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One of the advanced driver assistance systems (ADAS) technologies that can address the 

issue of high-traffic accidents is adaptive cruise control (ACC). However, a challenge 

arises due to the lack of control algorithm development in ACC technology that 

accommodates curved road conditions. This paper proposes a comprehensive solution by 

introducing ACC for curved roads through the utilization of a multidimensional control 

system model. This paper aims to implement the crow search algorithm (CSA) into the 

ACC technology: (1) Our objective is to apply the original crow search algorithm (OCSA) 

to find the most optimal values for the parameters verr, xerr, vx of ACC, and kp and ki of 

lateral displacement control; (2) We also implement the archived crow search algorithm 

(ACSA) into the control system, which is considered to have faster computation time than 

OCSA. Based on the obtained results, ACSA demonstrates faster computation time. The 

optimal values for achieving enhanced performance are found to be kp at 0.7492, ki at 

0.6506, verr at 0.9716, xerr at 0.9778, and vx at 0.7012. This model was developed using 

MATLAB and compared to the non-optimized version. The research aims to contribute to 

ADAS development by addressing the optimization challenges of control algorithms for 

ACC parameters on curved roads. Ultimately, this solution enhances driver safety by 

providing more effective control in challenging road conditions. 
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1. INTRODUCTION

Safety of the vehicle is an important matter that merits 

global discussion since the rates of traffic accidents are quite 

high. According to WHO [1], each year road accidents cause 

over 1 million fatalities and 20-50 million injuries [2], which 

makes traffic accidents a significant issue. The solution to 

reducing accident rates is by developing the features of ADAS 

technology to support drivers while driving a vehicle [3]. One 

of the ADAS technologies that can solve the issue is ACC 

which can support vehicles in maintaining a safe distance and 

reducing accidents [4]. By utilizing a combination of sensors 

such as radar, lidar, cameras, and advanced algorithms, the 

system can intelligently detect and monitor the movement of 

vehicles in front of it, automatically adjusting the car's 

acceleration and deceleration [5]. The implementation of ACC 

which is typically used in Automated Vehicle (AV) or semi-

automated vehicles (SAV), enhances driver and passengers' 

comfort, as well as avoids accidents [6]. 

With such usefulness, ACC was developed by many 

researchers to be implemented in vehicles to ensure the safety 

and convenience of the drivers. Drivers will not feel 

excessively fatigued while driving their vehicles if ACC is 

applied. The utilization of ACC has shown sophisticated 

results in maintaining a safe distance for drivers, as 

demonstrated by the study [7, 8]. This feature significantly 

amplifies the level of safety and convenience experienced by 

the driver. A broadly similar point has also been demonstrated 

in the study [9] using PID control.  

Some studies suggest the use of artificial intelligence in 

ACC control, showing promising results comparing fuzzy and 

neural network-based controls as mentioned in the study [10]. 

When compared to conventional PID control, AI-based 

control outperforms as presented in the study [11]. Other 

evidence to show the promising results of using AI-based 

technique for the case of ACC have also been conducted by 

the study [12, 13], utilizing metaheuristic optimization 

techniques genetic algorithm (GA) and particle swarm 

optimization (PSO), respectively. Unfortunately, those 

reported works are still limited to straight-road case studies, 

while in fact, there is a possibility to vehicles experiencing a 

curved road. 

With these limitations, several researchers have begun 

developing controllers to address curved roads, employing 

integrated vehicle dynamics control (IVDC) in the study [14]. 

In other work, researchers explored the same case but adopted 

AI in control; Symonds et al. [15] harnessed artificial 

intelligence to control steering, devising an effective design to 

track road dynamics. Fuzzy logic was employed by Dahmani 

et al. [16] to address curved roads using Takagi-Suseno fuzzy 

model. Implementing a different concept, Zhang et al. [17] 

incorporated driving behavior to tackle curved roads through 
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adaptive artificial intelligence. Meanwhile, Wang et al. [18] 

employed lane detection to provide warnings for curved road 

segments, aiming to prevent potential accidents. 

None of the above literatures dealing with the curved road 

control problem utilized any metaheuristic optimization 

techniques. As previously mentioned, and highlighted in the 

[12, 13] about the potential use of metaheuristic optimization 

for straight-road case of ACC control, it can be a new research 

direction to develop a metaheuristic optimization technique 

but for the case of curved road control problem. It emerges as 

a non-trivial problem since ACC for the curved road will not 

only need to adjust the vehicles’ speed, but also to synchronize 

with the steering control [7]. 

