
ACO-DSOS Hybrid Approach to Enhance Traffic Signal Optimization 

Chaima Kouidri , Rochdi Bachir Bouiadjra* , Faiza Mahi

Department of Computer Science Department, University of Mustapha Stambouli, Mascara 29000, Algeria 

Corresponding Author Email: r.bachir-bouiadjra@univ-mascara.dz 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijtdi.080102 ABSTRACT 

Received: 1 August 2023 

Revised: 14 January 2024 

Accepted: 30 January 2024 

Available online: 31 March 2024 

Traffic congestion stands as a primary urban development hurdle encountered by major 

cities. Managing the extensive network comprising these transportation systems is an 

immensely complex task. Unfortunately, this activity poses significant challenges in 

numerous cities worldwide. In this article, a hybrid method ant colony and discrete 

symbiotic organism optimization are proposed to enhance the traffic flow of intersections. 

The first one is a metaheuristic inspired of the foraging behavior of ant colonies; it is used 

successfully to address a variety of intricate optimization problems. The second one is 

DSOS adaptation which is an ecosystem-based metaheuristic optimization inspired of 

interrelated symbiotic strategies observed on ecosystems. This approach involves 

determining the ideal durations for each phase of traffic lights. In the first level, an ACO 

method is utilized to extract critical path of given urban zone (congested path). In the 

second, the DSOS algorithm is employed to enhance the optimization of querying time of 

delayed vehicles. The obtained results show the superiority of DSOS compared with the 

fixed time control method (static approach). In contrast to the conventional timing method, 

the mean number of queued vehicles is decreased by 20%. This confirms the effectiveness 

of the suggested approach in alleviating traffic congestion. 
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1. INTRODUCTION

In the past few years, the global attention has been 

increasingly drawn towards various traffic issues due to the 

growing number of vehicles. Among these challenges, traffic 

congestion stands out as a significant concern. One important 

problem is traffic congestion.  

However, traffic congestion can cause not only financial 

damages but also material and human losses through accidents. 

To overcome this problem, many technological and political 

efforts have been invested at different levels. A first solution 

consists in extending road transport infrastructures in the 

densest traffic areas. The disadvantage of this solution is its 

expensive nature [1]. 

The second proposed solution for a traffic signal control 

system involves managing traffic at intersections safely and 

efficiently using a sequence of alternating green, yellow and 

red lights. The issue of traffic signal operation can be 

addressed at three distinct levels: local, arterial, and network. 

Local control implies that a signal control system takes into 

account only the traffic conditions specific to an isolated 

intersection. In contrast, the foundation of arterial control lies 

in the coordination of multiple signalized intersections. 

Signal coordination aims for a "green wave," syncing traffic 

lights for smooth vehicle flow through intersections. Network 

signal control addresses predetermined routes, but adjusting 

signals may alter routing as drivers seek the fastest path.  

Integrating vehicle routing and signal control is crucial to 

understanding traffic flow equilibrium in the network [2]. 

Meanwhile, research on traffic signals prompted the 

development by driving assistance systems, aimed at 

minimizing vehicle waiting time. Nevertheless, the majority of 

traffic systems continue to rely on fixed-time settings for 

lengthy cycles [3]. Such systems lack the ability to adaptively 

adjust traffic light timings when faced with unforeseen 

circumstances like accidents, natural disasters, or sudden 

incidents. However, those methods are not appropriate for 

centralized implementations in extensive traffic networks, 

resulting in bottlenecks at intersections [4]. 

The principal idea of this article is to implement an ACO-

DSOS based traffic signal control system, this hybrid 

metaheuristics approach aims to find optimum values of traffic 

signal capable of providing the lowest average number of 

vehicles in several intersections. 

The subsequent sections of the paper are organized as 

follows: Section 2 presents the related work of traffic signal 

control optimization based on metaheuristics. In Section 3 

introduces problem definition and formalism. In Section 4 

presents the suggested approach. The obtained results are 

carried out in Section 5. The last section concludes and gives 

some perspectives. 

2. RELATED WORK

Traffic control system refers to a sophisticated network of 
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technologies and algorithms designed to optimize the flow of 

traffic and improve overall transportation efficiency [5]. When 

considering traffic light problem as an optimization task, meta-

heuristic methods can be utilized [6]. Consider the example 

from the study [7], The authors presented a framework for 

enhancing traffic signal optimization through the integration 

of Genetic Algorithm (GA) and Cellular Automata Simulation. 

