarni [25] succeeded in enhancing text clustering 

performance using Deep Contextual Embedding Models. 

They utilized a regularization technique to tackle the challenge 

of high dimensionality inherent in text data. 

In 2019, a novel language model titled Conditional 
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Transformer Language Model (CTRL) was introduced by 

Keskar et al. [7]. CTRL's distinct ability to generate text based 

on user-defined attributes, offering nuanced control over style, 

tone, and content, renders it a suitable model for various NLP 

tasks like text classification, summarization, and query-

response. This stands in contrast to previous language models 

that were limited to text generation. In the same year, Devlin 

et al. [6] presented BERT, a pre-trained deep bidirectional 

transformer model. The study exhibited BERT's superior 

performance across multiple NLP tasks, establishing it as a 

state-of-the-art model. 

ROBERTa, introduced by Liu et al. [8] in 2019, is trained 

on a substantial volume of input data using an approach similar 

to BERT. However, the use of larger batch sizes and more 

training data than BERT resulted in a higher-performing 

model. ELECTRA, a pre-training method for NLP developed 

by Google researchers [9], employs a generator-discriminator 

approach to pre-training text encoders, with the generator 

being a masked language model trained to predict masked 

tokens, similar to BERT [6]. 

This literature review underscores advancements in deep 

learning-based techniques for NLP tasks [6-9], such as text 

clustering and document classification. Although these models 

have advanced NLP tasks, they still exhibit limitations in 

capturing contextual information, handling dimensionality, 

domain dependency, and interpretability. The identification of 

these research gaps motivates the present study to improve the 

prominence of semantic meaning in text clustering algorithms 

and suggests potential avenues for future research. 

 

 

3. PROPOSED METHOD 

 

The novelty of our integrated approach lies in combining 

pre-trained Deep Contextual Embedding Models (e.g., GPT-2) 

with clustering algorithms (e.g., K-Means, DBSCAN) to 

effectively captures contextual information, improves 

clustering performance, and addresses the limitations of 

traditional methods, resulting in more accurate and context-

aware document analysis. 

Traditional text clustering methods, such as model based 

text clustering [26] and feature based text clustering [27], 

which struggle to accurately categorize and group similar 

feedback due to their limitations in extracting the context and 

meaning of words and phrases. To address the limitations of 

conventional text clustering methods in the realm of deep text 

clustering, pre-trained deep contextual models, such as BERT 

[6], GPT-2 [10], and RoBERTa [8] were introduced and they 

have shown remarkable success in deep text clustering. These 

models learn contextualized representations of words, which 

capture the meaning and context of words in a sentence or 

document. However, the standalone contextual models (i.e. 

BERT, GPT-2 and RoBERTa etc.) are having certain 

limitations when it comes to deep text clustering. Some of 

these limitations include: Lack of clustering and 

interpretability abilities, Ambiguity in capturing document 

similarities, Limited domain knowledge and ability to handle 

noise and outliers. 

In general, the standalone contextual models are designed 

for NLP tasks like text generation, classification, and 

sentiment analysis but not for deep text clustering on their own. 

Moreover the contextual model may produce latent 

representations in clustering, which are difficult to interpret 

and understand [28, 29]. As contextual models are trained on 

large amounts of generic data and they may not have specific 

domain knowledge relevant to the text being clustered, which 

leads to the suboptimal clustering results. The contextual 

models are optimized for generating coherent and fluent 

sentences and paragraphs in language modeling [30]. Hence 

they are unable to effectively handle the noise and outliers 

(irrelevant data points) in text data clustering. Due to the lack 

of a direct mechanism for modeling the document-level 

similarity [31], the contextual models may not be able to 

effectively capture the similarities between documents. 

To overcome the limitations of standalone contextual 

models, this paper proposes an integrated deep contextual 

embedding model, in which the pre-trained contextual models 

are integrated with clustering algorithms, to increase the 

cluster quality and document classification accuracy. In this 

method, pre-trained models [32] are employed to extract high-

level semantic features from text documentsand these 

extracted features are then used as input to the clustering 

algorithms [33] to group similar documents. Integration of 

clustering algorithms with pre-training contextual models will 

enhance the ability to capture the context and meaning of 

words and phrases along with the underlying structure and 

relationships in the text data. This integration will also help to 

interpret and understand the latent representations in clustering 

along with identifying and removing noise and outliers, 

leading to better clustering performance. The proposed model 

provides a more robust and generalizable approach to text 

clustering, reduces the need for manual feature engineering, 

and offers superior performance compared to traditional and 

standalone contextual text clustering models. 

 

3.1 Deep contextual text clustering model 

 

In the context of deep text clustering and document 

classification, the proposed model (Figure 1) for integrating 

pre-trained contextual models [6-8] with clustering algorithms 

is designed in several steps are: Dataset selection, Data pre-

processing, word embedding’s, Positional encoding, Semantic 

Features Extraction, Feature vector dimensionality reduction, 

Text clustering and Document classification. 

 

3.1.1 Data selection 

As part of the “Integration of pre-trained contextual models 

with clustering algorithms” project for deep text clustering and 

document classification, we selected the popular text datasets 

for experimentation and evaluation. 

Each dataset ‘ 𝐷 ’ comprises multiple 

documents {𝑑1, 𝑑2, 𝑑3 … 𝑑𝑛}  spanning different 

categories {𝑐1, 𝑐2, 𝑐3 … 𝑐𝑛} , making them widely used 

benchmarks in NLP research for text classification and 

clustering tasks. These datasets are particularly well-suited for 

evaluating the performance of text clustering and classification 

algorithms due to their extensive size and diverse range of 

topics. 

 

3.1.2 Pre-processing 

After dataset selection process, the next step involves in 

preprocessing the text data with respective techniques [34], 

which is crucial to increase the cluster quality and document 

classification accuracy in further steps. As part of this, the 

unwanted characters or symbols from the text data (i.e. 

punctuation marks, emojis, special characters, and HTML tags 

etc.) are removed using the regular expressions. To make 

simplify the clustering process, the input text data 𝑑𝑖  is 
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converted into the input token (i.e., individual words or 

phrases) sequences. Frequently occurring stop words (i.e. 

“the”, “and”, “is”, etc.) are eliminated and the unique words 

are stemmed from the input token sequences to reduce the 

processing complexity. 

