

Comparative Efficiency Evaluation of Hadoop and Spark Frameworks Using Random

Forest Algorithm for Intrusion Detection

Wasnaa Jawad1* , Abbas Al-Bakry2

1 Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers and Informatics, Baghdad 10011, Iraq
2 University of Information Technology and Communications, Baghdad 10011, Iraq

Corresponding Author Email: phd202120678@iips.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290116

ABSTRACT

Received: 18 June 2023

Revised: 6 November 2023

Accepted: 7 December 2023

Available online: 27 February 2024

 This study uses the Random Forest algorithm to evaluate the efficiency of Hadoop,

and Spark distributed computing systems for intrusion detection, highlighting the

growing importance of efficient distributed systems in handling big data. This

research aims to assess and compare the performance of Hadoop and Spark in the

context of an intelligent intrusion detection system. We use the Random Forest

machine learning algorithm to train and test the system. The methods developed

an intrusion detection system using Hadoop and Spark frameworks, followed by a

thorough performance assessment using a real-world dataset. The problem this

study tackles is the ever-increasing demand for processing data swiftly and

accurately in a distributed fashion. We aim to identify the strengths and

weaknesses of Hadoop and Spark in the context of machine learning-based

intrusion detection. The “intelligent network detection system for intrusions” in

this study uses a sophisticated security system using machine learning algorithms

to detect potential intrusions, assessing Hadoop and Spark's performance in real-

world scenarios and handling large-scale data processing. The findings provide

insightful information about the efficacy and efficiency of distributed systems in

machine learning activities, which can help select big data application frameworks.

Keywords:

big data, distributed frameworks, Hadoop,

intrusion detection system, machine

learning, performance, Random Forest,

spark

1. INTRODUCTION

Intrusion detection systems are essential to network security

because they use various methods to differentiate between

legitimate and suspect network activity, protecting against

online attacks. These systems rely on variables such as service

request patterns and network communication frequency to

identify unusual network user behaviour. As the term "big

data" implies, vast and diverse datasets covering various

network activities are constantly created. Cybersecurity

experts find it difficult to manage this data, which includes

both potentially dangerous breaches and legitimate network

exchanges, because of the number and severity of assaults.

Context: Intrusion detection systems were created in

response to the growing worries about cybersecurity in

modern network environments.

Problem Statement: This study aims to tackle the challenges

caused by the increasing amount of data in the intrusion

detection system.

Spark and Hadoop: These distributed frameworks have an

exceptional track record for handling huge amounts of data in

an effective manner. We assess its application in improving

intrusion detection skills in this work.

Methods: To gain a deeper understanding of intrusion

detection, we will contrast Spark with Hadoop. We assess

several frameworks in machine learning using the Random

Forest method.This research purpose is to promote the

advancement of even more robust and effective intrusion

detection methods during the rise of big data and widespread

computing.

2. RELATED WORK

Many strategies have been researched to improve intrusion

detection system (IDS) performance in the context of network

security. The original Random Forest method's weaknesses

were analysed by eminent cybersecurity specialists in the

study of Masarat et al. [1]. The authors, who are considered to

be experts in their domain, presented a brand-new parallel

Random Forest method for IDS. Enhancing feature selection,

classifier selection efficiency, training feature quantity, and

combination phases were the goals of this approach. Their

study fared better overall, in terms of misclassification costs

and scalability, than both the regular Random Forest approach

and a Hadoop-based versions.Because log files include

enormous amounts of data in various forms, log file analysis

is useful for processing and is essential to understanding

system activity. A university research team carried out

investigations in the study of Mavridis and Karatza [2] to meet

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 147-152

Journal homepage: http://iieta.org/journals/isi

147

https://orcid.org/0000-0002-0068-8007
https://orcid.org/0000-0001-9518-1024
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290116&domain=pdf

this requirement. The aim of their study was to evaluate log

file analysis with Hadoop and Apache Spark, two cloud

computing frameworks. This project demonstrated us the

general ability to manage several log files.Additionally, cloud-

based log file analysis methods have been looked at in the

study of Kotiyal et al. [3]. The well-known big data specialists

who wrote the paper stressed how traditional relational

databases are unable to manage the volume of log files

generated. Their research aimed to set the scene by

emphasising the advantages of using Hadoop clusters for log

file analysis and using its wide data processing capabilities.

