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The aim of the attempt is to build a mechanism for objective evaluation of the autonomous 

nervous system (ANS) for disease diagnosis at an early stage. With the experience of data 

collection from various control subjects, BARC has identified eight different pulse 

morphologies. A Peripheral Pulse Analyser (PPA) measures peripheral blood flow. Blood 

flow was measured in control subjects (100) and patients (100). The morphology of a 

person's pulse changes throughout time. Pulse morphologies vary according to age, 

disease, and other parameters. More than 8500 signals from 200 humans were tested. 

Various pattern-matching and classification techniques are given in this research to detect 

the existence of specific pulse shapes in obtained PPA signals. Peaks of PPA blood flow 

patterns are detected, and features are extracted from the sample pattern. Various machine 

learning (ML) algorithms are used to identify various pulse shapes depending on the 

parameters of extracted features. We observed that in one PPA signal of the duration of 

300 seconds, 3 to 4 defined pulse morphologies out of 8 are available. Every pulse 

morphology is different from the others. After training, the system was able to detect pulse 

shapes to assess the ANS of the subject with more than 94% to 97% accuracy. The 

proposed system will assist the doctor in making a decision quickly based on a few 

processed parameters rather than assessing several individual parameters at a crucial time. 

The output of the system is the assessment report of ANS. This is an attempt to replace 

traditional Ayurvedic pulse examination methos for disease detection. 

Keywords: 

machine learning, peripheral pulse analyzer, 

autonomic nervous system, support vector 

machine, peripheral blood flow 

1. INTRODUCTION

In complex systems like the human body, where 

mathematical analysis is not possible due to complex 

geometry, complex or vague operating conditions, unknown 

physical parameters, etc., the conventional analysis 

procedures are either not applicable or lack precision. In such 

situations where uncertainty (a knowledge gap or imperfect 

knowledge) of one type or another exists, one has to resort to 

soft computing methods for analysis like artificial neural 

networks (ANN), genetic algorithms (GA), fuzzy logic, or a 

blend of these methodologies. ANN is used for analysing 

many real-life problems like physiological variability for 

objective evaluation of the autonomic nerve system (ANS) and 

to study the influence of the disease on the ANS [1]. In the 

present research, variability analysis is done with statistical, 

geometric, frequency domain transformation, and non-linear 

methods. Since ML algorithms are good at pattern recognition, 

classification, noise filtering, data interpretation, etc., it can 

give a better diagnostic yield. ML approach can provide an 

alternative methodology for the assessment of ANS. ML is 

employed to objectively assess the ANS in the developed 

system. 

1.1 Article highlights 

The proposed system streamlines the diagnostic process by 

providing rapid decision support based on variations in 

peripheral blood flow in the human body. The output of the 

system is an assessment report on the autonomic nervous 

system. 

- The work is of clinical significance for the early detection

of diseases by evaluating the ANS. The rapid decision making 

and concise reporting make it a notable advance in the field. 

- Similar previously published work used datasets from

online sources and recommended the use of real-time datasets. 

We used real-time collected datasets from patients having 

diabetes and hypertension as well as from control subjects for 

the analysis. 

1.2 Related works 

Previously, various morphological shapes of peripheral 

arteries were recorded and studied. For clinical diagnosis, no 

correlation among these patterns has been reported. Long-term 

follow-ups over the coming years, however, revealed that most 

of the patients developed myocardial infarction. This 
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suggested the importance of anatomical changes in central 

blood flow. The morphology of a peripheral pulse changes 

with time in a particular person as well as from person to 

person. A closer look at the data revealed that these pulse 

patterns were classified into eight different morphologies [1]. 

The Peripheral Pulse Analyser (PPA) designed by BARC to 

check the central and peripheral activities of human body. The 

PPA utilizes the impedance plethysmography principle for 

signal acquisition. The literal meaning of impedance 

plethysmography is “an indirect evaluation of alterations in 

blood volume within a specific body region by analysing 

changes in electrical impedance within that segment” [1]. 