 

 
 

Figure 1. Block diagram of the Deep Contextual Embedding Models based text clustering 

 

3.1.3 Word embedding 

After pre-processing, different techniques are used to 

convert the text (tokens) into numerical representations for 

clustering. In case of our pre-trained contextual models, the 

input token sequences are converted into the “word embedding 

vectors” using a transformer-based neural network [35]. word 

embedding vectors is to represent words and phrases in a 

continuous, semantically meaningful space. These word 

embeddings are essential for capturing contextual information, 

understanding the relationships between words, and enhancing 

the accuracy of text clustering and document classification 

tasks. They enable the integration of pre-trained deep 

contextual models with clustering algorithms, providing a 

foundation for improved document analysis. 

The word embedding’s [36] generated by the contextual 

models is used to extract high-level semantic features for text 

clustering and document classification. 

Let's take a sequence of words, denoted as 𝑊 =
{𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛} , where ‘𝑛 ’ represents the length of the 

sequence. Each word in the sequence is represented by a 𝑑 -

dimensional vector, denoted as, where 𝑑  represents the 

dimension of the embedding space. The embedding for 

the 𝑖𝑡ℎ word in the sequence is denoted as 𝑒𝑖 =
{𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3, … 𝑒𝑖𝑑}. 

 

3.1.4 Positional encoding 

In our approach, we incorporate the order of words in the 

input sequence by implementing positional encoding [37]. By 

employing this technique, we are able to encode details 

regarding the position of each token in the input text, which 

allows our model to capture the sequential information and 

contextual meaning of the words. The positional encoding is a 

vector that is added to the input embedding’s before they are 

fed into the multi-head attention mechanism. The formula for 

the positional encoding is: 

 

model 
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where, ′𝑖′ is the position of the word in the input sequence, ′𝑗′ 
is the index of the dimension in the embedding vector, and 

𝑑model  is the dimension of the embedding vector. This 

equation is to incorporate the positional encoding 𝑃𝐸(𝑖,𝑗) to the 

generated embedding’s for 𝑖𝑡ℎ  word and 𝑗𝑡ℎ  dimension is 

defined as: 

 

2 /
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(3) 

 

The positional encoding values are now added to the 

original embedding vector for each word to create the final 

embedding vectors, which has to be processed by the 

subsequent layers of the proposed model. 

At this moment, the contextual model has to generate a 

hidden state for each token in the input text, which captures 

the contextualized meaning [35] of the token based on its 

context within the sentence. For each token of the position 

encoded final embedded vector, our pre-trained contextual 
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model generates a sequence of hidden states, 𝐻 =
{ℎ1, ℎ2, ℎ3 … ℎ𝑛} , where each ℎ𝑖  is a 𝑑  -dimensional vector 

representing the hidden state at position‘𝑖’. The hidden states 

are generated by iteratively applying multi-head self-attention 

and feed-forward layers, with each layer utilizing the output of 

the previous layer to produce a more refined representation of 

the input text. 

 

3.1.5 Semantic features extraction 

When applying pre-trained contextual models [6, 9] in the 

context of deep text clustering with clustering algorithms [26], 

multi-head self-attention is utilized to capture the high-level 

semantic features of each word in the input text. The multi-

head attention mechanism [38] is considered as a type of the 

self-attention mechanism where instead of using a single set of 

learned matrices to generate queries, keys, and values, 

multiple sets of these matrices are used. The attention 

computation is performed multiple times in parallel, each time 

using a different set of matrices. The ultimate output is 

achieved by concatenating the results of each attention head 

and then passing them through a linear transformation. 

The pre-trained contextual model generates word 

embedding’s along with positional encodings, which are then 

fed as input to the multi-head self-attention layer.The word 

embedding’s (𝐸) in self-attention are fed through learnable 

weight matrices 𝑊𝑄 ,  𝑊𝐾 𝑎𝑛𝑑 𝑊𝑉 of the linear transformation 

to create the queries (𝑄), keys (𝐾), and values (𝑉) vectors as: 

 
* , * *Q K VQ W E K W E and V W E= = =  (4) 

 

These vectors are then split into multiple 

heads (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … ℎ𝑒𝑎𝑑𝑛), and each head computes the 

attention score between the queries and keys to obtain the 

attention weights. The output of each attention head is 

obtained by computing a weighted sum of the values using the 

attention weights. The hidden states produced by the multi-

head self-attention mechanism in our model can be 

represented as: 

 

1( , , ) ( ,.., ) O
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where, ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
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ℜ
ℎ𝑑∗𝑑𝑚𝑜𝑑 𝑒𝑙. 

In this equation, 𝑄, 𝐾, 𝑉 ∈ ℜ
𝑛𝑣

∗𝑑𝑚𝑜𝑑𝑒𝑙 represents the input 

query, key, and value matrices, where 𝑑𝑘  denotes the 

dimensions of the key and value vectors for each head, ‘𝑛’ 

represents the count of attention heads, and 𝑑model represents 

the dimensionality of the input embedding’s. Multi-head 

attention model is to capture complex semantic features and 

relationships within the text data. Multi-head attention allows 

the model to focus on different parts of the input text 

simultaneously, enabling it to extract diverse and informative 

contextual information. This is crucial for improving the 

performance of text clustering and document classification, as 

it helps in understanding the nuances, nuances, and subtle 

patterns in textual data, ultimately leading to more accurate 

results. In Multi-Head attention model the attention for each 

head is evaluated as: 

 

Attention( , , ) _
T

k

QK
Q K V soft max V

d

 
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 
 

 
(6) 

In this context, the dimensionality of the key vector is 

denoted as 𝑑𝑘, and a scaling factor √𝑑𝑘 is applied to prevent 

the dot product from becoming too large, which can impact the 

soft-max function. The soft-max function is then applied to the 

dot product of the query 𝑄  and key vectors 𝐾𝑇  along the 

second axis to obtain the attention weights. The resulting 

attention weights are then multiplied by the value matrix 𝑉 to 

obtain the final output. 

 

3.1.6 Feature vector dimensionality reduction 

The output of the contextual model may result in high-

dimensional feature vectors. To enhance computational 

efficiency and reduce the dimensionality of these vectors, 

dimensionality reduction techniques like Principal Component 

Analysis (PCA) [39] or t-Distributed Stochastic Neighbor 

Embedding (t-SNE) [40] can be employed. The choice of 

dimensionality reduction technique should depend on the data 

characteristics and analysis objectives. In this study, we have 

opted for the linear technique, and PCA is used for 

implementing the dimensionality reduction process. 

