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The aim of the attempt is to build a mechanism for objective evaluation of the autonomous
nervous system (ANS) for disease diagnosis at an early stage. With the experience of data
collection from various control subjects, BARC has identified eight different pulse
morphologies. A Peripheral Pulse Analyser (PPA) measures peripheral blood flow. Blood
flow was measured in control subjects (100) and patients (100). The morphology of a
person's pulse changes throughout time. Pulse morphologies vary according to age,
disease, and other parameters. More than 8500 signals from 200 humans were tested.
Various pattern-matching and classification techniques are given in this research to detect
the existence of specific pulse shapes in obtained PPA signals. Peaks of PPA blood flow
patterns are detected, and features are extracted from the sample pattern. Various machine
learning (ML) algorithms are used to identify various pulse shapes depending on the
parameters of extracted features. We observed that in one PPA signal of the duration of
300 seconds, 3 to 4 defined pulse morphologies out of 8 are available. Every pulse
morphology is different from the others. After training, the system was able to detect pulse
shapes to assess the ANS of the subject with more than 94% to 97% accuracy. The
proposed system will assist the doctor in making a decision quickly based on a few
processed parameters rather than assessing several individual parameters at a crucial time.
The output of the system is the assessment report of ANS. This is an attempt to replace
traditional Ayurvedic pulse examination methos for disease detection.

1. INTRODUCTION

In complex systems like the human

1.1 Article highlights

body, where The proposed system streamlines the diagnostic process by

mathematical analysis is not possible due to complex
geometry, complex or vague operating conditions, unknown
physical parameters, etc., the conventional analysis
procedures are either not applicable or lack precision. In such
situations where uncertainty (a knowledge gap or imperfect
knowledge) of one type or another exists, one has to resort to
soft computing methods for analysis like artificial neural
networks (ANN), genetic algorithms (GA), fuzzy logic, or a
blend of these methodologies. ANN is used for analysing
many real-life problems like physiological variability for
objective evaluation of the autonomic nerve system (ANS) and
to study the influence of the disease on the ANS [1]. In the
present research, variability analysis is done with statistical,
geometric, frequency domain transformation, and non-linear
methods. Since ML algorithms are good at pattern recognition,
classification, noise filtering, data interpretation, etc., it can
give a better diagnostic yield. ML approach can provide an
alternative methodology for the assessment of ANS. ML is
employed to objectively assess the ANS in the developed
system.
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providing rapid decision support based on variations in
peripheral blood flow in the human body. The output of the
system is an assessment report on the autonomic nervous
system.

- The work is of clinical significance for the early detection
of diseases by evaluating the ANS. The rapid decision making
and concise reporting make it a notable advance in the field.

- Similar previously published work used datasets from
online sources and recommended the use of real-time datasets.
We used real-time collected datasets from patients having
diabetes and hypertension as well as from control subjects for
the analysis.

1.2 Related works

Previously, various morphological shapes of peripheral
arteries were recorded and studied. For clinical diagnosis, no
correlation among these patterns has been reported. Long-term
follow-ups over the coming years, however, revealed that most
of the patients developed myocardial infarction. This
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suggested the importance of anatomical changes in central
blood flow. The morphology of a peripheral pulse changes
with time in a particular person as well as from person to
person. A closer look at the data revealed that these pulse
patterns were classified into eight different morphologies [1].