Researchers confirmed in their proof-of-concept research that 

their DL-based PPG approach may be set up effectively to 

detect PAD using basic PPG readings in the hospital vascular 

department setting with very limited signal pre-conditioning. 

The distribution of mild-moderate Parkinson's disease (PAD), 

non-PAD, or major PAD patients were unequal in this proof 

of concept research. Future research should explore examining 

individuals from general care rather than specialized vascular 

facilities [2]. A thorough examination of clinical research 

reports released between 1990 and 2021 was conducted, 

concentrating on differences in pulse harmonic properties 

across different medical disorders and physiological 

circumstances to identify the patterns and characteristics. 

According to research, elements such as blood flow and brain 

activity affect harmonic intensity. It has been observed that 

connections between physiological conditions and harmonics 

offer potential for possible clinical applications. However, the 

procedure was laborious, slow, and subject to error [3]. In 

research, pulse analyzers designed by BARC are used on 

successor of diabetes patient as well as those having systemic 

hypertension. The Pulse Harmonic Analyzer (PHA) 

application program was developed expressly for this task. 

PHA analysis revealed sub-harmonic components associated 

with collective variation in the heart’s rate, pulsed volume, and 

pulse morphologies, indicating that it has the prospective to 

develop the preferred approach for real time deviation 

checking [4]. Initial research exploring barbershop based 

testing for peripheral artery disease, also known as PAD, in the 

Black men found a greater prevalence of PAD than expected, 

as well as low levels of PAD awareness. Considering this, 

there's a dire need for a lightweight device that can 

automatically identify PAD [5]. This work presents a unique 

methodology for estimating carotid to femoral velocity of 

pulse waves utilising spectrogram representation of peripheral 

pulse waveform data photoplethysmography (PPG) or blood 

pressure. The experiment is run on a public database. The 

results reveal that the three alternative techniques may achieve 

good performance, with the energy characteristics were 

outperforming all other models without noise. It is 

recommended that further verification in genuine human 

signals be undertaken to overthrow restriction of utilising 

publicly available information with just a single cardiac cycle 

[6]. The PPA signal can be acquired by measuring 3 

impedances using four electrodes. PPA signal is composed of 

different patterns of blood flow. Pattern matching is act of 

comparing patterns of given PPA signal with defined pulse 

morphology [7]. Various techniques are available for 

matching patterns [8]. The study proposes a derivative based 

peak detection approach for identifying peak in pulses that are 

received from a PPA created at the BARC. The system detects 

peaks using signal derivatives. The paper compares the 

suggested algorithm to the Pan-Tompkins algorithm, which is 

a well-known approach for detecting QRS in ECG signals. 

This comparative analysis proposes using the Pan-Tompkins 

algorithm to find peaks in PPA waveforms [9]. The study 

describes a method for measuring cuff less blood pressure 

utilizing multimodal characteristics and optimized machine 

learning methods. By combining pulse wave morphology, 

demographic data, and pulse arrival time, the authors achieve 

systolic and diastolic blood pressure estimates that are within 

a 5 mmHg skew of gold customary. The comparison of 

multiple ML algorithms reveals substantial variances, 

highlighting the need for optimization. The study suggests that 

with further optimization and validation using larger real-

world datasets, this approach could pave the way for more 

reliable and accurate continuous BP estimation in cuffless 

devices [10]. This study addresses the issue of incorrect 

diagnosis of Peripheral Artery Disease (PAD) by utilizing ML 

models to recognize people with and without PAD based on 

their gait patterns. The study achieves an 89% accuracy with 

ML models that use Neural Networks or Random Forest 

methods and include all laboratory-based gait factors [11]. The 

article describes a ML model that uses a collection of 

morphological features to evaluate the level of quality of 

pulsing physiological signal and detect lower quality portions. 