A group of data processing specialists developed a weblog

analysis platform using Pig Latin, Hadoop HDFS, and Hadoop

MapReduce [4]. This method sought to get over the limits on

data processing that come with using relational databases in

the conventional sense.

There is a growing trend among healthcare establishments

to use social media information to enhance their services while

reinforcing network protection. A practical method for

monitoring and examining Twitter posts was suggested by

esteemed industry expert Li Wang in the study of Masarat et

al. [1], which aims to determine user feelings and formulate

messages that will strike a chord with a large number of users.

This research was undertaken with the goal of boosting the

efficiency of healthcare systems by incorporating the opinions

of users.Finally, within the related work topic, several studies

on improving network security, analysing log files, and using

social media data for service improvement are given.

Collectively, these studies broaden the body of knowledge that

informs our research on the efficacy of Hadoop and Spark

frameworks for intrusion detection.

3. DISTRIBUTED FRAMEWORKS

The open-source Hadoop technology enables distributed

storage and large-scale data processing. Big data is the phrase

for datasets that are too large or complex for traditional data

processing technologies, and Hadoop is designed to handle

these types of information. It offers fault tolerance and

flexibility through distributed data processing among

computer clusters. The MapReduce programming language

and the Hadoop Distributed File System (HDFS) are the two

primary components of Hadoop [5, 6].

Hadoop's Benefits The main advantage of Hadoop is its

ability to manage enormous amounts of data, which makes it

appropriate in situations requiring large amounts of data

storage and batch processing. For instance, corporations use

Hadoop in the real world for applications like clickstream

analysis, log file analysis, and recommendation engines. Huge

files can be stored over numerous workstations and multiple

Hadoop cluster nodes can access high-throughput data thanks

to the Hadoop Distributed File System, or HDFS. For fault

tolerance, data is also replicated across several nodes. When

data dependability and processing continuity are crucial, this

fault-tolerant architecture is handy.

Benefits of Spark: Spark is well known for its ability to

process data in memory, significantly speeding up data

processing when compared to traditional disk-based storage

solutions. This speed is very useful for real-time data

processing. In real-world applications, Spark is used in fraud

detection, streaming data analysis, and sensor data processing.

Spark leverages Resilient Distributed Datasets (RDDs) to

store data in memory across a cluster of computers. This

results in processing that is faster. It is often applied in

scenarios including streaming data analysis, graph processing,

and machine learning.

Purpose of the Mahout: The open-source Mahout machine

learning library is constructed on top of Apache Hadoop.

Mahout offers scalable machine-learning algorithms and

building blocks for applications that process and analyze large

volumes of data. Businesses utilize Mahout, for instance, for

recommendation engines, sentiment analysis, and anticipating

customer behavior. Because Mahout can operate in a

distributed computing environment on top of Hadoop, it is

helpful for managing extensive data collections [7].

The MapReduce programming paradigm enables

distributed processing of large data sets across computer

clusters. HDFS Architecture can handle enormous amounts of

data in parallel by breaking the data into smaller chunks,

processing each chunk separately, and then aggregating the

outcomes [8, 9].

The two primary parts of the MapReduce model are the

mapping function and the reduction function. The map

function converts input data into key-value pairs, which are

then handled concurrently by several nodes in a cluster. The

reduce function condenses the result of the map function into

a more manageable set of key-value pairs [10].

Because the map function is independent and scalable by

design, it can operate concurrently across several cluster nodes.

Every node creates intermediate key-value pairs and performs

some data processing. After these intermediate pairings have

been combined and sorted, the reduction function is applied,

as illustrated in Figure 1.

Processing and analyzing large amounts of data is a unique

application for MapReduce because of its ease of expansion to

handle data sets too big to fit on a single machine. Additionally,

it offers fault tolerance because processing can keep going

even if a node fails. After all, data is duplicated across several

cluster nodes [11].