The Peripheral Pulse Analyser (PPA) designed by BARC to
check the central and peripheral activities of human body. The
PPA utilizes the impedance plethysmography principle for
signal acquisition. The literal meaning of impedance
plethysmography is “an indirect evaluation of alterations in
blood volume within a specific body region by analysing
changes in electrical impedance within that segment” [1].
Researchers confirmed in their proof-of-concept research that
their DL-based PPG approach may be set up effectively to
detect PAD using basic PPG readings in the hospital vascular
department setting with very limited signal pre-conditioning.
The distribution of mild-moderate Parkinson's disease (PAD),
non-PAD, or major PAD patients were unequal in this proof
of concept research. Future research should explore examining
individuals from general care rather than specialized vascular
facilities [2]. A thorough examination of clinical research
reports released between 1990 and 2021 was conducted,
concentrating on differences in pulse harmonic properties
across different medical disorders and physiological
circumstances to identify the patterns and characteristics.
According to research, elements such as blood flow and brain
activity affect harmonic intensity. It has been observed that
connections between physiological conditions and harmonics
offer potential for possible clinical applications. However, the
procedure was laborious, slow, and subject to error [3]. In
research, pulse analyzers designed by BARC are used on
successor of diabetes patient as well as those having systemic
hypertension. The Pulse Harmonic Analyzer (PHA)
application program was developed expressly for this task.
PHA analysis revealed sub-harmonic components associated
with collective variation in the heart’s rate, pulsed volume, and
pulse morphologies, indicating that it has the prospective to
develop the preferred approach for real time deviation
checking [4]. Initial research exploring barbershop based
testing for peripheral artery disease, also known as PAD, in the
Black men found a greater prevalence of PAD than expected,
as well as low levels of PAD awareness. Considering this,
there's a dire need for a lightweight device that can
automatically identify PAD [5]. This work presents a unique
methodology for estimating carotid to femoral velocity of
pulse waves utilising spectrogram representation of peripheral
pulse waveform data photoplethysmography (PPG) or blood
pressure. The experiment is run on a public database. The
results reveal that the three alternative techniques may achieve
good performance, with the energy characteristics were
outperforming all other models without noise. It is
recommended that further verification in genuine human
signals be undertaken to overthrow restriction of utilising
publicly available information with just a single cardiac cycle
[6]. The PPA signal can be acquired by measuring 3
impedances using four electrodes. PPA signal is composed of
different patterns of blood flow. Pattern matching is act of
comparing patterns of given PPA signal with defined pulse
morphology [7]. Various techniques are available for
matching patterns [8]. The study proposes a derivative based
peak detection approach for identifying peak in pulses that are
received from a PPA created at the BARC. The system detects
peaks using signal derivatives. The paper compares the
suggested algorithm to the Pan-Tompkins algorithm, which is
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a well-known approach for detecting QRS in ECG signals.
This comparative analysis proposes using the Pan-Tompkins
algorithm to find peaks in PPA waveforms [9]. The study
describes a method for measuring cuff less blood pressure
utilizing multimodal characteristics and optimized machine
learning methods. By combining pulse wave morphology,
demographic data, and pulse arrival time, the authors achieve
systolic and diastolic blood pressure estimates that are within
a 5 mmHg skew of gold customary. The comparison of
multiple ML algorithms reveals substantial variances,
highlighting the need for optimization. The study suggests that
with further optimization and validation using larger real-
world datasets, this approach could pave the way for more
reliable and accurate continuous BP estimation in cuffless
devices [10]. This study addresses the issue of incorrect
diagnosis of Peripheral Artery Disease (PAD) by utilizing ML
models to recognize people with and without PAD based on
their gait patterns. The study achieves an 89% accuracy with
ML models that use Neural Networks or Random Forest
methods and include all laboratory-based gait factors [11]. The
article describes a ML model that uses a collection of
morphological features to evaluate the level of quality of
pulsing physiological signal and detect lower quality portions.
Several ML algorithm were evaluated on the ARDS data-set,
plus the cost sensitive SVM and a group of Decision-Trees
beat others [12]. The article describes a novel method for
analysing pulse signals that combines time-domain features
from the wavelet scatter method with frequency-domain
information from an upgraded PNCC method. Using datasets
from the MIT-BIH-mimic database, the approach achieves an
outstanding 98.3% accuracy in categorising three medical
symptom pulse signals [13]. The study [14] presents a brief
overview of statistical machine learning and its underlying
ideas. This study looks into machine-learning techniques to
distinguish between high- and poor-quality pulse waveforms
obtained from wearable devices. The study provides insights
for improving pulse quality in wearable device usage [15-22].

In the proposed algorithm, we have extracted different
features like various amplitudes and time intervals in the peak,
and are utilized to discriminate pulse morphology.