The paper is structured as follows. Section 2 presents a 

description of the ACC system model, exploring controller 

design and parameter optimization methods using the ACSA 

on automated vehicles for curved road scenarios. Additionally, 

this section provides an explanation of steering control. 

Section 3 discusses simulation results, including graphical 

comparisons between the optimization results using ACSA, 

original crow search algorithm (OCSA), and default settings. 

Finally, Section 4 concludes the paper by summarizing the 

experimental findings, implications, and outlining directions 

for future research. 

 

 

2. OVERVIEW OF SIMULATION DESIGN 
 

Based on Figure 1, the system is composed of two different 

control systems, adaptive cruise control (ACC) and steering 

control, which are continuously used to regulate the vehicle's 

behavior in order to provide comfort for the driver and 

enhance safety. The first subsystem, ACC, has the function of 

controlling the longitudinal speed of the vehicle on the road. 

Its role is to observe and respond to the movements of the 

vehicles in front of it to adjust the longitudinal speed to 

maintain a safe following distance [19]. This helps reduce the 

risk of potential accidents and relieves the driver's workload. 

On the other hand. The second subsystem, steering control, is 

responsible for controlling the lateral displacement of the 

vehicle when navigating curved roads. In this situation, 

steering control calculates the optimal steering angle based on 

the road curvature and the vehicle's speed [20]. This ensures 

that the vehicle can navigate curves smoothly and safely. The 

combination of these two subsystems allows the vehicle to 

operate more safely and efficiently [14]. 

As illustrated in Figure 1, the vehicle equipped with ACC 

and steering control is referred to as the ego car, while the 

vehicle in front is named the lead car. With steering control, 

the ego car can follow the centerline of the road, whereas the 

lead car, without steering control, still stays within the curved 

lane. CSA aims to optimize both ACC and steering control 

concurrently, seeking the global optimal solution, thereby 

enhancing the overall system performance. For the test, the 

curve radius of curvature configuration used is 760 meters 

with linewidth 4 meters. 

To simulate vehicle movement on a curved road used 

vehicle dynamics on MATLAB to create a mathematical 

model of the vehicle that includes dynamic properties such as 

mass, mass distribution, inertia, suspension, and braking. The 

equations of motion for the vehicle, encompassing forces like 

gravity, friction, and aerodynamics, are numerically integrated 

within the MATLAB environment. Key parameters of the 

vehicle, such as mass and friction coefficient, play a crucial 

role in determining its dynamic characteristics. In this paper, 

the vehicle dynamics used come from the vehicle dynamics 

subsystem models the vehicle dynamics with the bicycle 

model - force input block from the automated driving toolbox. 

The dynamics of the lead car and ego car equations 

transform the vehicle’s acceleration and steering into its actual 

position, yaw angle, lateral velocity, and longitudinal velocity. 

The dynamic equation for both cars can be expressed in Eq. 

(3). As written in Eq. (3), respectively, Vy is vehicle lateral 

velocity, ψ is vehicle yaw angle, ψ' is vehicle yaw angle rate, 

Vx is vehicle longitudinal velocity, Vx' is vehicle longitudinal 

acceleration, m is mass of the vehicle, lf is longitudinal 

distance from center of gravity to front tires, Iz is yaw moment 

of inertia of vehicle, Ir is longitudinal distance from center of 

gravity to rear tires, τ is longitudinal time constant, Cf is 

cornering stiffness of front tires, and Cr is cornering stiffness 

of rear tires. The values for those vehicle parameters are 

written in Table 1. 

 

Table 1. Vehicle parameter 

 

Parameter Value 

m 1575 kg 

Iz 2875 m×N×s2 

lf 1.2 m 

Ir 1.6 m 

Cf 19000 N/rad 

Cr 33000 N/rad 

τ 0.5 N/A 

 

The results obtained from the vehicle dynamics, including 

quantities such as longitudinal velocity Vx and lateral velocity 

Vy, are originally represented in a reference frame tied to the 

vehicle's body. To determine the path taken by the vehicle, 

these body-fixed coordinates are transformed into global 

coordinates using the following relationships, given by Eq. (1) 

and Eq. (2): 

 

𝑋 = 𝑉𝑥 cos(𝑌) − 𝑉𝑦 sin(𝑌) (1) 

 

𝑌 = 𝑉𝑥 sin(𝑌) − 𝑉𝑦 cos(𝑌) (2) 

 