They integrated this algorithm with Cellular Automata 

Simulation, including traffic flow. However, the methods fail 

to deliver satisfactory control results under conditions of high 

traffic demand. 

The effectiveness of traffic signal control heavily depends 

on the design technique of signal plans, and one such approach 

is the ACO widely applied to addressing combinatorial 

problems [8, 9]. This algorithm functions even as 

collaboration system, where each individual ant simulates 

intelligent behavior. The Ant Colony Algorithm excels in 

finding best solutions to a variety problem. The ants exhibit 

capability to discover the shortest paths by depositing a 

chemical substance, pheromone, on their trails towards food 

sources. This pheromone serves as a communication link 

among ants, and paths with higher pheromone concentrations 

become more attractive and are predominantly used by the 

majority of ants [10]. 

In the study [11], The authors suggested employing the ant 

colony method in conjunction with the concept of colored 

connected vehicles to address the dynamic traffic routing 

problem, which encompasses multi-source and multi-

destination traffic flows. Their approach aims to optimize the 

routing of traffic in real-time.  

Meanwhile, a newly developed optimization algorithm 

called the DSOS algorithm has demonstrated remarkable 

effectiveness and robustness in solving numerical 

optimization and engineering design problems [12]. 

Additionally, the same study [12] introduces the DSOS 

algorithm to address the capacitated vehicle routing problem, 

aiming to determine optimal routes for a fleet of vehicles to 

serve a specified set of demand points while minimizing total 

routing costs. 

All of the works in this section and in the body of literature 

for this area don’t use intricate road networks and several 

intersections. To overcome the challenges work in current 

section there is a great need for developing novel approaches. 

 

 

3. PROBLEM DEFINITION AND FORMULATION 
 

Major urban centers are encountering a notable surge in 

traffic demand, leading to congestion issues on their road 

networks, a widespread challenge observed across cities 

globally. Performance indicators for the traffic signal problem 

typically include the delayed of vehicles. The objective is to 

optimize traffic signal synchronization to reduce traffic 

congestion. Traffic status can be evaluated in an objective 

function using metrics such as queue length, the number of 

vehicles released, arrival of vehicles, green light, and red light. 

Subsequently, minimizing the objective function aims to 

optimize the average number of waiting vehicles, as outlined 

by the following formula: 

 

𝐿𝑅(𝐾) =  
𝐿𝑅𝑗𝑙

𝑖 (𝑘 − 1) + ∑ (𝑞𝑗𝑙
𝑖 (𝑘) − µ𝑗𝑙

𝑖 )𝑔𝑖(𝑘)𝑙
𝑖=1

𝐷(𝑘)

+
𝐿𝑅𝑗𝑙

𝑖 (𝑘 − 1) + ∑ (𝑞𝑗𝑙
𝑖 (𝑘)𝑅𝑖(𝑘))𝑙

𝑖=1

𝑃(𝑘)
 

(1) 

The Eq. (1) addresses the identification of traffic lights at 

critical intersections, structured into two parts for 

mathematical formulation. The first part computes the mean 

count of vehicles in queue during green signal phases. 

Subsequently, in the second part, the focus shifts to 

determining the mean count of vehicles in queue during red 

signal phases, providing comprehensive analysis of traffic 

flow dynamics at these critical junctions. 

In Eq. (1), LR(K) define the vehicles in queue during both 

green and red time, where k represents number of cycles, while 

K represents the maximum number of cycles. l presents the 

lane, while "1", "2", and "3" correspond to the left, straight, 

and right directions. j presents directions south, and north, east, 

west.  i indicates the phase. 𝐿𝑅𝑗𝑙
𝑖 (𝑘 − 1) represents the number 

of delayed vehicles at the (k-1) cycle. It denotes the 

accumulated delay or backlog of vehicles from the previous 

cycle at the end of the last phase. 𝑞𝑗𝑙
𝑖 (𝑘) is the arrival vehicle 

of the 𝑘  cycle (veh/s). µ𝑗𝑙
𝑖  presents the vehicles released. 

𝑔𝑖(𝑘) , 𝑅𝑖(𝑘) are the green and red time of i phase in the k 

cycle. The total of cycle k 's green time is denoted as D(k), and 

the total of cycle k 's red time is denoted as P(k). 

 

3.1 Constraints 

It's important to take into account the specific constraints. 

