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A problem of heat transfer by conduction, convection, and radiation has been studied for 

both steady and unsteady states. A numerical technique based on the finite difference 

method was adopted to solve the mathematical boundary value problem, which was created 

under some conditions with different values of physical parameters. The solution started 

with an unsteady state, reaching a steady state after many iterations. The effect of various 

parameters has been discussed for different temperatures of the parallel walls, and the 

governing equations have been established, which appear to be of the parabolic type. They 

were treated numerically using the Alternating Direction Implicit Method, which is 

considered good in stability with acceptable accuracy. Both cases for the steady and 

unsteady state, which usually arise in the discussion of fluid flow or heat transfer problems, 

are treated in this paper as one case dissimilar to the previous works, and this is the main 

goal of the present article. 

Keywords: 

free convection, heat transfer, numerical 

solution, porous substance, steady flow 

unsteady flow 

1. INTRODUCTION

The study of the steady and unsteady state of any system is 

very important for which it continues to exist or not; for this 

reason, the unsteady state cannot stay longer for some time 

under circumstances conditions and if the system continues 

working without affecting whatever the time, that means the 

steady state. For this and more, the study of the steady and 

unsteady solution has gained the impotency. The attention in 

this paper has been given to solving a problem starting from 

an unsteady state by using an ADI technique for some 

iterations to reach a steady state simultaneously. The results 

have been plotted to explain the situation. Ganish and 

Krishnambal [1] studied unsteady magneto hydrodynamic 

flow between parallel porous plates. They discussed the 

problem and gave some analysis of their work with the help of 

graphs. Gnana Prasuna et al. [2] investigated the unsteady flow. 

They solved the problem using two stages, steady and 

unsteady, by using the Laplace transformation method to 

explain the results and deduced that the velocity profiles are 

parabolic and symmetric about the channel. They also noticed 

that the porosity varies linearly during time. Attia et al. [3] 

discussed unsteady non-Darcian viscous incompressible fluid 

surrounded by two parallel porous plates, they applied uniform 

and constant pressure gradient the viscous dissipation is 

considered in the energy equation, it is found that porosity, 

internal effects and suction have a remarked effect on 

decreasing the velocity distribution with inverse 

proportionally manner. Uwanta and Hamza [4], presented the 

natural convection for an unsteady state of heat generating and 

absorbing fluid flow in a vertical channel. The problem has 

been solved using the semi-implicit finite difference method. 

The steady state was also obtained by expressing the velocity, 

concentration, and temperature and interpreting the results 

graphically for some parameters such as suction, injection and 

Soret number. Moses et al. [5] reported unsteady magneto 

hydrodynamic coutte flow with the lower plate considered 

porous. They solved the government equations by using 

separable method, the effect of various parameters such as 

Hartman, Prandtl numbers have been taken into account on the 

flow, also deduced that the velocity profile and temperature 

distribution and the skin friction decrease with high Hartman 

number, the convection increased with large Nusselt number. 

The magnetic field significantly affects the flow of unsteady 

coutte flow between two infinite parallel porous plates in an 

inclined magnetic field with heat transfer. Hamza et al. [6] 

suggested a study of two steady and unsteady states of natural 

convection flow in a vertical channel with the presence of a 

uniform magnetic field. The partial differential equations were 

solved approximately using a semi-implicit finite difference 

scheme, and the computed results for velocity, temperature, 

and skin friction were discussed and presented graphically. A 

comparison has been made with previously published work. It 

was found that the fluid velocity and temperature increase with 

increasing variable thermal conductivity, while the magnetic 

parameter retards the motion of the fluid. Uddin et al. [7] 

analyzed unsteady laminar free convection fluid flow 

numerically, and a mixed method has been adopted to the 

solution of the problem, fourth-order Runge-Kutta, shooting 

methods were used. Sattar and Subbhni [8] considered a non-

Newtonian incompressible fluid under the effect of couple 

stress and magnetic field using a finite element technique. 
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They assumed the pulsatile pressure gradient in the direction 

of motion with the effect of different parameters, and they 

concluded that the flow is damping with increasing stress, 

which is used in some cases, such as blood diseases. The 

studies [9, 10] investigated the exact solution of unsteady flow 

using the integral transform method based on Laplace and sine 

Fourier transformation. The effect of various parameters on 

fluid velocity is presented graphically, and the time of steady 

state has been evaluated. The studies [11-14] presented 

unsteady flow and heat transfer of a viscous, incompressible 

electrically conducting fluid through a porous horizontal 

channel. The associated equations of the problem were 

transformed to dimensionless form and treated analytically 

using the perturbation method. The present work provides a 

mathematical technique for solving scientific problems that is 

used to solve them separately by introducing some 

assumptions that lead to solving the problem twice, whoever 

it could be solved once using this method (ADI), starting in an 

unsteady state until reaching a steady state for limited 

iterations under this method. 