 

𝑑

𝑑𝑡

[
 
 
 
 
𝑉𝑦
ψ

ψ′
𝑉𝑥
𝑉𝑥′]

 
 
 
 

=  

[
 
 
 
 
 
 
 
 −

2𝐶𝑓 + 2𝐶𝑟

𝑚𝑉𝑥
0 −𝑉𝑥 −

2𝐶𝑓𝑙𝑓 − 2𝐶𝑟𝑙𝑟

𝑚𝑉𝑥
0 0

0 0 1 0 0

−
2𝐶𝑓𝑙𝑓 − 2𝐶𝑟𝑙𝑟

𝐼𝑧𝑉𝑥
0 −

2𝐶𝑓𝑙𝑓
2 + 2𝐶𝑟𝑙𝑟

2

𝐼𝑧𝑉𝑥
0 0

0 0 0 0 1

0 0 0 0 −
1

𝜏]
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑉𝑦
ψ

ψ′
𝑉𝑥
𝑉𝑥′]

 
 
 
 

+

[
 
 
 
 
 
 

2𝐶𝑓

𝑚
0

2𝐶𝑓𝑙𝑓

𝐼𝑧
0
0 ]

 
 
 
 
 
 

𝛿 +

[
 
 
 
 
 
0
0
0
0
1

𝜏]
 
 
 
 
 

𝑢 +

[
 
 
 
 

0
0
0

𝑉𝑦ψ′

0 ]
 
 
 
 

 (3) 

180



 

 
 

Figure 1. Schematic model of the system 

 

2.1 System model and ACC 

 

The ego vehicle is equipped with a sophisticated ACC 

system. This ego vehicle is also equipped with various sensors 

that can measure and monitor its distance from the vehicle in 

front of it, which is referred to as the main vehicle. The ACC 

system aims to ensure a safe distance from the vehicle in front 

by controlling the speed of the ego vehicle with a fast response 

time. It utilized sensor data to constantly gauge the gap 

between the lead vehicle and the ego vehicle, making 

necessary adjustments to ensure a safe distance. Figure 2 

illustrates the case of ACC for a curved road discussed in this 

research. 

As illustrated in Figure 3, ACC has two modes, namely 

speed control and distance control. These two modes change 

based on the relative distance (DR) and safe distance (Dsafe). 

Relative distance is the distance between the ACC vehicle and 

the car in front. Meanwhile, the safe distance is the safe 

distance between two vehicles. Speed control mode is active 

when the relative distance is greater than or equal to the safe 

distance because the goal of this mode is to match the 

maximum speed set by the user (Vset). Typically, the setpoint 

for ACC speed ranges from 30 km/h to 100 km/h. Conversely, 

distance control mode is active when the relative distance is 

below the safe distance with the aim of achieving a safe 

distance between the two vehicles. Generally, ACC will enter 

the distance control mode first until it approaches the safe 

distance, then enter the speed control mode to match the 

setpoint.  

 

 
 

Figure 2. Illustration of ACC in curved road 

 
 

Figure 3. Two control mode in ACC 

 

 
 

Figure 4. Control system diagram of ACC 

 

The controller design is carried out to integrate the CSA into 

ACC so that it can operate in a previously prepared simulation. 

This controller design stage involves several important steps 

such as determining the controller structure, determining the 

parameters to be optimized, establishing the objective function, 

and integrating CSA with the simulation platform. During this 

stage, the dynamics equations of the ACC system are 

implemented in the simulation platform. Figure 4 illustrates 

the elements related to ACC control, which consists of six 

main variables: (1) The set velocity (Vset), denoting the 

maximum speed determined by the driver, results in the ego 

car's speed being set at the specified velocity in m/s2 when 

there is no other vehicle in front; (2) The time gap (Tgap) 

represents the preferred safe time interval between the ego car 

and the front vehicle, measured in seconds; (3) Longitudinal 

velocity (VL) indicates the linear speed of the ego car in m/s; 

(4) Relative distance (DR) signifies the gap between the ego 
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car and the lead vehicle in meters; (5) Relative velocity (VR) 

corresponds to the difference in speed between the ego car and 

the lead car. Finally, (6) Default spacing (Dd) refers to the 

minimum distance when the ego car is stationary, measured in 

meters. VL, DR, and VR serve as independent variables in the 

calculation of the control signal, taking the form of 

acceleration from the ego car. 

To adjust the program based on the distance between the 

lead car and the ego car, it can be demonstrated in Eq. (4). 