Several ML algorithm were evaluated on the ARDS data-set, 

plus the cost sensitive SVM and a group of Decision-Trees 

beat others [12]. The article describes a novel method for 

analysing pulse signals that combines time-domain features 

from the wavelet scatter method with frequency-domain 

information from an upgraded PNCC method. Using datasets 

from the MIT-BIH-mimic database, the approach achieves an 

outstanding 98.3% accuracy in categorising three medical 

symptom pulse signals [13]. The study [14] presents a brief 

overview of statistical machine learning and its underlying 

ideas. This study looks into machine-learning techniques to 

distinguish between high- and poor-quality pulse waveforms 

obtained from wearable devices. The study provides insights 

for improving pulse quality in wearable device usage [15-22].  

In the proposed algorithm, we have extracted different 

features like various amplitudes and time intervals in the peak, 

and are utilized to discriminate pulse morphology. 

 

 

2. METHODOLOGY 

 

2.1 Data acquisition 

 

BARC Mumbai has designed a PPA. M/S. SIMS 

HEALTHCARE PRIVATE LIMITED purchased and 

supplied the device, which was calibrated and checked for 

errors. Patient's permission was obtained in writing and the 

initiative involved a healthcare professional from MGM 

Hospital, Navi-Mumbai. PPA generates a PPA signal via the 

impedance plethysmography method. In impedance 

plethysmography, data is collected using four electrodes. Four 

electrodes were attached to the wrist. The PPA contains a 

sinusoidal oscillator, a voltage-to-current converter, 3 

measurement amplifiers, an analogue processor circuit, a low-

power microcontroller and a Bluetooth controller that 

communicates with a personal computer. 

A sinusoidal current with a fixed amplitude (2 mA) is 

applied to the upper extremities via the support electrodes C1 

and C2, which are attached to both the elbow and the palm. 

The power generated along the current path is recorded at 3 

locations on the wrist by sensory electrodes S1_S4, with S1 
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closer to the elbows and S4 closer to the palms. The distance 

between electrodes S1-S4 is approximately two centimetres. 

The voltage fluctuations between S1-S2, S2-S3 and S3-S4 

were amplified independently by the measurement amplifier-

1 and the measurement amplifier-3. These wrist positions 

correspond to the Kapha-Pitta-Vata positions defined in the 

Ayurveda system of medication. The amplified signal is 

subjected to additional processing to determine the impedance 

of the segment Z1 - Z3, the temporal variation of the 

impedance, i.e. the variance between the instantaneous 

impedance Z(t) and the initial impedance Z0, which is DZ1 - 

DZ3, and the first temporal derivative of the impedance, which 

is dZ1/dt - Z3/dt. These parameters represent aspects of body 

structure, variation in volume of blood and flow of blood 

within the respective segment. The PPA generates 8 different 

pulse morphology in different patients. Figure 1 illustrates 

these different pulse morphologies. Every PPA signal has 2 or 

3 repetitions of the pulse morphology, which vary between 

physically fit and unhealthy individuals. Statistical analysis 

and artificial neural networks are used to match these pulse 

morphologies for pattern recognition. Peripheral blood flow 

data will be collected using a peripheral pulse analyzer from 

both control subjects (100) and patients (100). 

The signal is recorded and saved by activating the “Capture" 

button and then examined for pulse morphology. The pulse 

morphology shows temporal variations within an individual. 

Pulse morphologies exhibit variation based on age, disease and 

other factors. Within each PPA signal lasting 5 minutes or 300 

seconds, typically 3 to 4 distinct pulse morphologies from a 

defined set of eight can be observed. The repetition of these 

available pulse morphologies within the PPA signal may vary 

depending on the health condition of the individual. 

 

 
 

Figure 1. Pulse morphologies of PPA 

 

2.2 Method 1: Amplitude interval-based pattern matching 

algorithm  

 

Various parameters extracted from the PPA signal are used 

to match the predefined eight pulse morphologies. The steps 

for pattern matching are shown in Figure 2. 
Figure 3 shows GUI (created in MATLAB) to inspect every 

file & shape and generate an excel sheet that presents various 

statistical values along of the chosen pattern. By choosing 

build excel-sheet, the user may create an excel sheet with 

statistical data for each file and the proportion of each 

recurring pattern. 