 

 

2. DESCRIBTION OF THE MODEL 

 

Consider a laminar fluid confined between two heated 

conducting parallel walls at a vertical position with different 

temperature. The horizontal walls are taken to be isolated. 

Imagine that the x-axis is parallel to non-conducting walls 

while the y- axis is parallel to the conducting walls. The 

distance between the wall is L with height h, as it is shown in 

Figure 1 below. 

 

 
 

Figure 1. The diagram of the model 

 

2.1 Governing equations 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 

 

(2) 

 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) 

+∈̄ [(
𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

] 

(3) 

 

where, 𝛼 =
𝑘

𝜌𝑐𝑝
are dissipation function and thermal 

conductivity, respectively. Introducing the following non-

dimensional terms: 

𝑝𝑟 =
𝜗

𝛼
 Prandtl number 

𝐺𝑟 =
𝑔𝛽𝐿3𝛥𝑇

𝜗2  Grashof number 

Ra =  Gr.Pr =
𝑔𝛽𝐿3𝛥𝑇

𝜗𝛼
 Rayleigh number 

𝛸 =
𝑥

𝐿
, 𝛶 =

𝑦(√𝐺𝑟)
1

2⁄

𝐿
, and 𝜃 =

𝑇 − 𝑇0

𝛥𝑇
, 𝛥𝑇 = 𝑇1 − 𝑇0 

𝑈 =
𝑢𝐿

𝜗√𝐺𝑟
, 𝑉 =

𝑣𝐿

𝜗(√𝐺𝑟)
1

2⁄
, 𝜏 =

𝑡𝜗√𝐺𝑟

𝐿2
 

With the boundary conditions given by 

 

𝑢 = 0, 0 ≤ 𝑥 ≤ 𝑙 and 𝑣 = 0, 0 ≤ 𝑦 ≤ ℎ 

𝑇 = 𝑇1,  𝑇0 atx=0, l, t = 0 

0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ ℎ: 𝑢 = 𝑣 = cons tan 𝑡 , 𝑇 = 𝑇1 = 10.0 
𝜕𝑇

𝜕𝑦
= 0 at 𝑦 = 0, ℎ 

𝑦 = 0: 𝑢 = 𝑣 = cons tan 𝑡 , 𝑇 = 𝑇0 = 0.0 
𝑦 = ℎ: 𝑢 = 𝑣 = cons tan 𝑡 , 𝑇 = 𝑇1 = 10.0 

 

By using these conditions, the governing equations becomes: 

 
𝜕𝑈

𝜕𝛸
+

𝜕𝑉

𝜕𝛶
= 0 (4) 

 
𝜕𝜉

𝜕𝜏
+ 𝑈

𝜕𝜉

𝜕𝛸
+ 𝑉

𝜕𝜉

𝜕𝛶
= 𝑝𝑟𝛻2𝜉 + 𝑝𝑟𝑅𝑎

𝜕𝜃

𝜕𝛶
 (5) 

 

𝜕𝜃

𝜕𝜏
+ 𝑈

𝜕𝜃

𝜕𝛸
+ 𝑉

𝜕𝜃

𝜕𝛶
=

𝜕2𝜃

𝜕𝛸2
+

𝜕2𝜃

𝜕𝛶2
 

+𝜀̄ [(
𝜕𝑈

𝜕𝑌
)

2

+ (
𝜕𝑉

𝜕𝑋
)

2

] 

(6) 

 

𝜉 = −𝛻2𝜓 
𝜕𝜓

𝜕𝑦
= 𝑢,

𝜕𝜓

𝜕𝑥
= −𝑣 

𝜀̄ =
𝑔𝛽𝐿

𝑐𝑝

 

 

whereas, 𝜉, 𝜓 is the vorticity and stream function, respectively, 

with the conditions 

 