2. METHODOLOGY
2.1 Data acquisition

BARC Mumbai has designed a PPA. M/S. SIMS
HEALTHCARE PRIVATE LIMITED purchased and
supplied the device, which was calibrated and checked for
errors. Patient's permission was obtained in writing and the
initiative involved a healthcare professional from MGM
Hospital, Navi-Mumbai. PPA generates a PPA signal via the
impedance  plethysmography method. In impedance
plethysmography, data is collected using four electrodes. Four
electrodes were attached to the wrist. The PPA contains a
sinusoidal oscillator, a voltage-to-current converter, 3
measurement amplifiers, an analogue processor circuit, a low-
power microcontroller and a Bluetooth controller that
communicates with a personal computer.

A sinusoidal current with a fixed amplitude (2 mA) is
applied to the upper extremities via the support electrodes C1
and C2, which are attached to both the elbow and the palm.
The power generated along the current path is recorded at 3
locations on the wrist by sensory electrodes S1_S4, with S1



closer to the elbows and S4 closer to the palms. The distance
between electrodes S1-S4 is approximately two centimetres.
The voltage fluctuations between S1-S2, S2-S3 and S3-S4
were amplified independently by the measurement amplifier-
1 and the measurement amplifier-3. These wrist positions
correspond to the Kapha-Pitta-Vata positions defined in the
Ayurveda system of medication. The amplified signal is
subjected to additional processing to determine the impedance
of the segment Z1 - Z3, the temporal variation of the
impedance, i.e. the variance between the instantaneous
impedance Z(t) and the initial impedance Z0, which is DZ1 -
DZ3, and the first temporal derivative of the impedance, which
is dZ1/dt - Z3/dt. These parameters represent aspects of body
structure, variation in volume of blood and flow of blood
within the respective segment. The PPA generates 8 different
pulse morphology in different patients. Figure 1 illustrates
these different pulse morphologies. Every PPA signal has 2 or
3 repetitions of the pulse morphology, which vary between
physically fit and unhealthy individuals. Statistical analysis
and artificial neural networks are used to match these pulse
morphologies for pattern recognition. Peripheral blood flow
data will be collected using a peripheral pulse analyzer from
both control subjects (100) and patients (100).

The signal is recorded and saved by activating the “Capture”
button and then examined for pulse morphology. The pulse
morphology shows temporal variations within an individual.
Pulse morphologies exhibit variation based on age, disease and
other factors. Within each PPA signal lasting 5 minutes or 300
seconds, typically 3 to 4 distinct pulse morphologies from a
defined set of eight can be observed. The repetition of these
available pulse morphologies within the PPA signal may vary
depending on the health condition of the individual.

P-1 P-2 P-3 P-4
M}\W /\j\/\/\,\/‘
P-5 P-6 P-7 P-8

Figure 1. Pulse morphologies of PPA

2.2 Method 1: Amplitude interval-based pattern matching
algorithm

Various parameters extracted from the PPA signal are used
to match the predefined eight pulse morphologies. The steps
for pattern matching are shown in Figure 2.

Figure 3 shows GUI (created in MATLAB) to inspect every
file & shape and generate an excel sheet that presents various
statistical values along of the chosen pattern. By choosing
build excel-sheet, the user may create an excel sheet with
statistical data for each file and the proportion of each
recurring pattern.

The waveform analysis can be performed by observing
waveforms separately. After analysis, it has been observed that
different parameters are present in waveforms. The
characteristics of waveforms can be derived by using these
parameters. Peaks and valleys are observed parameters for
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PPA waveform analysis. As we can see in Figure 4, pulse
morphologies can be differentiated based on the location of
peaks and valleys. Criteria for parameters may differ in
different waveforms. For pulse morphologies, three peaks and
three valleys are identified for analysis purposes.