The waveform analysis can be performed by observing 

waveforms separately. After analysis, it has been observed that 

different parameters are present in waveforms. The 

characteristics of waveforms can be derived by using these 

parameters. Peaks and valleys are observed parameters for 

PPA waveform analysis. As we can see in Figure 4, pulse 

morphologies can be differentiated based on the location of 

peaks and valleys. Criteria for parameters may differ in 

different waveforms. For pulse morphologies, three peaks and 

three valleys are identified for analysis purposes. 

 

 
 

Figure 2. Flow diagram of amplitude interval based pattern 

matching algorithm 

 

 
 

Figure 3. GUI for PPA pattern identification. Zoom and pan 

tools can be used to view each peak 

 

 
 

Figure 4. Three peaks and valleys introduced in typical pulse 

morphology  
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2.2.1 Result of method 1 

Different points are introduced for understanding purpose 

of peaks and valleys as shown in Figure 3. Point A, C and E 

are valleys whereas point B, D and F are peaks for typical 

pulse morphology. Amplitudes are taken from zero line to 

introduced peaks and valleys. For point A, B, C, D, E and F 

amplitudes are A, B, C, D, E and F respectively. Similarly 

intervals are taken from one point to another as AB, BC, CD, 

DE, EF intervals. Polarity of C point plays vital role to 

determine pattern from P1-P4 and P5-P8. Among three valleys, 

first valley (V1) is considered as a baseline point for all 

patterns. Second valley is for polarity check. 

 

 
 

Figure 5. Waveform of pattern 1 to pattern 8 

 

Pattern 1: Three peaks and three valleys have been 

identified for pattern 1. The first peak, Pk1, ends below the 

baseline, and the second peak, Pk2, is multiple and its height 

is around 50% of the first peak shown in Figure 5 (P1). We 

can infer that V2 is below the baseline point, and after that, the 

pattern follows the 'm' shape. 

Pattern 2: As we can see in Figure 5 (P2) for pattern 2, First 

peak (Pk1) ends below the baseline and the height of the 

second (multiple) peak (Pk2) is around 75% of the first peak 

(Tallest Peak). 

Pattern 3: In Figure 5 (P3), the first peak (Pk1) ends below 

the baseline. The second peak (Pk2) is a multiple peak, and its 

height is around 20% of the first peak. It is also the shortest 

peak among the three peaks 

Pattern 4: All peaks end at the base line and the amplitude 

of all valleys are same in Figure 5 (P4). 

Pattern5: The first peak (Pk1) did not finish (i.e. didn’t cross 

the baseline), there is a slur in the downward slope near the 

bottom side in Figure 5 (P5). 

Pattern 6: In Figure 5 (P6), the first peak (Pk1) did not finish 

(i.e. didn’t cross the baseline) and there is a slur in the 

downward slope near the middle side. 

Pattern 7: All peaks do not touch the base line and there is 

more variation in amplitudes of valleys in Figure 5 (P7). 

Pattern 8: In Figure 5 (P8), the first peak (Pk1) did not finish 

(i.e. didn’t cross the baseline) completely and there is a slur in 

the downward slope near the top side. 

Figure 6 shows screenshot of excel sheet with statistical 

data for each file and the proportion of each recurring pattern. 
Column indicates amplitude and intervals. 13th column shows 

waveform morphology. 

 

 
 

Figure 6. Screenshot of excel sheet1 for parameters 

 

Table 1 indicates that in the PPA waveform for the 

particular subject, 53% of P1 morphology is present. More 

than 50% availability of P1 morphology within a duration of 

300 seconds indicates that the subject is healthy. 