0 ≤ 𝛸 ≤ 𝐿, 0 ≤ 𝛶 ≤ ℎ: 𝑈 = 𝑉 = cons tan 𝑛 𝑡 
𝜃 = 10.0, 𝑡 > 0 

𝛸 = 0 and 𝑥 = 𝐿: 𝑈 = 𝑉 = cons tan 𝑡 

𝜃 = 10.0 or 
𝜕𝜃

𝜕𝛸
= 0 

𝛶 = 0: 𝑈 = 𝑉 = cons tan 𝑡 , 𝜃 = 0 
𝛶 = ℎ: 𝑈 = 𝑉 = cons tan 𝑡 , 𝜃 = 0  

 

 

3. METHOD OF SOLUTION 

 

The Eqs. (5) and (6) are the parabolic non-linear partial 

differential equation, and it is suitable to solve numerically by 

using ADI finite difference method, which is considered stable 

and has good accuracy. Moreover, the solution starts with an 

unsteady state and reaches a steady state after some iterations. 

We started to get the solution of Eq. (6) and then substituted 

the approximate temperature values in Eq. (5). This technique 
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used in this work and the outcome results discussed which 

explained in a list of results and figures as it is shown below. 

So the mentioned equations have been modified both 

according to this procedure, firstly in the x-direction, which 

represents the solution of the steady state, followed by the 

solution in the y-direction to reach the unsteady state, as 

follows: 

 

𝜉𝑖,𝑗
∗ − 𝜉𝑖,𝑗,𝑛

𝛥𝜏

2

= 𝑃𝑟

[
 
 
 
 
𝜉𝑖+1,𝑗

∗ − 2𝜉∗
𝑖,𝑗

+ 𝜉𝑖−1,𝑗
∗

(𝛥𝑥)2
+

𝜉𝑖,𝑗+1,𝑛 − 2𝜉𝑖,𝑗,𝑛 + 𝜉𝑖,𝑗−1,𝑛

(𝛥𝑦)2 ]
 
 
 
 

 

+𝑃𝑟 𝑅 𝑎 [
𝜃𝑖,𝑗+1,𝑛+1 − 𝜃𝑖,𝑗−1,𝑛+1

2𝛥𝑦
] 

(7) 

 
𝜉𝑖,𝑗,𝑛+1 − 𝜉𝑖,𝑗

∗

𝛥𝜏

2

=
2𝑃𝑟 (𝛥𝑦)2 [𝜉𝑖+1,𝑗

∗ − 2𝜉∗
𝑖,𝑗

+ 𝜉𝑖−1,𝑗
∗ ]

2(𝛥𝑥)2(𝛥𝑦)2
 

+
2𝑃𝑟(𝛥𝑥)2[𝜉𝑖,𝑗+1,𝑛 − 2𝜉𝑖,𝑗,𝑛 + 𝜉𝑖,𝑗−1,𝑛]

2(𝛥𝑥)2(𝛥𝑦)2
 

+
𝑃𝑟 𝑅 𝑎(𝛥𝑥)(𝛥𝑦)2[𝜃𝑖+1,𝑗,𝑛+1 − 𝜃𝑖−1,𝑗,𝑛+1]

2(𝛥𝑥)2(𝛥𝑦)2
 

(8) 

 
𝜃𝑖,𝑗

∗ − 𝜃𝑖,𝑗
𝑛

𝛥𝜏
2⁄

+ 𝑈𝑖,𝑗
𝑛

𝜃𝑖+1,𝑗
∗ − 𝜃𝑖−1,𝑗

∗

2𝛥𝑋
+ 𝑉𝑖,𝑗

𝑛
𝜃𝑖,𝑗+1

𝑛 − 𝜃𝑖,𝑗−1
𝑛

2𝛥𝑌

= 𝛿𝑥
2𝜃𝑖,𝑗

∗  

+𝛿𝑦
2𝜃𝑖,𝑗

𝑛 + 𝜀̄ [(
𝑈𝑖,𝑗+1

𝑛 − 𝑈𝑖,𝑗−1
𝑛

2𝛥𝑌
)

2

+ (
𝑉𝑖+1,𝑗

𝑛 − 𝑉𝑖−1,𝑗
𝑛

2𝛥𝑋
)

2

] 

(9) 

 