PCA is a widely used linear method for reducing 

dimensionality. It converts high-dimensional data into a 

lower-dimensional space while preserving the maximum 

possible variance in the data. This dimensionality reduction 

technique ensures that the clustering algorithms can operate 

more efficiently and effectively. The reduced feature vectors 

obtained through PCA can be used for further analysis such as 

clustering or classification. Let ‘ 𝑋 ’ be the original high-

dimensional feature vectors of shape (𝑛_samples, 𝑛_features). 

The initial process in PCA is to center the data ‘ 𝑋𝐶 ’ by 

subtracting the mean from each feature: 

 

( )CX X X= −  (7) 

 

After centering the data, the covariance matrix 𝑆 can be 

calculated with number of samples 𝑛  and mean of the 

centereddata 𝑋𝐶 as: 

 

( ) ( )
1

*
1

T

C CS X X
n

=
−

 (8) 

 

The eigenvectors (𝑣) and eigenvalues (𝜆) of the covariance 

matrix can be computed as: 

 
Sv v=  (9) 

 

The top 𝑘 eigenvectors can be selected based on the highest 

𝑘 eigenvalues. The data can then be projected onto the new 

basis formed by these top 𝑘 eigenvectors as shown in below: 

 

RX XW=  (10) 

where, 𝑋 is the original data, 𝑊 is the matrix of top 𝑘 

eigenvectors, and 𝑋𝑅  is the transformed data with reduced 

dimensionality. 

 

3.1.7 Text clustering 

Following dimensionality reduction, clustering algorithms 

such as K-means, Hierarchical Clustering, or DBSCAN can be 

applied to group similar documents based on the extracted 

high-level features [33]. K-means clustering [41] is a widely 

used unsupervised clustering algorithm that partitions data 

points into K clusters based on their similarity. In the context 
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of our contextual-based text clustering, the feature vectors 

obtained from the pre-trained contextual models after PCA 

reduction are utilized as input data points for clustering. The 

k-means algorithm can be defined as follows: 

(1) Initialization: Randomly select K cluster centroids from 

the data points. 

(2) Assignment: Allocate the data points with the closest 

centroid. 

(3) Update: Update all centroids by computing the data 

points mean of them. 

(4) Repeat: Continue with steps 2-3 until convergence is 

achieved. 

The Elbow Method [41] involves running K-Means for a 

range of K values and calculating the sum of squared distances 

(inertia) of data points to their assigned centroids for each K. 

A plot of K against inertia is created, and the "elbow point" 

where the inertia starts to level off is considered as the optimal 

K. Silhouette analysis measures how similar each data point in 

one cluster is to the data points in the same cluster compared 

to the nearest neighboring cluster. For each K value, a 

silhouette score is calculated, and the K that results in the 

highest silhouette score is chosen as the optimal number of 

clusters. In the case of k-means clustering, the distance 

between two data points is frequently defined using the 

Euclidean distance metric [41], which can be expressed as: 

 

( ) ( )
2

, ,

1

,
n

i j i k j k

k

d x x x x
=

= −  (11) 

 

In above context the 𝑥𝑖and 𝑥𝑗 are two data points, 𝑛 is the 

dimensionality of the feature vectors (𝑋𝑅), 𝑥𝑖,𝑘 and 𝑥𝑗,𝑘 are the 

corresponding ‘𝑘’ components of the obtained feature vectors 

for 𝑥𝑖  and 𝑥𝑗 , respectively. The objective of k-means 

clustering is to minimize the total sum of squared distances 

between data points and the centroids to which they are 

assigned, as expressed by the following equation: 
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2

1 1

,
N K

ij i j

i j

w d x c
= =

  (12) 

 

where,‘ 𝑁 ’ is considered asthe count of data points, 𝐾  is 

clusters count value, 𝑐𝑗  is the centroid of the 𝑗𝑡ℎ cluster, and 

𝑤𝑖𝑗 = 1 , if data point 𝑥𝑖  is assigned to cluster 𝑗 , or 0 

otherwise.The k-means algorithm converges when the cluster 

assignments no longer change, i.e., the centroids no longer 

move. The ideal number of clusters, denoted as K, can be 

determined through techniques such as the elbow method or 

silhouette analysis. 

 

3.1.8 Document classification 

After the k-means clustering [41] is performed on the lower-

dimensional feature vectors, the resulting clusters can be 

treated as different classes or categories for document 

classification. At this moment, we perform the document 

classification process on each cluster by assigning a label to 

the entire cluster. The best way to do this is by computing the 

centroid [42] of each cluster and using it as a representative 

vector for that cluster. Then, for each document in the cluster, 

we can compute its similarity to the centroid vector using a 

similarity metric such as cosine similarity. The similarity score 

can be used to assign the document to the appropriate class. 

The equation for computing the centroid vector for a cluster 𝐶 

is: 

1
centroid( )

| |
i

i C

C X
c 

=   (13) 

 

where, 𝐶 is considered as the documents count in the cluster, 

and 𝑋𝑖 represents the feature vector of document 𝑖. Once the 

centroid vector is computed, the comparison score amongst the 

document 𝑋𝑖 and its centroid vector 𝒄𝐶 can be calculated using 

cosine similarity: 

 

( )similarity , i
i

i

x
x

x


= C

C

C

c
c

c
 (14) 

 

where, ‘.’ represents the dot product amongst the two vectors, 

and ‘|.|’ represents the Euclidean model of a vector. Based on 

the obtained similarity scores, we can assign each document in 

the cluster to a class with the highest score. In this way the 

total documents are classified based on the contained cluster 

similarity scores. 

 

 

4. EXPERIMENTAL ANALYSIS 

 

Experimental evaluation plays a vital role in Deep 

Contextual Embedding Models-based text clustering to assess 

algorithm performance in accurately clustering text data. The 

primary aim of the experimental evaluation is to identify the 

optimal combination of contextual embedding models for text 

clustering and document classification using the selected 

datasets. The evaluation process is typically carried out on 

various labeled datasets where the ground truth labels are 

utilized to measure the clustering algorithm’s performance. 

This section provides a step-wise description of the 

experimental evaluation process. 

 

4.1 Dataset selection 

 

In this paper, the datasets used for text clustering are 

generally collections of documents, which can be categorized 

into various domains and topics. These datasets are utilized as 

a benchmark to evaluate and compare the performance of the 

proposed deep contextual models with their counterparts in 

terms of clustering accuracy, efficiency, and reliability. 