Here are some common constraints that can be encountered on 

traffic light scheduling problem instances: 

- 𝐿𝑅 0
𝑗𝑙

(0) = 0: The LR (0)'s initial value is set to 0 at 

the beginning. 

- 𝐿𝑅 0
𝑗𝑙

(𝐾) = 𝐿𝑅 𝑖
𝑗𝑙

(𝐾 − 1): The number of vehicles 

waiting during the initial phase is equivalent to those waiting 

during the final phase. 

- ∑ 𝑔𝑖(𝐾) = 𝐷(𝐾) 
𝐼

𝑖=1
: D(K) represents the total sum 

of the green time allocated to each phase. 

- The allocation of green time must adhere to the 

following conditions: 𝑔𝑚𝑖𝑛
𝑖 ≤ 𝑔𝑖(𝐾) ≤ 𝑔𝑚𝑎𝑥

𝑖 . 
- The total green time, D(K), must be satisfied 

according to the following criteria: 𝐷𝑚𝑖𝑛 ≤ 𝐷(𝐾) ≤ 𝐷𝑚𝑎𝑥. 

- ∑ 𝑅𝑖(𝐾) = 𝑃(𝐾) 
𝐼

𝑖=1
: 𝑃(𝐾) represents the total sum 

of the red time allocated to each phase. 

- The allocation of red time must adhere to the 

following conditions: 𝑅𝑚𝑖𝑛
𝑖 ≤ 𝑅𝑖(𝐾) ≤ 𝑅𝑚𝑎𝑥

𝑖 . 

- The total red time, 𝑃(𝐾), must be satisfied according 

to the following criteria: 𝑃𝑚𝑖𝑛 ≤ 𝑃(𝐾) ≤ 𝑃𝑚𝑎𝑥. 

 

 

4. MODEL DESCRIPTION 

 

Traffic light management is a critical aspect in the 

planning and development of traffic control systems, as 

improper synchronization could lead to notable traffic 

congestion. Unfortunately, researchers have not yet found a 

definitive solution to solve the traffic congestion problem. At 

present, the majority of traffic management systems continue 

to employ predefined time intervals for regulating traffic lights. 

The objective of the strategy is to apply the algorithm ant 

colony to find the critical path that generate a very large 

number of cars waiting in a very important research space 

which will be the subject of the first level. The second level is 

the most important part that allows for the implementation of 

DSOS in traffic signal control in order to minimize vehicle 

wait times (see Figure 1). 
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Figure 1. Proposed approach framework 

 

4.1 Ant colony optimization 
 

The process of ant colony shows great potential as a 

metaheuristic, drawing substantial interest in both empirical 

investigations and theoretical studies. The ants employ 

indirect communication by utilizing a chemical substance 

termed pheromone, which not only accumulates but also 

undergoes evaporation [13]. Pheromone deposition is 

continuous and undergoes evaporation over time. 

Simultaneously, ants continually secrete pheromones during 

their travel, ensuring a continuous update of the pheromone 

trail. The pheromone concentration decreases gradually on 

paths less traveled by ants, while it increases progressively on 

paths frequented by a larger number of ants. This establishes a 

positive feedback loop, ultimately leading all ants to choose 

the shortest path [14]. 

In other words, the Ant Colony Algorithm (ACA) 

maximizes the potential of basic agents consisting of ants, 

progressively generating solutions to the optimization problem. 

Following the guidance of pheromones, an individual ant 

builds a comprehensive solution, beginning with a blank 

solution and progressively integrating solution components 

through iterative steps. Following the creation of a solution, 

each ant contributes feedback by releasing pheromones 

specific to each solution component [15]. 

 

4.2 Adaptive ant colony optimization for critical path 

determination 
 

We will present in our paper the application of a 

metaheuristic that allows solving the problem of determining 

traffic lights that cause vehicles to wait at traffic points, 

derived from the social interactions observed in ant colonies 

[16]. Following the guidance of pheromones, an individual ant 

builds a comprehensive solution. The extent of pheromone 

concentration serves as an indicator of the obstructed status of 

a pathway. A heightened concentration of pheromones on a 

path signifies the critical route within a specific urban zone 

associated with congestion and high traffic volume. 

The pheromone can be updated by the m ants that have 

provided a solution within the iteration. The pheromone is 

represented by 𝜏𝑖𝑗, in our context this variable represents the 

flow of lane ij. We apply the formula (2) to update 𝜏𝑖𝑗. 