[ READ PPA DATAFILE ]

¥

[ FIND PEAKS OF SIGNAL USING PEAK DETECTION ALGORITHM ]

i

[ SELECT THE SAMPLE PATTERN RANGE FROM PPA DATA FILE J

YES

NO

[ PREPARATION OF PATTERN SAMPLE BASED UPON IDENTIFIED PEAK & SELECTED RANGE }

¥

[ DETECTION OF ALL PEAK MAXIMAS & MINIMAS OF PREPARED DATA SAMPLE J

¥

[ DETECTION OF BASELINE POINT FOR CHECKING POLARITY ]

i

[ FEATURE EXTRACTION AND PATTERN MATCHING ]

1

[ DISPLAY IDENTIFIED PATTERN }

SELECT NEXT PEAKPOINT
STOP +

Figure 2. Flow diagram of amplitude interval based pattern
matching algorithm

PPA PATTERN IDENTIFICATION

40
Locate
psp . | ) | Generate Excel Sheet

PPA WAVEFORM

Figure 3. GUI for PPA pattern identification. Zoom and pan
tools can be used to view each peak

B

2

Figure 4. Three peaks and valleys introduced in typical pulse
morphology



2.2.1 Result of method 1

Different points are introduced for understanding purpose
of peaks and valleys as shown in Figure 3. Point A, C and E
are valleys whereas point B, D and F are peaks for typical
pulse morphology. Amplitudes are taken from zero line to
introduced peaks and valleys. For point A, B, C, D, E and F
amplitudes are A, B, C, D, E and F respectively. Similarly
intervals are taken from one point to another as AB, BC, CD,
DE, EF intervals. Polarity of C point plays vital role to
determine pattern from P1-P4 and P5-P8. Among three valleys,
first valley (V1) is considered as a baseline point for all
patterns. Second valley is for polarity check.

140 Pkl P4

PR2

Vi V2 v3

1.805 181 1815 182 1825 18

Pkl

v1

11645 1.165 1.1655 1.166 11665 1.1¢

Figure 5. Waveform of pattern 1 to pattern 8

Pattern 1: Three peaks and three valleys have been
identified for pattern 1. The first peak, Pk1, ends below the
baseline, and the second peak, Pk2, is multiple and its height
is around 50% of the first peak shown in Figure 5 (P1). We
can infer that V2 is below the baseline point, and after that, the
pattern follows the 'm' shape.

Pattern 2: As we can see in Figure 5 (P2) for pattern 2, First
peak (Pk1l) ends below the baseline and the height of the
second (multiple) peak (Pk2) is around 75% of the first peak
(Tallest Peak).

Pattern 3: In Figure 5 (P3), the first peak (Pk1) ends below
the baseline. The second peak (Pk2) is a multiple peak, and its
height is around 20% of the first peak. It is also the shortest
peak among the three peaks

Pattern 4: All peaks end at the base line and the amplitude
of all valleys are same in Figure 5 (P4).
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PatternS: The first peak (Pk1) did not finish (i.e. didn’t cross
the baseline), there is a slur in the downward slope near the
bottom side in Figure 5 (P5).

Pattern 6: In Figure 5 (P6), the first peak (Pk1) did not finish
(i.e. didn’t cross the baseline) and there is a slur in the
downward slope near the middle side.

Pattern 7: All peaks do not touch the base line and there is
more variation in amplitudes of valleys in Figure 5 (P7).

Pattern 8: In Figure 5 (P8), the first peak (Pk1) did not finish
(i.e. didn’t cross the baseline) completely and there is a slur in
the downward slope near the top side.

Figure 6 shows screenshot of excel sheet with statistical
data for each file and the proportion of each recurring pattern.
Column indicates amplitude and intervals. 13th column shows
waveform morphology.
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Figure 6. Screenshot of excel sheetl for parameters

Table 1 indicates that in the PPA waveform for the
particular subject, 53% of P1 morphology is present. More
than 50% availability of P1 morphology within a duration of
300 seconds indicates that the subject is healthy.