Several publicly available datasets are used in this text 

clustering research are the AG News dataset [43], Reuters-

21578 [44] dataset and the IMDB reviews [45] dataset. While 

selecting these datasets we have considered the research 

problem relevance, accessibility, volume and complexity. 

Additionally, the quality of the data, including its cleanliness 

and representativeness of the real-world data, should be taken 

into account when selecting a dataset. 

 

4.2 Clustering and classification metrics 

 

Evaluation metrics are crucial in measuring the 

effectiveness of the clustering algorithm in accurately 

grouping the text data and improving the overall classification 

accuracy. In our experiments, multiple metrics are employed 

to assess the performance of text clustering algorithms, 

including: Silhouette score [46], Calinski-Harabasz index [47], 

Davies-Bouldin index [48], Homogeneity [49], Completeness 

[50] and Normalized mutual information [51]. 

Silhouette score (SIL) [46] is a widely used metric for 

evaluating the quality of clustering algorithms. A higher 
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Silhouette score indicates better clustering performance. The 

Silhouette score '𝑆𝑖𝑙( 𝑚)' is calculated as variance among the 

mean proximity to the closest cluster and the mean proximity 

to all other clusters divided by the maximum of these two 

values. The formula to evaluate the ‘𝑆𝑖𝑙( 𝑚)’ is: 

 

( ) avg( )
Sil( )

max(avg( ), ( ))

bw m m
m

m bw m

−
=  (15) 

 

In above equation, ‘𝑚’ represents a sample, denotes the 

average distance 𝑎𝑣𝑔( 𝑚)  between ‘𝑚 ’ and the remaining 

points of the cluster, and represents the average distance 

between ‘𝑚 ’ and the remaining points in the next closest 

cluster. 𝑆𝑖𝑙( 𝑚) can be vary from -1 to 1, with a score of -1 

denoting erroneous clustering, a score of 0 denoting 

overlapping clusters, and a score of 1 denoting dense, well-

separated clusters. Better clustering performance is thought to 

be indicated by a score that is higher and closer to 1. 

 

Calinski-Harabasz Index (CHI) [47] or Variance Ratio 

Criterion, as a measure of clustering quality, is used in our 

evaluation. For all clusters, it measures the proportion of 

between-cluster variation to within-cluster variance, with a 

higher value indicating improved clustering. The 

mathematical definition is as follows: 
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where, ‘𝑚’ is the number of data points, ‘𝑛’ is the total number 

of clusters, 𝑇(𝑏𝑤𝑛)  is the trace off between-cluster scatter 

matrix, and 𝑇(in𝑛) is the trace off within-cluster scatter matrix. 

The ‘CHI(𝑛)’ has a range of 0 to ∞, with a bigger value 

indicating more successful clustering. 

 

Davies-Bouldin Index (DBI) [48] is a popular tool for 

assessing the effectiveness of clustering. It calculates the 

average degree of similarity between each cluster and its 

closest neighbor, taking the cluster's size into account. It is 

defined as: 
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m

bw bw
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N G n
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   
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where, n is the total number of clusters, 
mbw  is the average 

distance between data points inside a cluster 𝑚 and its centroid, 

and 𝐺𝑚𝑛 is the separation between cluster centroids of 𝑚 and 

𝑛. The range of DBI scores is in ‘0’ to ‘∞’, where‘0’ indicating 

perfect clustering, and higher values indicating poorer 

clustering. 

 

Homogeneity(HG) [49] is the degree to which measures the 

data points in each cluster accurately correspond to a single 

class. It is expressed as a score between 0.0 and 1.0, with a 

higher score indicating more homogeneous labeling of clusters. 

The mathematical formula to compute homogeneity score is 

as follows: 
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H C K
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In the given equation, H(C|K) represents the conditional 

entropy of the class labels given the cluster assignments, while 

H(C) denotes the entropy of the class labels. 

 

Completeness (COMP) [50] is a text clustering statistic that 

measures how evenly all members of a class are distributed 

among clusters. The equation for completeness is: 
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 (19) 

 

where, 𝑄𝑚𝑛  denotes the count of points in class ‘𝑚’ are also 

appears in cluster 𝑛, and 𝑄𝑚 is the count of points in class ‘𝑚’. 

The completeness resulting score is always between 0 and 1, a 

higher completeness score indicates improved clustering 

performance. 

 

Normalized Mutual Information (NMI) [51] is another 

often used clustering assessment metric is normalized mutual 

information, which calculates the mutual information between 

the true class labels and the predicted clusters, standardized by 

the value of the entropy of the class labels and the value 

of entropy of the predicted clusters is defined as: 

 

( )true pred / 2
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where, 𝑀𝐼 is the mutual information between the true class 

labels and the predicted clusters, 𝐻true is the entropy of the true 

class labels, and 𝐻pred is the entropy of the predicted clusters. 

Apart from this text clustering metrics, we used the Accuracy, 

Precision, Recall and F1-Score as the classification metrics to 

evaluate the performance of document. 

 

4.3 Experimental setup 

 

To test the selected datasets (AG News dataset, Reuters-

21578 dataset and the IMDB reviews dataset) using Python 

prototypes, an optimal hardware setup with at least 32 GB 

RAM, a quad-core processor, and a GPU with at least 16 GB 

VRAM is configure to run the Deep Contextual Embedding 

Models. Python 3.6 or higher, PyTorch 1.6 or higher, 

Transformers library, NumPy, pandas, and scikit-learn are 

selected to design the proposed model.The experiments are 

evaluated from a local machine connected to the cloud-based 

platforms such as Google Colab or AWS EC2 instance with 

similar hardware specifications. Additionally, to ensure 

accurate results, it is preferred to fit the deep models on high 

volume data and tune the hyper-parameters using a validation 

set. 

 

4.4 Comparative analysis 

 

Recently, deep learning models have shown promising 

results in deep text clustering with syntax and semantics. In 

this comparative analysis, we will evaluate the performance of 

different text clustering algorithms such as Agglomerative 

Hierarchical Clustering (AHC) [52], Density-Based Spatial 

Clustering (DBSC) [53], Mean Shift Clustering (MSC) [54], 

Spectral Clustering(SC) [55], DBSCAN and KM, where each 

usinga different deep learning models such as Language 

Models (LM) [56], LatentDirichlet allocation (LDA) [57], 

Recurrent Neural Network (RNN) [58] and CNNs [45]. 
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Specifically, the results of various deep contextual models 

such as LM+AHC, LDA+DBSCAN, CNN+KM, RNN+MSC, 

BERT+SC, DCEM (GPT2)+DBSCAN, and DCEM 

(GPT2)+KM are planned to evaluate and compare. The main 

objective of this comparative analysis is to detect which 

combination produces the high performance under various 

metrics such as SIL, CHI, DBI, HG, COMP and NMI. We 

selected the AG News, IMDB Reviews and Reuters-21578 

benchmark datasets, to conduct the experiments with selected 

deep learning models and metrics. Tables 1-3 are presenting 

the obtained results from various deep text clustering models 

on three selected datasets. 