 

𝜏𝑖𝑗 = 𝜌𝜏𝑖𝑗 + ∑ Δ𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 (2) 

 

The parameter ρ is proportion of pheromones, Δ𝜏𝑖𝑗
𝑘  is the 

amount pheromone left on lane (i, j) by ant k: 

 

Δ𝜏ⅈ𝑗
𝑘  =  {

𝑄

𝐿𝑘
   k: Ant moves from lights i to j

0                                          otherwise

 (3) 

 

Q is a fixed value, Lk is traffic flow of 𝑙𝑎𝑛𝑒𝑖𝑗  that is 

determined by ant k. Throughout the algorithm execution, all 

ants survey the set of traffic lights. When one ant standing on 

𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑖𝑔𝑛𝑎𝑙𝑖 , it has determined the partial solution, 

11



 

moving probability towards traffic light j is given by the 

following Eq. (4): 

 

𝑃𝑖𝑗
𝑘 =

[𝝉𝒊𝒋]
𝜶

 
∗ [µ𝒊𝒋]

𝜷

∑ [𝝉𝒊𝒋]
𝜶

 
∗ [µ𝒊𝒋]

𝜷

𝑙∈𝑁𝑙
𝑘

 (4) 

 

The parameter 𝑁𝑙
𝑘  here represents an eligible component. 

Other words, it describes all of 𝑙𝑎𝑛𝑒𝑖𝑙  where l indicates 

unvisited traffic signal with each ant. 𝛼 and β are related to 

pheromone and real information of road. 

 

µ𝒊𝒋 =
𝟏

𝒅𝒊𝒋

 (5) 

where the parameter dij indicates the number of vehicles 

between traffic lights i and j. 

The algorithm is based on a set of ants, each traversing a 

path among the possible ones. At each step, the ant chooses to 

move from one traffic signal to another based on a set of rules: 

- An ant chooses a path and leaves a trail of pheromones. 

- The entire set of ants explores a certain number of paths, 

with each ant depositing quantity of pheromone commensurate 

with the path's quality. 

- High concentration of pheromones in a path indicates high 

congestion in the path itself, as shown in the Figure 2. 

The evaporation of pheromones eliminates the poor 

solutions (less congested paths). 

 

 

 
 

Figure 2. Determination of critical path 

 

4.3 Symbiotic organism search algorithm 

 

A symbiotic organism search algorithm, emulates the 

interaction behaviors observed between species in nature, as 

these species seldom exist in solitude owing to their mutual 

dependence. Symbiotic relationships can be obligatory, 

signifying a mutual dependence necessary for survival, or 

facultative, denoting a non-essential connection that proves 

beneficial to both entities [17]. This Algorithm is an inventive 

ecosystem-based metaheuristic approach, which is employed 

to address a continuous space optimization problem. It 

emulates the relationships of symbiotic, comprising the three 

mains phases of SOS [18]. The first phase refers to a symbiotic 

association among distinct organisms, the couple entities 

derive benefits for their connection. In the second phase, one 

organism profit symbiotically, while the other organism 

uninfluenced by the association. The third relationship, one 

species benefits symbiotically at the expense of another 

species [19]. 

 

4.4 Framework of discrete symbiotic organism search 

 

The aim of our study is to reduce traffic congestion by 

controlling traffic light using DSOS algorithm. However, the 

scenario studied comprises a several intersections. 

The search for symbiotic organisms (SOS) is a 

metaheuristic optimization technique recently developed to 

resolve maximization or minimization problems [20]. 

Algorithm SOS employs organisms population to represent 

potential solutions, which undergo iterative evolution to 

optimize the search process [21].  

Every organism corresponds to a specific solution for an 

optimization problem. In the beginning, the potential solutions 

are generated at random, followed by a subsequent phase of 

refining these solutions through a specific process [22]. 

Organisms within the ecosystem adapt their positions based on 

the biological interaction models of mutualism, 

commensalism, and parasitism. The phase mutualism of 

relationship characterizes the mutually beneficial symbiotic 

association between two distinct species and This is 

implemented during the initial phase of the DSOS algorithm. 

In the second process of the DSOS, the commensalism is 

employed to finally adjust the solution space. During the third 

phase of the algorithm, the method of parasitic interaction is 

utilized, wherein one organism benefits at the expense of the 

other, causing harm to the latter [21, 22]. Figure 3 shows the 

basic framework of three phases of SOS algorithm. 
 