Apache Hadoop is the foundation for the open-source

machine learning library known as Mahout. It offers a

collection of scalable machine-learning algorithms and

building blocks for creating applications that can process and

analyze massive amounts of data.

Among other machine-learning tasks, Mahout provides

several algorithms for data mining, classification, clustering,

and cooperative filtering. It can be utilized for applications like

engines for recommendation, fraud detection, and analysis of

sentiment because it is made to work with large-scale data sets

[12].

Mahout's ability to operate on top of Hadoop allows it to

process big data sets in a distributed computing environment,

which is one of its main advantages. As a result, machine

learning processes can be carried out on data sets that are too

big to accommodate a single machine [13, 14].

Mahout also has tools for analyzing and visualizing the

output of the machine learning algorithms, which makes it

simpler to comprehend and analyze the output of the

algorithms as shown in Figure 2.

Spark is an open-source distributed computing platform that

is made for processing and analyzing massive amounts of data.

It was created at the AMPLab at UC Berkeley, and the Apache

Software Foundation now looks after its upkeep.

Programming distributed data processing processes across

computer clusters is feasible using an interface called Spark. It

includes several APIs for handling graph processing, machine

learning, and unstructured and structured data. Processing data

148

in memory allows Spark to operate significantly faster than

traditional data processing platforms that rely on disk-based

storage, making it one of its essential characteristics. Spark

uses a data processing model called Resilient Distributed

Datasets (RDDs), which enables data to be stored in memory

throughout a cluster of workstations. As a result, Spark

performs intricate computations far faster than traditional

batch-processing systems [15].

Figure 1. Hadoop MapReduce architecture [10]

Figure 2. Mahout architecture [13]

Moreover, Spark includes several libraries for handling

graphs, machine learning, and streaming data. These libraries

simplify creating sophisticated data processing software that

can deal with massive data sets in real time [16].

Spark is an effective tool for handling and evaluating large-

scale data collections [17, 18].

In this paper, we have adopted the adult dataset. Barry

Becker extracted data. The following conditions were used to

obtain a group of substantially clean records: (AAGE>16,

AGI>100, 5AFNLWGT>1, HRSWK>0, and AGI>100)), The

prediction task is to ascertain whether a person earns more

than $50,000 annually.

Variable Explanation: The dataset used in this paper is the

adult dataset, which was extracted by Barry Becker from the

1994 Census database. To enhance clarity, here are

explanations for the variables:

(1) fnlwgt: The "fnlwgt" variable represents the final weight.

It is a numerical value used in survey sampling to account for

the unequal probability of being sampled. This variable is

often used to ensure that the dataset is representative of the

population.

(2) Education Number: The "Education Number" is a

numerical representation of a person's educational level. It is

typically mapped from the "education" variable and can be

used more straightforwardly to represent academic

qualifications.

(3) Native-Country: "Native-country" denotes an

individual's country of origin or citizenship. It specifies the

nation where the person is from.

(4) AGI: The "AGI" variable refers to Adjusted Gross

Income. It typically represents an individual's or household's

income after certain deductions and adjustments have been

made, which are allowed by tax laws. In the context of this

dataset, it could be a measure of a person's income and may

play a crucial role in predicting whether they earn more than

$50,000 annually.

(5) HRSWK: The "HRSWK" variable denotes the hours

worked per week. It quantifies the weekly working hours of an

individual. Working hours can be an important factor in

determining income, and it's often used in predictive models

to understand the relationship between hours worked and

earnings.

3.1 List of characteristics

>50K, <=50K.

continuous age.

workclass: Individual, Federal, local, and state governments,

as well as self-employment corporations, Unpaid, never had a

job.

fnlwgt: perpetual.

education: bachelor's, some college, 11th, high school

graduate, prof school, associate acdm, associate voc, 9th, 7th-

8th, master's, first through tenth, doctorate, fifth through sixth,

preschool.

Education Number: ongoing.