For the AG News dataset, DCEM (GPT2) with KM 

performs the best, with a SIL score of 0.82, CHI of 37656, DBI 

of 0.17, HG of 0.78, COMP of 0.79, and NMI of 0.79.On the 

IMDB Reviews dataset, the best-performing model is DCEM 

(GPT2)+DBSCAN, with a SIL score of 0.63, CHI of 86921, 

DBI of 0.22, HG of 0.72, COMP of 0.68, and NMI of 0.54.On 

the Reuters-21578 dataset, DCEM (GPT2) with KM again 

performs the best, with a SIL score of 0.82, CHI of 19957, DBI 

of 0.18, HG of 0.72, COMP of 0.64, and NMI of 0.69. Finally 

the deep text clustering models that incorporate pre-trained 

language models such as GPT2 and BERT generally 

outperform traditional machine learning models like CNN and 

RNN, as well as unsupervised clustering algorithms like 

DBSCAN and KM, on all three datasets. 

In order to showcase the overall clustering performance of 

various models, the averages are evaluated at each metric is 

shown in Table 4 and the same visualized in Figure 2. 

The averaged results show that DCEM (GPT2)+KM 

algorithm has the highest performance for all metrics. Both 

DCEM (GPT2)+DBSCAN and DCEM (GPT2)+KM, which 

are based on GPT2, achieve the highest performance in terms 

of all metrics compared to other models. BERT+SC and 

LM+AHC also showed good performance for most of the 

metrics. However, LDA+DBSC, CNN+KM, and RNN+MSC 

showed lower performance compared to other models. Finally, 

the results obtained from the deep learning-based clustering 

algorithms, such as DCEM (GPT2)+KM and DCEM 

(GPT2)+DBSCAN, are promising methods for clustering 

tasks. These results are assuring the higher accuracy in 

clustering and documentation using the deep embedding 

contextual models. 

We evaluated that why the DCEM(GPT2)+KM generated 

lower metric values on IMDB dataset compared to the Reuters 

and AG News datasets can be attributed to several valid 

reasons: i) The IMDB dataset consists of movie reviews, 

which may be more diverse and complex in terms of language, 

sentiment, and topics compared to the news articles in Reuters 

and AG News datasets, making it harder to cluster accurately. 

ii) Movie-related terms, names, and phrases used in IMDB 

reviews may not be as well-suited for general-purpose word 

embeddings like GPT-2, leading to difficulties in capturing 

contextual information effectively. 

As discussed in previous section, to classify the documents 

after clustering, centroid of each cluster can be computed and 

used as a representative vector for the cluster. Similarity 

between the centroid vector [42] and each document in the 

cluster can be measured using a similarity metric such as 

cosine similarity. The document can be assigned to the 

relevant class based on the highest similarity score. There are 

several widely used metrics for evaluating the performance of 

document classification, including Accuracy, Precision, 

Recall, and F1-Score. After classifying the three datasets, the 

unified metrics obtained from each contextual model are 

presented in Table 5. The results from Table 5 show that, the 

performance of different deep contextual models for document 

classification using various metrics. The DCEM (GPT2) based 

contextual model outperformed other models (Figures 2-3) 

with an accuracy of 81.09% for DCEM (GPT2)+KM and 

76.47% for DCEM (GPT2)+DBSCAN. These models also 

showed higher precision and F1 scores compared to other 

models. BERT+SC also performed well with an accuracy of 

72.55%. However, LM+AHC showed lower accuracy than 

other models, but it still achieved an accuracy of 68.22%. The 

results suggest that the use of Deep Contextual Embedding 

Models can improve the accuracy of document classification 

using text clustering algorithms.A limitation we find from the 

results evaluation is the need for ample labeled data for 

effective deep contextual model training, which is challenging 

in domains with limited labeled data. Evaluation assumes 

ground truth labels, not always present in real-world scenarios, 

affecting performance assessment. 

 

Table 1. Experimental results of various deep text clustering models on AG News dataset 

 
AG News 

 SIL CHI DBI HG COMP NMI 

LM+AHC 0.33 23040 0.46 0.67 0.51 0.47 

LDA+DBSC 0.42 27612 0.34 0.51 0.49 0.34 

CNN+KM 0.49 28626 0.49 0.57 0.43 0.43 

RNN+MSC 0.61 24856 0.34 0.62 0.59 0.59 

BERT+SC 0.65 35109 0.24 0.74 0.66 0.66 

DCEM (GPT2)+DBSCAN 0.71 37792 0.22 0.81 0.69 0.69 

DCEM (GPT2)+KM 0.82 37656 0.17 0.78 0.79 0.79 

 

Table 2. Experimental results of various deep text clustering models on IMDB Reviews dataset 

 
IMDB Reviews 

 SIL CHI DBI HG COMP NMI 

LM+AHC 0.54 72992 0.59 0.42 0.49 0.38 

LDA+DBSC 0.57 73507 0.31 0.44 0.56 0.49 

CNN+KM 0.49 65839 0.37 0.57 0.62 0.53 

RNN+MSC 0.56 57168 0.34 0.51 0.58 0.43 

BERT+SC 0.61 80750 0.32 0.65 0.61 0.49 

DCEM (GPT2)+DBSCAN 0.63 86921 0.22 0.72 0.68 0.54 

DCEM (GPT2)+KM 0.62 86608 0.24 0.74 0.64 0.56 
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Table 3. Experimental results of various deep text clustering models on Reuters dataset 

 

Reuters-21578 
 SIL CHI DBI HG COMP NMI 

LM+AHC 0.56 12211 0.47 0.32 0.45 0.32 

LDA+DBSC 0.73 14634 0.43 0.66 0.52 0.64 

CNN+KM 0.51 15171 0.51 0.41 0.51 0.41 

RNN+MSC 0.64 13173 0.43 0.33 0.29 0.38 

BERT+SC 0.69 18607 0.24 0.65 0.59 0.62 

DCEM (GPT2)+DBSCAN 0.78 20029 0.21 0.69 0.57 0.58 

DCEM (GPT2)+KM 0.82 19957 0.18 0.72 0.64 0.69 

 