Table 1. The percentage of patterns

PO P1 P2 P3 P4 P5 P6 P7 P8

% 100 1 53 1 8 31 5 0 0 0

No.of 272 4 144 3 3 84 13 0 0 0
peaks

2.3 Method 2: ML on continuous data for pattern
matching

The methodology involves using a supervised learning
process to train a feed-forward model with three layers - the
hidden layer, input layer, and output layer. We utilized the
trail' training function of MATLAB, which employs
Levenberg-Marquardt backpropagation. The backpropagation
algorithm compares the expected and actual results and adjusts
the weights iteratively until the error reaches its minimum
value. To evaluate the model's effectiveness, we calculated the
mean square error. The testing phase aims to determine the
model's ability to differentiate data into different classes.
Memorization testing involves using known data, while
generalization testing involves using unknown data. Two input
methods are used for pattern matching using ML:

Method 1: Data sample with statistical parameters

Method 2: Data sample without statistical parameters



80% of the samples are used for training and 10% for testing
for pattern matching. We obtained an accuracy of 96.232% for
method 1 and 93.183% for method 2. The results are shown in
Figures 7 and 8. The classification uses statistical parameters
such as standard deviation, kurtosis, skewness, mean and
power spectral density. In addition to the extraction, a
comparison of these features is also provided.

Training: R=0.99127 Validation: R=0.97496

o 2 e
e %
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|
£ §| o, /0
: 31 o
£ 2l o A °

& P
i i 4
8 s

Best Validation Performance is 0.10306 at epoch 20
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| Goal r

2 % A 2 3 4
Target Target

Test: R=0.96238

All: R=0.97904

Mean Squared Error (mse)

Output ~= 0.98'Target + 0.096
Output ~=0.98"Target + 0.071

70 Epochs

Figure 7. Regression and performance with statistical
parameters

Training: R=0.98369

Validation: R=0.96983

o027

~= 0.95 Target + 0.1
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<

Target

Output ~= 0.93 Target +
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Test: R=0.96520 All: R=0.87827

red Emmar (mse)

Mean Squar

Quiput ~= 0.94'Target + 017
Qutput ~= 0.95'Target +0.14

Target Target 5 Epochs

Figure 8. Regression and performance without statistical
parameters

2.3.1 Steps to form a network
* Reading the data as an excel sheet.
« Formation of the network (using a feed-forward network).
* Training the network with supervised learning.
» Simulating the trained data as well as testing it with new.

2.4 Method 3 - SVM using amplitude-interval parameters
for pattern matching

Algorithm of SVM is as follows:

« Training data received for eight patterns had 100 rows per
pattern.

* This dataset is split into 8:2 ratios for training and testing.

» The SVM method has five kernels named linear, rbf, poly,
sigmoid and tahn. It has been seen that the linear kernel
provides more accuracy as compared to others.

» A trained model was used for prediction which gave
accuracy in the range of 90-95% for various diseases.

* The trained model was then used with data to determine
whether the patient had an illness like as diabetes,
hypertension, or cardiac.

The flowchart in Figure 9 explains pattern matching using
statistical parameters and data signal points fed to the ML. The
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sample data collected from a PPA device had a duration of five
minutes for each patient. This data is in the form of a
waveform. A peak identification algorithm based on peak
derivation is used to pre-process the signal to produce
numerical values. The five-minute waveform contains
combinations of eight defined PPA patterns, P1 to P8. First,
the algorithm is trained for these eight patterns. The trained
system is used to determine the number of pattern repetitions
in five minutes. The amplitude and interval parameters are
used to identify these patterns. The SVM classifier is used to
catalogue the patterns. An accuracy of 90-95% is achieved
with the SVM method.

Acquiring data from patient

NS

Pre-processing of PPA signal

NS

Selection of Algorithm for Training

Train system for eight defined patterns

NS

Test the PPA signal

NS

Prediction for new patient's data

NS

Patterns present in PPA signal are displayed

Figure 9. Flow-diagram of SVM methodology for pattern
matching

GUI is designed using MATLAB to calculate number of
repeated patterns input is excel file containing patient’s data,
that is shown in Figure 10.

¢ - (u] X

Pulse Peripheral Analyzer

VBrowse

Goi

Press Browse button or enter CSV filename then press the Go button

Figure 10. Window for uploading patient’s data

2.4.1 Results of SVM

SVM make use of support vectors for classification. The
pickle method is used for training the model to improve its
efficiency. Classification using SVM becomes easy as the



dataset is numeric. PPA signal of patients is acquired. Pre-
processing of the signal is done using a peak derivative-based
peak identification algorithm. The dataset prepared was in the
form of numeric values. The attributes used to predict patterns
are amplitude and interval. Table 2 presents count of total
number of morphologies (P1 to P8) available in PPA
waveform in the duration of 300 seconds.