𝜃𝑖,𝑗
𝑛+1 − 𝜃𝑖,𝑗

∗

𝛥𝜏
2⁄

+ 𝑈𝑖,𝑗
𝑛

𝜃𝑖+1,𝑗
∗ − 𝜃𝑖−1,𝑗

∗

2𝛥𝑋

+ 𝑉𝑖,𝑗
𝑛

𝜃𝑖,𝑗+1
𝑛+1 − 𝜃𝑖,𝑗−1

𝑛+1

2𝛥𝑌
= 𝛿𝑥

2𝜃𝑖,𝑗
∗  

+𝛿𝑦
2𝜃𝑖,𝑗

𝑛+1 + 𝜀̄ [(
𝑈𝑖,𝑗+1

𝑛 − 𝑈𝑖,𝑗−1
𝑛

2𝛥𝑌
)

2

+ (
𝑉𝑖+1,𝑗

𝑛 − 𝑉𝑖−1,𝑗
𝑛

2𝛥𝑋
)

2

] 

(10) 

 

The suitable solution started by being considered 𝑈𝑖,𝑗
𝑛 ,  𝑉𝑖,𝑗

𝑛  

as constant with small values besides the evaluated 

temperature values from the heat equation were substituted in 

the vorticity equation, so Eq. (8) reduced into 

 

𝐴(𝐼)𝜉𝑖−1,𝑗
∗ + 𝐵(𝐼)𝜉𝑖,𝑗

∗ + 𝐶(𝐼)𝜉𝑖+1,𝑗
∗ = 𝐷(𝐼) 

 

where, 

 

𝐴(𝐼) = − [
𝑈𝑖,𝑗

𝑛 𝛥𝜏

2𝛥𝑥
−

𝛥𝜏

(𝛥𝑥)2
] 

𝐵(𝐼) = 2 (1 +
𝛥𝜏

(𝛥𝑥)2
) 

𝐶(𝐼) = [
𝑈𝑖,𝑗

𝑛 𝛥𝜏

2𝛥𝑥
−

𝛥𝜏

(𝛥𝑥)2
] 

𝐷(𝐼) = [
𝑉𝑖,𝑗

𝑛 𝛥𝜏

2𝛥𝑦
+

𝛥𝜏

(𝛥𝑥)2
] 𝜉𝑖,𝑗−1

∗ + 2(1 +
𝛥𝜏

(𝛥𝑦)2
) 𝜉𝑖,𝑗

∗  

+ [
𝛥𝜏

(𝛥𝑥)2
−

𝑉𝑖,𝑗
𝑛 𝛥𝜏

2𝛥𝑦
] 𝜉𝑖,𝑗+1

∗  

 

where, 𝛥𝑦 = 𝛥𝑥  represent the mesh size and 𝜉∗ is an 

intermediate variable. The same procedure was used in the 

calculation of 𝜉𝑛+1 at the advanced step in time. 

 

 

4. RESULTS AND CONCLUSIONS 

 

For different parameters, the results of each calculating step 

have been given below. 

 

4.1 Unsteady state of temperature distribution 
 

The solution of Eqs. (9) and (10) for the following data 𝜀̄ =
−0.05, 𝑈𝑖,𝑗

𝑛 = cons tan 𝑡, 𝑉𝑖,𝑗
𝑛 = cons tan 𝑡 appeared as: 

 
10.00000 4.94053 1.49870 0.45469 0.13801 0.04195 0.01281 

0.00397 0.00128 0.00043 0.00006 

 

10.00000 4.90188 1.48712 0.45133 0.13714 0.04184 0.01293 

0.00415 0.00148 0.00061 0.00015 

 

10.00000 5.29102 1.60572 0.48786 0.14878 0.04593 0.01472 

0.00525 0.00233 0.00130 0.00051 

 

10.00000 5.40983 1.64359 0.50118 0.15466 0.04954 0.01764 

0.00793 0.00485 0.00350 0.00168 

 

10.00000 5.44837 1.66133 0.51261 0.16417 0.05846 0.02636 

0.01650 0.01310 0.01072 0.00554 

 

10.00000 5.46831 1.68732 0.54044 0.19254 0.08698 0.05483 

0.04468 0.04026 0.03452 0.01826 

 

10.00000 5.50157 1.76315 0.62917 0.28516 0.18070 0.14860 

0.13754 0.12979 0.11298 0.06021 

 

10.00000 5.60134 2.01015 0.92080 0.59024 0.48957 0.45771 

0.44366 0.42495 0.37165 0.19848 

 

10.00000 5.92728 2.82351 1.88192 1.59591 1.50782 1.47672 

1.45284 1.39799 1.22439 0.65431 

 

10.00000 7.87171 6.63953 6.26527 6.15007 6.10962 6.07919 

6.01009 5.79177 5.07491 2.71261 

 

10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 

10.000 10.000 

 

These outcome values represent the distribution of the 

temperature from the solution of (9, 10) for the first level by 

using the ADI method. The value (10.000) indicates the source 

temperature at the left wall, while the value (0.00006) 

indicates the temperature at the last level at the right wall, and 

so on. until the last temperature at the upper boundary is 

represented by 10.0000 for all points. 