Table 4. Average performance metrics of various deep text clustering models on three datasets 

 
 SIL DBI HG COMP NMI 

LM+AHC 0.48±0.13 0.51±0.07 0.47±0.15 0.48±0.06 0.39±0.16 

LDA+DBSC 0.57±0.15 0.36±0.06 0.54±0.12 0.52±0.05 0.49±0.15 

CNN+KM 0.50±0.02 0.46±0.09 0.52±0.08 0.52±0.09 0.46±0.06 

RNN+MSC 0.60±0.06 0.37±0.06 0.49±0.16 0.49±0.14 0.47±0.10 

BERT+SC 0.65±0.03 0.27±0.06 0.68±0.05 0.62±0.04 0.59±0.10 

DCEM(GPT2)+DBSCAN 0.71±0.08 0.24±0.02 0.72±0.07 0.65±0.07 0.60±0.14 

DCEM (GPT2)+KM 0.75±0.09 0.20±0.03 0.75±0.05 0.69±0.08 0.68±0.10 

 

Table 5. Performance Metrics of document classification models 

 
 Accuracy Precision Recall F1_Score 

LM+AHC 68.22% 71.15% 68.52% 69.81% 

LDA+DBSC 59.17% 60.00% 63.46% 61.68% 

CNN+KM 63.02% 69.23% 63.16% 66.06% 

RNN+MSC 57.74% 64.81% 59.32% 61.95% 

BERT+SC 72.55% 73.91% 68.02% 70.83% 

DCEM (GPT2)+DBSCAN 76.47% 78.72% 72.55% 75.51% 

DCEM (GPT2)+KM 81.09% 84.12% 79.15% 81.55% 

 

 
 

Figure 2. Visualization of the clustering performance of various deep text clustering models 

 

 
 

Figure 3. Visualization of the classification performance of various deep contextual models 
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5. CONCLUSION 

 

The key objectives of this study were to improve text 

clustering and document classification accuracy by integrating 

pre-trained Deep Contextual Embedding Models (DCEMs) 

like GPT-2 with clustering algorithms. The methods involved 

generating contextual embeddings, applying multi-head self-

attention, and dimensionality reduction. The overall findings 

demonstrated that the integrated approach outperformed 

traditional methods, achieving higher accuracy in text 

clustering and document classification on datasets like AG 

News, Reuters-21578, and IMDB reviews. 

These findings from the experimental evaluation offer 

valuable insights into the effectiveness of various 

combinations of contextual embedding models for text 

clustering and document classification, which can be used to 

enhance the performance of text clustering algorithms. 

Experiments proven that, the ability of DCEM based 

clustering algorithms are effectively captured the semantic 

information in text data, coupled with the power of deep 

learning techniques, make them a potent tool for clustering and 

classification tasks in various domains. 

A potential future research direction is to explore semi-

supervised or unsupervised methods that reduce the reliance 

on large labeled datasets for deep contextual model training. 

Another direction is to investigate the potential benefits of 

incorporating domain-specific knowledge into Deep 

Contextual Embedding Models to improve their performance 

on domain-specific text data. 

 

 

REFERENCES 

 

[1] Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., 

Fraternali, P., Quarteroni, S. (2013). An introduction to 

information retrieval. Web Information Retrieval, 3-11. 
https://doi.org/10.1007/978-3-642-39314-3_1 

[2] Salton, G., Buckley, C. (1988). Term-weighting 

approaches in automatic text retrieval. Information 

Processing & Management, 24(5): 513-523. 

https://doi.org/10.1016/0306-4573(88)90021-0 

[3] Aggarwal, C.C., Zhai, C. (2012). A survey of text 

clustering algorithms. In: Aggarwal, C., Zhai, C. (eds) 

Mining Text Data. Springer, Boston, MA. 

https://doi.org/10.1007/978-1-4614-3223-4_4 

[4] Zhang, Y., Jin, R., Zhou, Z.H. (2010). Understanding 

bag-of-words model: A statistical framework. 

International Journal of Machine Learning and 

Cybernetics, 1: 43-52. https://doi.org/10.1007/s13042-

010-0001-0 

[5] Miles, S., Yao, L., Meng, W., Black, C.M., Miled, Z.B. 

(2022). Comparing PSO-based clustering over 

contextual vector embeddings to modern topic modeling. 

Information Processing & Management, 59(3): 102921. 

https://doi.org/10.1016/j.ipm.2022.102921 

[6] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018). 

Bert: Pre-training of deep bidirectional transformers for 

language understanding. arXiv Preprint arXiv: 

1810.04805. https://doi.org/10.48550/arXiv.1810.04805 

[7] Keskar, N.S., McCann, B., Varshney, L.R., Xiong, C., 

Socher, R. (2019). Ctrl: A conditional transformer 

language model for controllable generation. arXiv 

Preprint arXiv: 1909.05858. 

https://doi.org/10.48550/arXiv.1909.05858 

[8] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., 

Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V. 

(2019). Roberta: A robustly optimized bert pretraining 

approach. arXiv Preprint arXiv: 1907.11692. 

https://doi.org/10.48550/arXiv.1907.11692 

[9] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D. (2020). 

Electra: Pre-training text encoders as discriminators 

rather than generators. arXiv Preprint arXiv: 2003.10555. 

https://doi.org/10.48550/arXiv.2003.10555 

[10] Veyseh, A.P.B., Lai, V., Dernoncourt, F., Nguyen, T.H. 

(2021). Unleash GPT-2 power for event detection. In 

Proceedings of the 59th Annual Meeting of the 

Association for Computational Linguistics and the 11th 

International Joint Conference on Natural Language 

Processing, 1: 6271-6282. 

https://doi.org/10.18653/v1/2021.acl-long.490. 

[11] Liang, H., Sun, X., Sun, Y., Gao, Y. (2017). Text feature 

extraction based on deep learning: a review. EURASIP 

Journal on Wireless Communications and Networking, 

2017(1): 1-12.. https://doi.org/10.1186/s13638-017-

0993-1 

[12] Seifollahi, S., Piccardi, M., Jolfaei, A. (2021). An 

embedding-based topic model for document 

classification. Transactions on Asian and Low-Resource 

Language Information Processing, 20(3): 1-13.. 

https://doi.org/10.1145/3431728 

[13] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J. 