4.4.1 Description of the organism 

SOS starts its operation by randomly generating a number 

N of species to inhabit the population. In this case, each 

species symbolizes a potential solution of the traffic light 

(green, red). The algorithm starts just after the establishment 

of the initial population. However, the ecosystem is a 

collection of organisms, and each organism is a collection of 

traffic lights (green, red). 

The species’s positions within the solution space are 

denoted by integers (green lights and red lights). The objective 

function to be minimized is given by Eq. (1). The function LR 

find X’ belong to solution space (D) where LR is a fitness 

function to be minimized in Eq. (1). A set of species is 

expressed by X’ = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛], where 𝑥𝑖  represents green 

and red lights for each lane. 
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Figure 3. Visualization of the phases of SOS algorithm. 

 

4.4.2 Steps of the algorithm 

- Mutualism phase 

An organism comprises a collection of lights (green and 

red), denoted as 𝑿𝒋 𝑔𝑟𝑒𝑒𝑛
′ , 𝑿𝒋 𝑟𝑒𝑑

′  which are randomly selected 

from the population to engage in mutually beneficial 

interaction with another organism's 𝑿𝒊 𝑔𝑟𝑒𝑒𝑛
′ , 𝑿𝒊 𝑟𝑒𝑑

′  according 

to the following formulas: 

 

𝑋𝑖 𝑔𝑟𝑒𝑒𝑛
′ =  𝑋𝑖 𝑔𝑟𝑒𝑒𝑛 + 𝑟′(𝑋𝑏𝑒𝑠𝑡

− MutualV(green)𝐹1) 
(6) 

 

𝑋𝑖 𝑟𝑒𝑑
′ =  𝑋𝑖 𝑟𝑒𝑑 + 𝑟′(𝑋𝑏𝑒𝑠𝑡 − MutualV(red)𝐹1) (7) 

 

𝑋𝑗 𝑔𝑟𝑒𝑒𝑛
′ =  𝑋𝑗 𝑔𝑟𝑒𝑒𝑛 + 𝑟′′(𝑋𝑏𝑒𝑠𝑡

− MutualV(green)𝐹2) 
(8) 

 

𝑋𝑗 𝑟𝑒𝑑
′ =  𝑋𝑗 𝑟𝑒𝑑 + 𝑟′′(𝑋𝑏𝑒𝑠𝑡 − MutualV(red)𝐹2 (9) 

 

where, 

 

MutualV(green) =
𝑿𝒊 𝒈𝒓𝒆𝒆𝒏 + 𝑿𝒋 𝒈𝒓𝒆𝒆𝒏

 2
,

MutualV(red) =  
𝑿𝒊 𝒓𝒆𝒅 + 𝑿𝒋 𝒓𝒆𝒅

2
 

 

 

And 𝑟′, 𝑟′′ are assigned randomly between 0 and 1.  

The explanation for the roles of 𝐹1  and  𝐹2  are provided 

below. In nature, some mutualism relationships one organism 

may receive a greater advantageous outcome compared to the 

other organism. The benefit factors 𝐹1  and  𝐹2  are assigned 

randomly, either as 1 or 2. 

We calculated the new green and red lights 

( 𝑋𝑖 𝑔𝑟𝑒𝑒𝑛
′ ,  𝑋𝑖 𝑟𝑒𝑑

′ , 𝑋𝑗 𝑔𝑟𝑒𝑒𝑛
′ , 𝑋𝑗 𝑟𝑒𝑑

′ ) with the Eqs. (6)-(9) and 

applying the objective function (1) and testing with the 

previous objective function and keeping the best objective 

function which contains the best red green lights with a 

minimum of waiting time. 

- Commensalism phase 

𝑋𝑗 𝑔𝑟𝑒𝑒𝑛  𝑎𝑛𝑑 𝑋𝑗 𝑟𝑒𝑑  are organisms selected randomly from 

the eco-system to interact with 𝑋𝑖 𝑔𝑟𝑒𝑒𝑛 , 𝑋𝑖 𝑟𝑒𝑑.  Throughout 

this phase, 𝑋𝑖 𝑔𝑟𝑒𝑒𝑛  𝑎𝑛𝑑 𝑋𝑖 𝑟𝑒𝑑  benefits from 𝑋𝑗 𝑔𝑟𝑒𝑒𝑛 , 𝑋𝑗 𝑟𝑒𝑑 . 