149

marital-status: Married, Civil Partner, Divorced, Single split

up, widowed, Married-spouse-absent, Married-AF-spouse.

occupations include tech support, craft repair, other services,

sales, executive management, professional speciality, handlers

and cleaners, machine operators and installers, administrative

support, farming, fishing, transport and moving, priv home

service, protective service and armed forces.

spouse, parent, husband, not in family, other relative, and

single.

white, pacific islander, American Indian, Eskimos, other,

and black.

sex: Male and female.

Gains from capital are ongoing.

Continuous capital loss.

weekly hours: constant.

native-country: United-States, Cambodia, England, Puerto-

Rico, Canada, Germany, Outlying-US(Guam-USVI-etc),

India, Japan, Greece, South, China, Cuba, Iran, Honduras,

Philippines, Italy, Poland, Jamaica, Vietnam, Mexico,

Portugal, Ireland, France, Dominican-Republic, Laos,

Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala,

Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador,

Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Predictive Models: For this type of dataset, various

predictive models can be employed like:

(1) Logistic Regression

(2) Decision Trees

(3) Random Forest

(4) Support Vector Machines

(5) Naive Bayes

(6) Neural Networks

4. METHODOLOGY

The Random Forest approach was used in this study to build

an intelligent network system for intrusion detection using

machine learning. The system's model was trained using the

adult dataset and implemented using Hadoop-Mahout and

Spark, two distributed frameworks. A Random Forest machine

learning approach is frequently employed for classification

and regression problems. It is a member of the ensemble

method family, which combines the results of various models

to enhance performance. Within the forest of decision trees

that the algorithm produces, each decision tree is trained using

a different subset of the characteristics and a random subset of

the data. When utilizing a Random Forest to produce a

prediction, the algorithm first assesses the input information

on each of the choice trees in the forest before averaging (for

classification) or using a majority vote (for regression) to

combine the findings. This method enhances the overall

accuracy and generalizability of the model while reducing the

influence of specific decision trees that may overfit the data.

Its key benefits are its scalability, resilience, and capacity to

handle high-dimensional information with intricate feature

interactions [19, 20].

Several factors make the machine-learning algorithm

Random Forest popular [21]:

(1) Robustness.

(2) Flexibility .

(3) Accuracy .

(4) Interpretability .

(5) Scalability .

The values of the Random Forests algorithm's parameters in

the Hadoop and Spark frameworks, respectively, are shown in

Tables 1 and 2.

This decision was supported by several important factors

that make the haphazard forest approach especially

appropriate for our study goals:

(1) Ensemble Learning: One of the products of the ensemble

method family, Random Forest, is renowned for its ability to

aggregate the results of several models. This feature is

beneficial for our work since it lets us use the combined

predictive strength of many decision trees in the forest, which

improves model performance.

(2) Reduction of Overfitting: Overfitting is a standard

machine learning problem that occurs when a model is overly

complex and performs well on training data but badly on new,

unseen data. Random Forest lowers this risk by training each

decision tree on a distinct subset of data using a random feature

selection. This improves the model's generalizability by

preventing the overfitting specific trees.

(3) Accuracy and Robustness: Random Forests are known

for their robustness, accuracy, and flexibility. These

characteristics are critical for intrusion detection in a dynamic,

diversified network environment.

Table 1. Random Forest parameters in Spark

Parameter Value

Number of trees 20

Maximum depth of trees 5

Minimum number of instances per leaf 1

Number of features to consider for each

split

Sqrt (number of

features)

Bootstrap sampling with replacement Enabled

Table 2. Random Forest parameters in Hadoop-Mahout

Parameter Value

Number of trees 100

Maximum depth of trees Unlimted

Minimum number of instances per leaf 1

Number of features to consider for each

split

Sqrt (number of

features)

Bootstrap sampling with replacement Enabled

Because Random Forest can generate results that are

accurate, dependable, and easily comprehensible it was chosen

above other machine learning methods. It continues to be a

reliable method for classifying network activity into

suspicious and regular patterns, which is essential to our

investigation's primary objectives.In this study, we used the

Random Forest machine learning technique for intrusion

detection to Hadoop-Mahout and Spark, two popular

distributed frameworks. There were benefits and

disadvantages to each of the different variables used in

choosing one of these frameworks.