 

Table 1. The percentage of patterns 

 
  P0 P1 P2 P3 P4 P5 P6 P7 P8 

% 100 1 53 1 8 31 5 0 0 0 

No. of 
peaks 

272 4 144 3 3 84 13 0 0 0 

 

2.3 Method 2: ML on continuous data for pattern 

matching 

 

The methodology involves using a supervised learning 

process to train a feed-forward model with three layers - the 

hidden layer, input layer, and output layer. We utilized the 

'trail' training function of MATLAB, which employs 

Levenberg-Marquardt backpropagation. The backpropagation 

algorithm compares the expected and actual results and adjusts 

the weights iteratively until the error reaches its minimum 

value. To evaluate the model's effectiveness, we calculated the 

mean square error. The testing phase aims to determine the 

model's ability to differentiate data into different classes. 

Memorization testing involves using known data, while 

generalization testing involves using unknown data. Two input 

methods are used for pattern matching using ML: 

Method 1: Data sample with statistical parameters  

Method 2: Data sample without statistical parameters 
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80% of the samples are used for training and 10% for testing 

for pattern matching. We obtained an accuracy of 96.232% for 

method 1 and 93.183% for method 2. The results are shown in 

Figures 7 and 8. The classification uses statistical parameters 

such as standard deviation, kurtosis, skewness, mean and 

power spectral density. In addition to the extraction, a 

comparison of these features is also provided. 

 

 
 

Figure 7. Regression and performance with statistical 

parameters 

 

 
 

Figure 8. Regression and performance without statistical 

parameters 

 

2.3.1 Steps to form a network 

·Reading the data as an excel sheet. 

·Formation of the network (using a feed-forward network). 

·Training the network with supervised learning. 

·Simulating the trained data as well as testing it with new. 

 

2.4 Method 3 - SVM using amplitude-interval parameters 

for pattern matching 

 

Algorithm of SVM is as follows: 

·Training data received for eight patterns had 100 rows per 

pattern. 

·This dataset is split into 8:2 ratios for training and testing. 

·The SVM method has five kernels named linear, rbf, poly, 

sigmoid and tahn. It has been seen that the linear kernel 

provides more accuracy as compared to others. 

·A trained model was used for prediction which gave 

accuracy in the range of 90-95% for various diseases. 

·The trained model was then used with data to determine 

whether the patient had an illness like as diabetes, 

hypertension, or cardiac. 

The flowchart in Figure 9 explains pattern matching using 

statistical parameters and data signal points fed to the ML. The 

sample data collected from a PPA device had a duration of five 

minutes for each patient. This data is in the form of a 

waveform. A peak identification algorithm based on peak 

derivation is used to pre-process the signal to produce 

numerical values. The five-minute waveform contains 

combinations of eight defined PPA patterns, P1 to P8. First, 

the algorithm is trained for these eight patterns. The trained 

system is used to determine the number of pattern repetitions 

in five minutes. The amplitude and interval parameters are 

used to identify these patterns. The SVM classifier is used to 

catalogue the patterns. An accuracy of 90-95% is achieved 

with the SVM method. 

 

 
 

Figure 9. Flow-diagram of SVM methodology for pattern 

matching 

 

GUI is designed using MATLAB to calculate number of 

repeated patterns input is excel file containing patient’s data, 

that is shown in Figure 10. 

 

 
 

Figure 10. Window for uploading patient’s data 

 

2.4.1 Results of SVM 

SVM make use of support vectors for classification. The 

pickle method is used for training the model to improve its 

efficiency. Classification using SVM becomes easy as the 
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dataset is numeric. PPA signal of patients is acquired. Pre-

processing of the signal is done using a peak derivative-based 

peak identification algorithm. The dataset prepared was in the 

form of numeric values. The attributes used to predict patterns 

are amplitude and interval. Table 2 presents count of total 

number of morphologies (P1 to P8) available in PPA 

waveform in the duration of 300 seconds. 