The relationship described in the following formulas: 

 

𝑋𝑖 𝑔𝑟𝑒𝑒𝑛
′ =  |𝑋𝑖 𝑔𝑟𝑒𝑒𝑛 + 𝑟′(𝑋𝑏𝑒𝑠𝑡 −  𝑋𝑗 𝑔𝑟𝑒𝑒𝑛)| (10) 

 

𝑋𝑖 𝑟𝑒𝑑
′ =  |𝑋𝑖 𝑟𝑒𝑑 + 𝑟′(𝑋𝑏𝑒𝑠𝑡 −  𝑋𝑗 𝑟𝑒𝑑)| (11) 

 

We calculated the new green and red lights 𝑋𝑖 𝑔𝑟𝑒𝑒𝑛
′ , 𝑋𝑖 𝑟𝑒𝑑

′  

and applying the objective function (1) and testing with the 

previous objective function and keeping the best objective 

function which contains the best red green lights with a 

minimum of waiting time. 

 

- Parasitism phase 

A vector representing a parasite 𝑋𝑝 𝑔𝑟𝑒𝑒𝑛 , 𝑋𝑝 𝑟𝑒𝑑  are 

generated by mutating 𝑋𝑖 𝑔𝑟𝑒𝑒𝑛 , 𝑋𝑖 𝑟𝑒𝑑. This mutation consists 

of generating a random number within the range of variables, 

which are also randomly selected from the ecosystem. 

 

𝑋𝑝 𝑔𝑟𝑒𝑒𝑛 = |𝑋𝑖 𝑔𝑟𝑒𝑒𝑛| (12) 

 

𝑋𝑝 𝑟𝑒𝑑 = |𝑋𝑖 𝑟𝑒𝑑| (13) 
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After computing the new durations for the green and red 

lights, denoted as 𝑋𝑝 𝑔𝑟𝑒𝑒𝑛  and 𝑋𝑝 𝑟𝑒𝑑  respectively, we 

assessed their performance by applying the objective function 

(1). We also compared the results with those obtained using 

the previous objective function. Our aim was to identify the 

optimal combination of green and red light timings that 

minimize number waiting vehicles. Consequently, we retained 

the objective function that yielded the most favorable red and 

green light settings, resulting in the least waiting time for 

traffic.  

 

 

5. RESULTS AND DISCUSSION 

 

In this work, our focus is to study the efficiency of DSOS 

in traffic congestion problems. We implement the DSOS 

algorithm in JAVA and execute it on a computer system 

featuring an Intel(R) 2.71 GHz Core (TM) i5-7300U processor 

with 8 GB of memory. 

 

5.1 Case study: Algiers area 

In Figure 4, we examine a situation originating from the 

traffic infrastructure of Algiers [23]. The chosen urban zone is 

bounded to the north by El Biar, to the south by Said Hamdine, 

to the west by Val d’Hydra Street, and to the east by El 

Madania. This covers an approximate area of 1 square 

kilometer, featuring 21 lanes regulated by 40 traffic signals 

within the subgraph (a) of Figure 4. The subgraph (b) of Figure 

4 was created with the aid of SUMO [24, 25]. 

 

 
 

Figure 4. Number of traffic lights examined 

 

In our study we used Simulator of Urban Mobility (SUMO) 

[24, 25]. It is a microscopic road traffic simulator renowned 

for furnishing detailed data on vehicle velocities. This 

simulator allows us creating the model for mobility of vehicles, 

as well as the scenario taken from the OpenStreetMap [26, 27]. 

we summarize the operationalization of traffic involves 

predicting the traffic congestion level of urban roads to 

minimize the querying time of delayed vehicles. 

We used two levels; the first level makes it possible to use 

the Ant Colony Algorithm to determine the critical lanes (Lane 

0- Lane 9-Lane 3- Lane7). The second level DSOS algorithm 

to minimize number of vehicles waiting only for critical lanes. 

 

 

 

 

5.2 Impact of the 3 operators on the waiting vehicles 

 

The effect of the DSOS approach on minimizing the number 

of waiting vehicles gives a better convergence of the function. 