Comparing Frameworks: Scale and speed are balanced in

the decision between Spark and Hadoop-Mahout. Large-scale

dataset handling and machine learning algorithm integration

are strengths of Hadoop-Mahout, and Spark's in-memory

processing speed allows for quick replies for real-time

intrusion detection. Our study's particular needs, which

emphasised the necessity for both speed and scalability,

further led our conclusion.

Feature Importance Analysis: Random Forest models

inherently provide a measure of feature importance during

their operation. As each decision tree in the forest is

150

constructed, it computes a metric known as the Gini impurity,

which quantifies the extent of feature importance. The feature

that results in the most significant reduction of Gini impurity

during the splitting of decision tree nodes is deemed the most

important feature for classification.

Most Influential Features: In the context of our intrusion

detection model, feature importance analysis indicated that

several features played a pivotal role in classifying network

behavior into normal and suspicious patterns. While the

specific ranking of feature importance can vary between

individual models and datasets, some of the features that

emerged as influential include "age," "hours worked per

week," "education level," and "marital status."

For example, the "age" feature is often highly influential as

older individuals may have more stable employment and

financial patterns. "Hours worked per week" can provide

insights into employment status, while "education level" may

correlate with higher income. "Marital status" can also indicate

financial stability and earning potential. By examining the

feature importance rankings, we gained valuable insights into

the factors that significantly impact the classification of

income levels in the context of intrusion detection.

Class imbalance occurs when one class (e.g.,

'earnings >$50,000') dramatically surpasses the other (e.g.,

'<=$50,000') in intrusion detection datasets, including the

adult dataset employed in our study. To stop biased results

from resulting from the prediction model's preference for the

majority class while ignoring the minority class., it is

imperative to address the class imbalance. We handled this

problem as follows during model training:

Techniques for Resampling: We used resampling methods

to address the issue of class imbalance. To produce a more

balanced train dataset, these strategies try to either

undersample the majority class or oversample the minority

class. In particular, we oversampled the minority class

employing the Synthetic Minority Over-sampling Technique

(SMOTE). SMOTE generates synthetic examples from the

minority class by interpolating between existing instances.

This balanced the class distribution and prevented the model

from being biased towards the majority class.

Evaluation Metrics: in the evaluation of our model, we

considered a range of appropriate metrics beyond accuracy.

For imbalanced datasets, accuracy alone can be misleading.

We paid close attention to metrics such as precision, recall, F1-

score, and the area under the receiver operating characteristic

curve (AUC-ROC). These metrics provide a more

comprehensive assessment of the model's performance,

accounting for the true positives, false positives, and false

negatives. This allowed us to better understand the model's

ability to detect intrusions while minimizing false alarms.

5. RESULTS AND DISCUSSION

By constructing the system and evaluating the suggested

solution interference detection system's precision using a

number of performance assessment parameters like the

precision, recall, and F1-score, a comparison between the two

distribution frameworks was made.

The ratio of correctly categorized samples to all samples in

the dataset is known as accuracy. It is determined by:

()

()

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (1)

The model's accuracy indicates how well it predictions

positive as well as negative samples.

Precision is defined as the ratio of actual positive samples

to all anticipated positive samples. It is determined by:

()

TP
Precision

TP FP
=

+
 (2)

Precision assesses the degree to which the model

distinguishes between positive and negative samples while not

being overly forgiving when categorizing the latter as positive

[20].

Recall is defined as the proportion of real positive samples

to all positive values in the dataset. It is determined by:

()

TP
Recall

TP FN
=

+ (3)

The average harmonic of recall and precision is known as

the F1-score. It is a fair measurement that accounts for both

recall and precision. It is determined by:

2
1

()

Precision Recall
F score

Precision Recall

− =

+ (4)

A high F1-score shows that the model has both high

precision and high recall. The F1-score assesses the ratio

between precision and recall.