 

Table 2. Result of SVM, count of total number of patterns 

 
1 2 3 4 5 6 7 8 Total 

28 0 28 179 36 0 57 0 328 

134 17 15 129 19 1 27 0 342 

146 14 15 145 7 0 20 0 347 

233 49 6 46 4 2 13 1 354 

31 70 1 22 36 12 65 0 237 

41 21 0 11 60 67 118 0 318 

74 28 0 10 40 58 95 1 306 

35 182 3 19 6 2 45 0 292 

36 154 5 13 0 0 0 0 208 

35 179 1 17 0 0 4 0 236 
 

 

3. DISCUSSION 

 

The data set used for pattern matching is the signal captured 

by PPA. The data set consisted of a total of 200 healthy and 

unhealthy subjects, all of which contained predefined pulse 

morphologies. A total of 10453 morphological data were used. 

Twelve parameters (columns 1-12) were identified from the 

prepared data set. These 12 parameters are amplitudes and 

intervals of the acquired signal after peak detection. For each 

pattern, each parameter has a specific range. The defined 

patterns are distinguished by the different values for amplitude 

and interval. Using the pattern matching criteria, the patterns 

are matched and displayed in column No. 13 (see Figure 6). In 

the studies [2, 6, 10, 11], machine learning approaches are 

used, while in the studies [3, 4, 5, 9, 12], various physiological 

signal analysis are used. The performance of a deep learning 

model can be influenced by the content and variety of I/P data. 

As the study was conducted in a single location, any 

differences in data from different healthcare facilities or 

geographical regions may not have been taken into account. 

To avoid overfitting with only 126 data sets in the study [10], 

the size of the training set should be at least ten times the 

number of fitting factors. studies on variability, disease 

characterization and neural network application are discussed 

in the studies [1, 7, 8]. The 85% accuracy reported in the study 

[8] is limited to patterns P1, P6 and P8 in the collected data set. 

The performance of the model in new, unseen situations 

(external validation) is crucial for assessing its generalizability. 

 

 

4. LIMITATIONS 

 

There are significant obstacles and restrictions when 

creating a machine learning method for the quick diagnosis of 

different diseases using peripheral pulse wave inputs. First and 

foremost, biases in the dataset or restrictions on data 

availability might make it more difficult to train models 

effectively. High-quality and diverse data is essential for this 

process. Furthermore, selecting and extracting features from 

peripheral pulse wave data is a complex procedure that 

demands domain knowledge and has a big influence on model 

performance. Furthermore, in medical applications, where 

comprehension of the reasoning behind predictions is critical 

for clinical acceptability, it is imperative to guarantee the 

interpretability of complicated machine learning models. To 

evaluate the model's resilience and generalizability across 

various patient groups and contexts, it is essential to validate 

its performance using untested datasets. Collaboration with 

medical professionals and careful evaluation of workflow 

integration and usability are required when integrating 

machine learning models into clinical practice. In the end, such 

models must be shown to have clinical utility and impact 

through prospective research and trials in order to be widely 

adopted and successfully implemented in healthcare settings. 

 

 

5. CONCLUSION 

 

After implementing the proposed pattern-matching 

algorithm on the acquired PPA signal, we observed that in one 

PPA signal of the duration of 300 seconds, 3 to 4 defined pulse 

morphologies out of 8 are available. Subjective analysis of the 

acquired signal of 300 seconds has been done to match the 

standard patterns. We have seen that the proposed pattern-

matching algorithm, based on various amplitudes and time 

intervals, can match the patterns with an accuracy of 86% to 

95%. The obtained results are satisfactory. In order to fully 

realize the therapeutic utility and impact of such models, 

clinical studies and partnerships with healthcare professionals 

are necessary. Notwithstanding these difficulties, resolving 

these restrictions may open the door for the application of 

machine learning methods in clinical settings, eventually 

leading to better patient outcomes in cardiac care. Overcoming 

these challenges and realizing the full benefit of machine 

learning in heart function prediction will require ongoing 

study, interdisciplinary collaboration, and technical 

breakthroughs. 
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