(2017). Attention is all you need in Advances in neural 

information processing systems. Search PubMed, 5998-

6008. https://doi.org/10.48550/arXiv.1706.03762 

[14] Wei, C.P., Yang, C.S., Hsiao, H.W. (2008). A 

collaborative filtering-based approach to personalized 

document clustering. Decision Support Systems, 45(3): 

413-428. https://doi.org/10.1016/j.dss.2007.05.008 

[15] Li, X., Roth, D. (2002). Learning question classifiers. 

COLING '02: Proceedings of the 19th international 

conference on Computational linguistics 1: 1-7. 

https://doi.org/10.3115/1072228.1072378 

[16] Wong, W., Tsuchiya, N. (2020). Evidence accumulation 

clustering using combinations of features. MethodsX, 7: 

100916. https://doi.org/10.1016/j.mex.2020.100916  

[17] Mohammed, A.J., Yusof, Y., Husni, H. (2015). 

Document clustering based on firefly algorithm. Journal 

of Computer Science, 11(3): 453-465. 

https://doi.org/10.3844/jcssp.2015.453.465  

[18] Karol, S., Mangat, V. (2013). Evaluation of text 

document clustering approach based on particle swarm 

optimization. Open Computer Science, 3(2): 69-90. 

https://doi.org/10.2478/s13537-013-0104-2  

[19] Silva Filho, T.M., Pimentel, B.A., Souza, R.M., Oliveira, 

A.L. (2015). Hybrid methods for fuzzy clustering based 

on fuzzy c-means and improved particle swarm 

optimization. Expert Systems with Applications, 42(17-

18): 6315-

6328.https://doi.org/10.1016/j.eswa.2015.04.032 

[20] Veremyev, A., Semenov, A., Pasiliao, E.L., Boginski, V. 

(2019). Graph-based exploration and clustering analysis 

of semantic spaces. Applied Network Science, 4: 1-26. 

https://doi.org/10.1007/s41109-019-0228-y 

[21] Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, 

L., Feng, X. (2020). Deep feature-based text clustering 

and its explanation. IEEE Transactions on Knowledge 

and Data Engineering, 34(8): 3669-3680.. 

https://doi.org/10.1109/TKDE.2020.3028943. 

244



[22] Naseem, U., Razzak, I., Musial, K., Imran, M. (2020). 

Transformer based deep intelligent contextual 

embedding for twitter sentiment analysis. Future 

Generation Computer Systems, 113: 58-69. 

https://doi.org/10.1016/j.future.2020.06.050 

[23] Tan, Z., Chen, J., Kang, Q., Zhou, M., Abusorrah, A., 

Sedraoui, K. (2021). Dynamic embedding projection-

gated convolutional neural networks for text 

classification. IEEE Transactions on Neural Networks 

and Learning Systems, 33(3): 973-982. 

https://doi.org/10.1109/TNNLS.2020.3036192 

[24] Mehta, V., Bawa, S., Singh, J. (2021). WEClustering: 

Word embeddings based text clustering technique for 

large datasets. Complex & Intelligent Systems, 7: 3211-

3224. https://doi.org/10.1007/s40747-021-00512-9 

[25] Ravi, J., Kulkarni, S. (2023). Text embedding techniques 

for efficient clustering of twitter data. Evolutionary 

Intelligence, 1-11. https://doi.org/10.1007/s12065-023-

00825-3 

[26] Zhang, X., Li, Y., Wang, B., Li, M. (2021). A survey on 

model-based text clustering algorithms. Applied 

Sciences, 11(5): 2402. 

https://doi.org/10.3390/app11052402 

[27] Xu, D., Tian, Y. (2015). A comprehensive survey of 

clustering algorithms. Annals of Data Science, 2: 165-

193. https://doi.org/10.1007/s40745-015-0040-1 

[28] Zhang, X., Chen, X., Feng, Y., Liu, F. (2020). Deep 

learning based text clustering: A comprehensive review. 

ACM Transactions on Intelligent Systems and 

Technology (TIST), 11(2): 1-32. 

https://doi.org/10.1145/3384743 

[29] Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J. 

(2018). A survey of clustering with deep learning: From 

the perspective of network architecture. IEEE Access, 6: 

39501-39514. 

https://doi.org/10.1109/ACCESS.2018.2855437 

[30] Mudassar, S., Muhammad, K., Mahmood, T., Ahmad, I., 

Afzal, H. (2021). Deep learning for text clustering: A 

comprehensive review. IEEE Access, 9: 5504-5544. 

https://doi.org/10.1109/ACCESS.2020.3045989 

[31] Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A., 

Lin, Y. (2018). Deep k-means: Re-training and parameter 

sharing with harder cluster assignments for compressing 

deep convolutions. In International Conference on 

Machine Learning. PMLR, pp. 5363-5372. 

https://doi.org/10.48550/arXiv.1806.09228 

[32] Shi, T., Liu, Z. (2014). Linking GloVe with word2vec. 

arXiv Preprint arXiv: 1411.5595. 

https://doi.org/10.48550/arXiv.1411.5595 

[33] Aggarwal, C.C., Zhai, C. (2012). A survey of text 

clustering algorithms. Mining Text Data, 77-128. 
https://doi.org/10.1007/978-1-4614-3223-4_4 

[34] Kadhim, A.I., Cheah, Y.N., Ahamed, N.H. (2014). Text 

document preprocessing and dimension reduction 

techniques for text document clustering. In 2014 4th 

International Conference on Artificial Intelligence With 

Applications in Engineering and Technology, IEEE, 

Kota Kinabalu, Malaysia, pp. 69-73. 

https://doi.org/10.1109/ICAIET.2014.21 

[35] Shao, T., Guo, Y., Chen, H., Hao, Z. (2019). 

Transformer-based neural network for answer selection 

in question answering, IEEE Access, 7: 26146-26156. 

https://doi.org/10.1109/ACCESS.2019.2900753 

[36] Selva Birunda, S., Kanniga Devi, R. (2021). A review on 

word embedding techniques for text classification. 

Innovative Data Communication Technologies and 

Application: Proceedings of ICIDCA 2020: 267-281. 
https://doi.org/10.1007/978-981-15-9651-3_23 

[37] Chen, P.C., Tsai, H., Bhojanapalli, S., Chung, H.W., 

Chang, Y.W., Ferng, C.S. (2021). A simple and effective 

positional encoding for transformers. arXiv Preprint 

arXiv: 2104.08698. 

https://doi.org/10.48550/arXiv.2104.08698 

[38] Sharaf Al-deen, H.S., Zeng, Z., Al-sabri, R., Hekmat, A. 