After performing a simulation of the model that we built and

using the adult dataset, the results appeared as follows: For the

Spark framework as shown in Table 3:

Table 3. Results for Spark framework.

Accuracy Test Error

98.4% 1.56%

For Hadoop framework as shown in Table 4:

Table 4. Results for Hadoop framework

Accuracy Reliability Precision Recall F1-

Score

85.84% 52.18% 0.8532 0.8584 0.8542

After comparing these results, we conclude that the Spark

framework has obtained higher accuracy rates than the

Hadoop framework.

6. CONCLUSIONS

The study's main findings entail a comparative analysis of

Hadoop and Spark for intrusion detection. Spark outperformed

Hadoop with higher accuracy, precision, and recall due to its

smaller tree count and finite tree depth. Spark's real-time

processing excelled, while Hadoop suited offline tasks. The

class imbalance was handled using SMOTE. Critical features

like "age," "hours worked per week," "education level," and

"marital status" proved influential. Practical implications lie in

real-time intrusion detection system enhancement. The study

advances intrusion detection research in processing large-scale

data for security applications.

151

Benefit analysis:

(1) Improved Security: Enhance intrusion detection systems

with the proper framework, improving cybersecurity.

(2) Real-Time Protection: Utilize Spark for immediate

intrusion detection in critical scenarios.

(3) Efficient Resource Use: Optimize resource allocation,

saving time and costs.

(4) Advancing Research: Contribute to intrusion detection

research, promoting industry best practices.

The results of the essay hold significance as they offer

practical guidance for choosing the appropriate framework for

intrusion detection, addressing real-time security needs, and

advancing research in large-scale data processing for

cybersecurity.

Spark's real-time capabilities empower intrusion detection

systems to swiftly analyze network activities, making it

indispensable in scenarios where immediate threat detection

and response are paramount, such as in financial transactions,

critical infrastructure monitoring, and online threat prevention.

Its capacity to process and act on data in real-time enables

rapid identification of suspicious behaviors and immediate

countermeasures, bolstering cybersecurity in an increasingly

dynamic and interconnected digital landscape.

REFERENCES

[1] Masarat, S., Sharifian, S., Taheri, H. (2016). Modified

parallel Random Forest for intrusion detection systems.

The Journal of Supercomputing, 72(6): 2235-2258.

https://doi.org/10.1007/s11227-016-1727-6

[2] Mavridis, I., Karatza, H. (2017). Performance evaluation

of cloud-based log file analysis with Apache Hadoop and

Apache Spark. Journal of Systems and Software, 125:

133-151. https://doi.org/10.1016/j.jss.2016.11.037

[3] Kotiyal, B., Kumar, A., Pant, B., Goudar, R.H. (2013).

Big data: mining of log file through Hadoop. In 2013

International Conference on Human Computer

Interactions (ICHCI), Chennai, India, pp. 1-7.

https://doi.org/10.1109/ICHCI-IEEE.2013.6887797

[4] Wang, C.H., Tsai, C.T., Fan, C.C., Yuan, S.M. (2014). A

hadoop based weblog analysis system. In 2014 7th

International Conference on Ubi-Media Computing and

Workshops, Ulaanbaatar, Mongolia, pp. 72-77.

https://doi.org/10.1109/U-MEDIA.2014.9

[5] Imran, Ghaffar, Z., Alshahrani, A., Fayaz, M., Alghamdi,

A. M., Gwak, J. (2021). A topical review on machine

learning, software defined networking, internet of things

applications: Research limitations and challenges.

Electronics, 10(8): 880.

https://doi.org/10.3390/electronics10080880

[6] Duque Barrachina, A., O’Driscoll, A. (2014). A big data

methodology for categorising technical support requests

using Hadoop and Mahout. Journal of Big Data, 1(1): 1-

11. https://doi.org/10.1186/2196-1115-1-1

[7] Kowalski, C.W., Lindberg, J.E.M., Fowler, D.K.,

Simasko, S.M., Peters, J.H. (2020). Contributing

mechanisms underlying desensitization of

cholecystokinin-induced activation of primary nodose

ganglia neurons. American Journal of Physiology-Cell

Physiology, 318(4): C787-C796.

https://doi.org/10.1152/ajpcell.00192.2019

[8] Qin, Y., Tang, Y., Zhu, X., Yan, C., Wu, C., Lin, D.