 

4.2 Unsteady state of vorticity distribution 

 

The solution of Eqs. (7) and (8) for the following data 𝜀̄ =
−0.05, 𝑅𝑎 = 1000.0,  𝑃𝑟 =10.0,  𝑈𝑖,𝑗

𝑛 = cons tan 𝑡 , 𝑉𝑖,𝑗
𝑛 =

cons tan 𝑡, given by 
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0.04753 0.01699 0.00594 0.00199 0.00015 1.96285 1.59958 

0.78979 0.33194 0.12870 0.00000  

 

0.06321 0.02263 0.00799 0.00282 0.00025 2.60462 2.12621 

1.05020 0.44145 0.17116 0.00000  

 

0.07034 0.02525 0.00915 0.00369 0.00055 2.78600 2.34052 

1.16345 0.49038 0.19037 0.00000  

 

0.07296 0.02633 0.01022 0.00548 0.00137 2.83771 2.42137 

1.20751 0.50945 0.19771 0.00000  

 

0.07280 0.02651 0.01210 0.01008 0.00362 2.84375 2.44212 

1.21878 0.51365 0.19860 0.00000  

 

0.06870 0.02518 0.01620 0.02209 0.00955 2.81801 2.42278 

1.20687 0.50578 0.19281 0.00000  

 

0.05344 0.01802 0.02400 0.05167 0.02418 2.73320 2.34080 

1.15652 0.47467 0.17131 0.00000  

 

0.00099 0.01336- 0.03138 0.11628 0.05625 2.49939 2.10851 

1.00924 0.37961 0.10228 0.00000  

 

0.11567 -0.17759 -0.14197 -0.00462 -0.22093 0.10861 1.89346 

1.50247 0.60502 0.09971 0.00000 

 

-1.00929 -0.85857 -0.49693 -0.10096 0.05907 0.29179 0.1626 -

0.67685 -0.93952 -1.03112 0.00000 

 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 0.00000 

 

Each value represents the fortisity function for the unsteady 

state, which satisfies the boundary conditions that there is no 

motion on the boundaries, and this is clear at each end of the 

iteration with a zero value. 

 

4.3 Steady state of temperature distribution  

 

𝜀̄ = −0.05, 𝑈𝑖,𝑗
𝑛 = cons tan 𝑡, 𝑉𝑖,𝑗

𝑛 = cons tan 𝑡 

 
10.00000 6.46549 4.87373 3.79044 3.00684 2.39953 1.89418 

1.44504 1.02385 0.61382 0.20592 

 

10.00000 6.53565 5.06158 4.03226 3.26013 2.64036 2.10857 

1.62351 1.15894 0.69936 0.23734 

 

10.00000 7.30375 5.96517 4.919430 4.07701 3.36455 2.72723 

2.12557 1.53283 0.93347 0.32202 

 

10.00000 7.71413 6.57594 5.60330 4.76393 4.01361 3.31023 

2.61872 1.91333 1.17968 0.41622 

 

10.00000 7.97677 7.02120 6.15391 5.36182 4.61573 3.88138 

3.12575 2.32211 1.45570 0.52958 

 

10.00000 8.17167 7.37817 6.62936 5.91370 5.20613 4.47383 

3.68080 2.79366 1.79143 0.67940 

 

10.00000 8.33165 7.69047 7.07168 6.45751 5.82127 5.12703 

4.32996 3.38033 2.23699 0.89707 

 

10.00000 8.46435 7.98038 7.50939 7.02340 6.49440 5.88308 

5.13171 4.16074 2.87916 1.24096 

 

10.00000 8.54525 8.25731 7.96209 7.63230 7.24986 6.77917 

6.15310 5.25178 3.87799 1.82135 

 

10.00000 9.08423 9.16648 9.07434 8.91880 8.71857 8.45562 

8.07475 7.44030 6.18473 3.17074 

10.0000 10.0000 10.00000 10.0000 10.00000 10.00000 10.0000 

10.0000 10.0000 10.0000 10.0000 

 

The above values represent the steady state solution for the 

same data given in Section 4.1 that reached after some 

iterations under the same procedure in ADI method. 