(2021). An improved model for analyzing textual 

sentiment based on a deep neural network using multi-

head attention mechanism. Applied System Innovation, 

4(4): 85. https://doi.org/10.3390/asi4040085 

[39] Migenda, N., Möller, R., Schenck, W. (2021). Adaptive 

dimensionality reduction for neural network-based 

online principal component analysis. PloS One, 16(3): 

e0248896. https://doi.org/10.1371/journal.pone.0248896 

[40] Devassy, B.M., George, S. (2020). Dimensionality 

reduction and visualisation of hyperspectral ink data 

using t-SNE. Forensic Science International, 311: 

110194. https://doi.org/10.1016/j.forsciint.2020.110194 

[41] Cui, M. (2020). Introduction to the k-means clustering 

algorithm based on the elbow method. Accounting, 

Auditing and Finance, 1(1): 5-8. 

https://dx.doi.org/10.23977/accaf.2020.010102 

[42] Abualigah, L., Gandomi, A.H., Elaziz, M.A., Hamad, 

H.A., Omari, M., Alshinwan, M., Khasawneh, A.M. 

(2021). Advances in meta-heuristic optimization 

algorithms in big data text clustering. Electronics, 10(2): 

101. https://doi.org/10.3390/electronics10020101 

[43] Zhang, X., Zhao, J., LeCun, Y. (2015). Character-level 

convolutional networks for text classification. Advances 

in Neural Information Processing Systems, 28. 

https://doi.org/10.48550/arXiv.1509.01626 

[44] Lewis, D.D. (1997). Reuters-21578 text categorization 

test-collection. https://doi.org/10.24432/C52G6M 

[45] Yenter, A., Verma, A. (2017). Deep CNN-LSTM with 

combined kernels from multiple branches for IMDb 

review sentiment analysis. In 2017 IEEE 8th Annual 

Ubiquitous Computing, Electronics and Mobile 

Communication Conference (UEMCON), New York, 

NY, USA, pp. 540-546. 

https://doi.org/10.1109/UEMCON.2017.8249013 

[46] Shahapure, K.R., Nicholas, C. (2020). Cluster quality 

analysis using silhouette score. In 2020 IEEE 7th 

International Conference on Data Science and Advanced 

Analytics (DSAA), IEEE, Sydney, NSW, Australia, pp. 

747-748. 

https://doi.org/10.1109/DSAA49011.2020.00096 

[47] Wang, X., Xu, Y. (2019). An improved index for 

clustering validation based on Silhouette index and 

Calinski-Harabasz index. In IOP Conference Series: 

Materials Science and Engineering. IOP Publishing, 

569(5): 052024. https://doi.org/10.1088/1757-

899X/569/5/052024 

[48] Xiao, J., Lu, J., Li, X. (2017). Davies bouldin index based 

hierarchical initialization K-means. Intelligent Data 

Analysis, 21(6): 1327-1338. 

https://doi.org/10.3233/IDA-163129 

[49] Dubes, R.C., Zeng, G. (1987). A test for spatial 

homogeneity in cluster analysis. Journal of Classification, 

4: 33-56. https://doi.org/10.1007/BF01890074 

[50] Yu, Y., Ren, J., Zhang, Q., Yang, W., Jiao, Z. (2020). 

245



Research on tire marking point completeness evaluation 

based on k-means clustering image segmentation. 

Sensors, 20(17): 4687. 

https://doi.org/10.3390/s20174687 

[51] Knops, Z.F., Maintz, J.A., Viergever, M.A., Pluim, J.P. 

(2006). Normalized mutual information based 

registration using k-means clustering and shading 

correction. Medical Image Analysis, 10(3): 432-439. 

https://doi.org/10.1016/j.media.2005.03.009 

[52] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A. 

(2015). Efficient agglomerative hierarchical clustering. 

Expert Systems with Applications, 42(5): 2785-2797. 

https://doi.org/10.1016/j.eswa.2014.09.054 

[53] Liu, Q., Deng, M., Shi, Y., Wang, J. (2012). A density-

based spatial clustering algorithm considering both 

spatial proximity and attribute similarity. Computers & 

Geosciences, 46: 296-309. 

https://doi.org/10.1016/j.cageo.2011.12.017 

[54] Carreira-Perpinán, M.A. (2015). A review of mean-shift 

algorithms for clustering. arXiv Preprint arXiv: 

1503.00687. https://doi.org/10.48550/arXiv.1503.00687 

[55] Mokshin, V., Yakupov, D., Yakhina, Z. (2021). 

Comparison of spectral clustering methods for graph 

models of pipeline systems. In 2021 International 

Russian Automation Conference (RusAutoCon), IEEE, 

Sochi, Russian Federation, pp. 841-846. 

https://doi.org/10.1109/RusAutoCon52004.2021.95374

94 

[56] Irie, K., Zeyer, A., Schlüter, R., Ney, H. (2019). 

Language modeling with deep transformers. arXiv 

Preprint arXiv: 1905.04226. 

https://doi.org/10.21437/Interspeech.2019-2225 

[57] Blei, D.M., Ng, A.Y., Jordan, M.I. (2003). Latent 

dirichlet allocation. Journal of Machine Learning 

Research, 3(Jan): 993-1022. 

https://doi.org/10.1145/34170564 

[58] Irsoy, O., Cardie, C. (2014). Opinion mining with deep 

recurrent neural networks. In Proceedings of the 2014 

Conference on Empirical Methods in Natural Language 

Processing (EMNLP), Doha, Qatar, pp. 720-728. 

http://dx.doi.org/10.3115/v1/D14-1080 

 

 

NOMENCLATURE 

 

Abbreviation Description 

BERT 
Bidirectional Encoder Representations from 

Transformers 

GPT-2 Generative Pre-trained Transformer 2 

DBSCAN 
Density-based spatial clustering of 

applications with noise 

AHC Agglomerative Hierarchical Clustering 

NLP Natural Language Processing 

DCEM Deep Contextual Embedding Models 

LM Language Models 

PCA Principal Component Analysis 

t-SNE 
t-Distributed Stochastic Neighbor 

Embedding 

CHI Calinski-Harabasz Index 

DBI Davies-Bouldin Index 

HG Homogenity 

COMP Completeness 

NMI Normalized Mutual Information 
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