Table 2. Result of SVM, count of total number of patterns

1 2 3 4 5 6 7 8 Total
28 0 28 179 36 0 57 0 328
134 17 15 129 19 1 27 0 342
146 14 15 145 7 0 20 0 347
233 49 6 46 4 2 13 1 354
31 70 1 22 36 12 65 0 237
41 21 0 11 60 67 118 0 318
74 28 0 10 40 58 95 1 306
35 182 3 19 6 2 45 0 292
36 154 5 13 0 0 0 0 208
35 179 1 17 0 0 4 0 236

3. DISCUSSION

The data set used for pattern matching is the signal captured
by PPA. The data set consisted of a total of 200 healthy and
unhealthy subjects, all of which contained predefined pulse
morphologies. A total of 10453 morphological data were used.
Twelve parameters (columns 1-12) were identified from the
prepared data set. These 12 parameters are amplitudes and
intervals of the acquired signal after peak detection. For each
pattern, each parameter has a specific range. The defined
patterns are distinguished by the different values for amplitude
and interval. Using the pattern matching criteria, the patterns
are matched and displayed in column No. 13 (see Figure 6). In
the studies [2, 6, 10, 11], machine learning approaches are
used, while in the studies [3, 4, 5, 9, 12], various physiological
signal analysis are used. The performance of a deep learning
model can be influenced by the content and variety of I/P data.
As the study was conducted in a single location, any
differences in data from different healthcare facilities or
geographical regions may not have been taken into account.
To avoid overfitting with only 126 data sets in the study [10],
the size of the training set should be at least ten times the
number of fitting factors. studies on variability, disease
characterization and neural network application are discussed
in the studies [1, 7, 8]. The 85% accuracy reported in the study
[8] is limited to patterns P1, P6 and P8 in the collected data set.
The performance of the model in new, unseen situations

(external validation) is crucial for assessing its generalizability.

4. LIMITATIONS

There are significant obstacles and restrictions when
creating a machine learning method for the quick diagnosis of
different diseases using peripheral pulse wave inputs. First and
foremost, biases in the dataset or restrictions on data
availability might make it more difficult to train models
effectively. High-quality and diverse data is essential for this
process. Furthermore, selecting and extracting features from
peripheral pulse wave data is a complex procedure that
demands domain knowledge and has a big influence on model
performance. Furthermore, in medical applications, where
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comprehension of the reasoning behind predictions is critical
for clinical acceptability, it is imperative to guarantee the
interpretability of complicated machine learning models. To
evaluate the model's resilience and generalizability across
various patient groups and contexts, it is essential to validate
its performance using untested datasets. Collaboration with
medical professionals and careful evaluation of workflow
integration and usability are required when integrating
machine learning models into clinical practice. In the end, such
models must be shown to have clinical utility and impact
through prospective research and trials in order to be widely
adopted and successfully implemented in healthcare settings.

5. CONCLUSION

After implementing the proposed pattern-matching
algorithm on the acquired PPA signal, we observed that in one
PPA signal of the duration of 300 seconds, 3 to 4 defined pulse
morphologies out of 8 are available. Subjective analysis of the
acquired signal of 300 seconds has been done to match the
standard patterns. We have seen that the proposed pattern-
matching algorithm, based on various amplitudes and time
intervals, can match the patterns with an accuracy of 86% to
95%. The obtained results are satisfactory. In order to fully
realize the therapeutic utility and impact of such models,
clinical studies and partnerships with healthcare professionals
are necessary. Notwithstanding these difficulties, resolving
these restrictions may open the door for the application of
machine learning methods in clinical settings, eventually
leading to better patient outcomes in cardiac care. Overcoming
these challenges and realizing the full benefit of machine
learning in heart function prediction will require ongoing

study, interdisciplinary collaboration, and technical
breakthroughs.
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