 

4.4 Steady state of vorticity distribution 

 

𝜀̄ = −0.05, 𝑅𝑎 = 1000.0,  𝑃𝑟 =10.0, 𝑈𝑖,𝑗
𝑛 = cons tan 𝑡, 

𝑉𝑖,𝑗
𝑛 = cons tan 𝑡 

 
0.73069 0.72135 0.74339 0.76387 0.73970 0.62303 0.37342 0.89020 

0.87342 0.78739 0.000 

 

1.28089 1.29661 1.34659 1.37411 1.29789 1.01731 0.41151 1.29458 

1.37983 1.32118 0.00000 

 

1.13119 1.32281 1.37207 1.42989 1.54021 1.67703 1.76476 1.68936 

1.30665 0.45053 0.00000  

 

0.81214 0.97295 1.09405 1.26067 1.49486 1.75674 1.95063 1.93098 

1.51146 0.48163 0.00000 

  

0.43427 0.46037 0.58743 0.83545 1.19260 1.59850 1.935 2.02710 

1.63870 0.50510 0.00000  

 

0.03661 0.13447 -0.06125 -0.22543 0.68158 1.22805 1.73036 

1.98053 1.69093 0.51973 0.00000 

 

0.35335 -0.74725 -0.76784- 0.48710 -0.02565 0.68237 1.34504 

1.78744 1.66324 0.52059 0.00000  

 

0.70186 -1.30212 -1.42571 -1.18912 -0.68011 -0.02025 0.79549 

1.43159 1.53512 0.49464 0.00000  

 

0.96347 -1.68613 -1.87276 -1.70466 -1.27807 -0.64897 -0.11887 

0.88043 1.25513 0.41174 0.00000  

 

1.15789 -1.76524 -1.90573 -1.81419 -1.56142 -1.16679 -0.63034 -

0.03762 0.67912 0.18831 0.00000 

 

0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.00000 0.00000 0.00000 

 

These results also represent the unsteady state obtained after 

some iteration implemented in Eqs. (7) and (8) by the ADI 

method. 

 

 

5. CONCLUSIONS 

 

This paper discussed an approximation mathematical 

solution to the fluid flow in two cases: steady and unsteady. 

The method of finite difference (ADI) has been adopted. This 

procedure starts by solving an unsteady state for some 

appropriate values of initial and boundary conditions. It was 

started by using an appropriate time step (𝛥𝜏 = 0.0125) and 

dividing the region by an equal length (𝛥𝑥 = 𝛥𝑦). The results 

showed that the dissipation factor 𝜀̄ has a small effect on the 

solution of the heat equation for both steady and unsteady, the 

parameters Rayleigh (Ra) and Prandtl (pr) play a significant 

role in the solution of vorticity, and finally, it was noticed that 

all results were accepted with all previous works. For more 

explanations, some results have been plotted and illustrated in 

Figures 2-11 to give an idea of the problem with further 

information. 
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Figure 2. The temperature distribution in the left region, 𝜀̄ =
0.0 (𝜀̄ is dissipation factor) 

 

 
 

Figure 3. The temperature distribution in the middle l, 𝜀̄ =
0.0 

 

 
 

Figure 4. The temperature distribution in the right region, 

𝜀̄ = 0.0 

 

 
 

Figure 5. The solution behaviour in the left region, 𝜀̄ = 0.0 

 

 
 

Figure 6. The solution behaviour at the right region, 𝜀̄ = 0.0 

 

 
 

Figure 7. Effect of Rayligh number on the vorticity 

 

 
 

Figure 8. Unsteady solution of temperature in the middle 

region for different values of dissipation factor 

 

 
 

Figure 9. Steady solution of temperature in the middle region 

fordifferent values of dissipation factor 
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Figure 10. Unsteady vorticity distribution for, 𝜀̄ = −0.05, 

Ra=2000, Pr= 100 

 

 
 

Figure 11. Unsteady vorticity distribution for, 𝜀̄ = −0.05, 

Ra=2000, Pr= 10 
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