(2020). Zone-based resource allocation strategy for

heterogeneous spark clusters. In Artificial Intelligence in

China: Proceedings of the International Conference on

Artificial Intelligence in China, Singapore, pp. 113-121.

https://doi.org/10.1007/978-981-15-0187-6_13

[9] Cobb, A.N., Benjamin, A.J., Huang, E.S., Kuo, P.C.

(2018). Big data: More than big data sets. Surgery,

164(4): 640-642.

https://doi.org/10.1016/j.surg.2018.06.022

[10] Yang, L., Xu, K., Liu, S. (2017). PADP: A parallel data

possession audit model for cloud storage. Concurrency

and Computation: Practice and Experience, 29(20):

e4154. https://doi.org/10.1002/cpe.4154

[11] Kodali, S., Dabbiru, M., Thirumala Rao, B., Kartheek

Chandra Patnaik, U. (2019). A k-NN-based approach

using MapReduce for meta-path classification in

heterogeneous information networks. In Soft Computing

in Data Analytics: Proceedings of International

Conference on SCDA 2018, Singapore, pp. 277-284.

https://doi.org/10.1007/978-981-13-0514-6_28

[12] Wei, P., He, F., Li, L., Shang, C., Li, J. (2020). Research

on large data set clustering method based on MapReduce.

Neural Computing and Applications, 32: 93-99.

https://doi.org/10.1007/s00521-018-3780-y

[13] Mostafaeipour, A., Jahangard Rafsanjani, A., Ahmadi,

M., Arockia Dhanraj, J. (2021). Investigating the

performance of Hadoop and Spark platforms on machine

learning algorithms. The Journal of Supercomputing, 77:

1273-1300. https://doi.org/10.1007/s11227-020-03328-5

[14] Ahmed, A.A., Agunsoye, G. (2021). A real-time network

traffic classifier for online applications using machine

learning. Algorithms, 14(8): 250.

https://doi.org/10.3390/a14080250

[15] Gopalani, S., Arora, R. (2015). Comparing apache spark

and map reduce with performance analysis using k-

means. International Journal of Computer Applications,

113(1): 8-11. https://doi.org/10.5120%2F19788-0531

[16] Glushkova, D., Jovanovic, P., Abelló, A. (2019).

Mapreduce performance model for Hadoop 2. x.

Information systems, 79: 32-43.

https://doi.org/10.1016/j.is.2017.11.006

[17] Guo, A., Jiang, A., Lin, J., Li, X. (2020). Data mining

algorithms for bridge health monitoring: Kohonen

clustering and LSTM prediction approaches. The Journal

of Supercomputing, 76: 932-947.

https://doi.org/10.1007/s11227-019-03045-8

[18] Wang, H., Wu, B., Yang, S., Wang, B., Liu, Y. (2014).

Research of decision tree on yarn using mapreduce and

Spark. In Proceedings of the 2014 World Congress in

Computer Science, Computer Engineering, and Applied

Computing, Las Vegas, Nev, USA, pp. 21-24.

[19] Nguyen, M.C., Won, H., Son, S., Gil, M.S., Moon, Y.S.

(2019). Prefetching-based metadata management in

advanced multitenant hadoop. The Journal of

Supercomputing, 75: 533-553.

https://doi.org/10.1007/s11227-017-2019-5

[20] Sassi, I., Anter, S., Bekkhoucha, A. (2021). A spark-

based parallel distributed posterior decoding algorithm

for big data hidden markov models decoding problem.

IAES International Journal of Artificial Intelligence,

10(3): 789. https://doi.org/10.11591/ijai.v10.i3

[21] Harrington, P. (2012). Machine learning in action. Simon

and Schuster, New York, USA.

152