However, the algorithm mimics the three phases relationship 

to ameliorate quality of a fitness function. In this experiment, 

results indicate the average of the hundreds of simulations. 
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Figure 5. Impact of mutualism, commensalism and 

parasitism on the waiting vehicles 

 

Examining the convergence patterns depicted in Figure 5 

provides valuable insights into the iterative refinement 

occurring with each execution of the mechanism. The notable 

improvement in DSOS performance can be attributed to the 

distinctive mechanisms of mutual benefit and parasitic vectors 

embedded within DSOS. This exploitation power becomes 

instrumental in honing in on optimal solutions efficiently. The 

commensalism mechanism acts as a balancing force between 

exploration and exploitation. This delicate equilibrium results 

in enhanced performance and more efficient optimization. The 

algorithm's ability to adapt to the evolving landscape of the 

search space becomes crucial, and the commensalism 

mechanism, by design, contributes to the flexibility needed to 

avoid stagnation in local optima.  

Moreover, the parasitism phase introduces a dimension of 

exploration that goes beyond fixating solely on the best 

solution regions. This strategy inclusion ensures that the 

search process remains dynamic and ventures into unexplored 

territories, preventing confinement to specific search regions.  

The success of DSOS is intricately tied to the nuanced 

orchestration of its mutual benefit, commensalism, and 

parasitism mechanisms. These elements work in concert, 

providing the algorithm with the adaptability, diversity, and 

exploration capabilities necessary for robust and effective 

optimization in complex problem spaces. 
 

 

 

 
 

Figure 6. Comparison of DSOS synchronization results with 

static time 
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5.3 Performance of DSOS versus static approach  

To validate the performance of DSOS we conducted a 

comparison study with Static Approach. The obtained 

numerical results in terms of fitness value are visualized in 

Figure 6. 

In the context of static time systems, a fixed control strategy 

is predetermined within specific time intervals based on 

historical data and predetermined rates. This approach, while 

providing some level of stability, may not adapt dynamically 

to changing traffic conditions. The timing plan remains 

constant, and the predetermined rates may not be optimal in all 

situations.  

Analyzing the results presented in Figure 6, a clear 

distinction emerges between the solutions obtained by DSOS 

and the static approach, especially as the number of iterations 

increases. DSOS consistently produces solutions of superior 

quality, showcasing its adaptive nature and effectiveness in 

optimizing traffic signal timings. The DSOS approach stands 

out by demonstrating its capability to enhance solution quality 

throughout the research process stages. The three pivotal 

operators—Mutualism, Commensalism, and Parasitism—play 

a crucial role in this improvement. The ability of DSOS to 

outperform static approaches underscores the importance of 

incorporating adaptability and learning mechanisms in traffic 

signal control systems. The dynamic nature of DSOS enables 

it to respond to variations in traffic conditions, ultimately 

leading to more efficient and effective traffic signal timings. 

the approach exhibits its strength in adapting to evolving 

conditions, providing solutions of higher quality compared to 

static time systems. The incorporation of the three operators 

ensures that DSOS can navigate through solution spaces 

effectively, making it a promising methodology for optimizing 

traffic signal control in dynamic and complex urban 

environments. 

On the other hand, the sensitivity of the algorithm to its 

parameters introduces a layer of complexity that can 

significantly influence its overall performance. These 

parameters act as tuning knobs, dictating the behavior and 

efficacy of the algorithm in navigating the solution space. 

 

 

6. CONCLUSION  

 

The objective of this study was to explore traffic lights 

control improved by ACO-DSOS algorithm to reduce traffic 

flow of road; an enhanced approach tailored for the 

optimization of traffic signal timings. The central goal of this 

algorithm is to elevate overall system efficiency by 

strategically minimizing the number of vehicles in waiting, 

thus fostering a marked improvement in traffic flow at 

numerous intersections. Our comprehensive simulations 

demonstrate that the ACO-DSOS algorithm not only 

effectively achieves its primary objective but also yields 

superior performance compared to static approach. The 

outcomes of the simulation underscore the algorithm's 

potential to significantly enhance the operational efficiency of 

traffic networks, promising tangible benefits for urban 

mobility and transportation systems.  

In real traffic networks, the system utilizes strategically 

placed detectors that continuously capture diverse real-time 

data, including the number of delayed vehicles, arrival 

vehicles, number vehicles released, red light, green light. By 

processing this live information, the system dynamically 

adapts, optimizing the number of waiting vehicles and 

enhancing accuracy and responsiveness for effective traffic 

flow solutions. 

As further research, we will implement multi-objective 

optimization solution, considering factors such as delayed 

vehicle time, emergency vehicles, and pedestrian cases. We 

aim to integrate this solution with diverse traffic data sources 

and test it on larger, complex networks for scalability and 

effectiveness in varied urban contexts. 
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