 

𝐷𝑠𝑎𝑓𝑒 = 𝐷𝑑 + 𝑇𝑔𝑎𝑝𝐷𝑒𝑔𝑜 (4) 

 

In the classical ACC, there are three key parameters that 

have a significant impact on the system's outcomes. These 

three parameters are affecting two types of acceleration 

equation as follows: 

1. The first parameter is known as verr in Eq. (5). It is a 

variable multiplied by the gap between the desired velocity 

and the longitudinal velocity, producing the acceleration of the 

ego car, u1 (first acceleration equation). 

 

𝑢1 = (𝑉𝑠𝑒𝑡 − 𝑉𝐿) 𝑣𝑒𝑟𝑟  (5) 

 

The second equation (u2) comprises two components: xerr 

and Vx. Within this second type, the acceleration of the ego car 

is determined by multiplying Vx and the relative velocity, 

subtracted by xerr multiplied by the error distance, as 

formulated in Eqs. (6)-(7). 

 

𝑢2  = 𝑉𝑅  𝑉𝑥 − (𝐷𝑠𝑎𝑓𝑒 − 𝐷𝑅) 𝑥𝑒𝑟𝑟  (6) 

 

𝑒𝑑  =  𝐷𝑠𝑎𝑓𝑒 – 𝐷𝑅 (7) 

 

When the speed control mode is active (DR) value greater 

than Dsafe), the applied control signal will be selected from the 

smaller of the first and second parts, as indicated in Eq. (8). In 

contrast to speed control, the distance control mode only uses 

the second part, with the condition that the DR value is less 

than Dsafe, as shown in Eq. (9). 

 

𝑎 = min(𝑢1, 𝑢2) (8) 

 

𝑎𝐸 = 𝑢2 (9) 

 

2.2 Steering control 

 

A steering wheel is a central component in a motorized 

vehicle that gives the driver the ability to control the direction 

of movement of the vehicle. When a vehicle crosses a curved 

road, the role of the steering wheel becomes very significant 

to ensuring that the vehicle can navigate the curve safely and 

in accordance with applicable traffic rules. Meanwhile, ACC 

technology has successfully integrated automation functions 

that help vehicles maintain a safe distance from vehicles in 

front. However, ACC tends to focus more on aspects of 

controlling speed and distance to the vehicle in front, rather 

than on the ability to control steering functions, especially 

when negotiating corners. 

The objective of the steering control is to ensure that the 

vehicle remains within its designated lane and effectively 

tracks the curved path of the road. This objective is 

accomplished by controlling the front steering angle. The 

lateral displacement error (e1) towards zero shown in Eq. (10), 

illustrated in Figure 5, and the primary objective is to minimize 

the yaw angle error (e2), as shown in Eq. (11). This involves 

adjusting the steering angle to maintain proper alignment with 

the desired path and lane position. 

 

𝑒1 = 𝑉𝑥 + 𝑒2 + 𝑉𝑦 (10) 

 

𝑒2 =  ψ − ψ𝑑𝑒𝑠 (11) 

 

Figure 6 illustrates the use of CSA to overcome problems 

that arise in efforts to integrate ACC with the steering wheel 

control function when a vehicle is crossing a curve. CSA, 

which takes inspiration from the social behavior of crows, is 

applied to optimize lateral displacement settings when the 

vehicle is moving through curves, with the aim of increasing 

efficiency and safety in dealing with such situations. The 

implementation of CSA in ACC has the potential to expand 

the role of this technology in controlling the steering wheel, 

which will ultimately have a positive impact on the level of 

safety and convenience when negotiating curves on the road. 

In addition to CSA, a Proportional-Integral (PI) controller 

is employed to further enhance steering control. The PI 

controller has a general equation as written in Eq. (12). 

 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

 (12) 

 

where, u(t) is the control input, e(t) is the error signal, kp is the 

proportional gain, and ki is the integral gain. These parameters 

play a crucial role in optimizing the steering angle. The CSA 

can be employed to fine-tune kp and ki for optimal performance, 

ensuring the minimization of yaw angle and lateral 

displacement errors. 

 

 
 

Figure 5. Vehicle dynamic model for steering control 
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Figure 6. Steering control system diagram  

 

2.3 Crow search algorithm tuning method 

 

CSA describes a group of crows working together in search 

of food sources. Each bird sets a position that represents a 

potential solution in the search space [21]. The flight length 

process begins by calculating the fitness value for each 

solution based on the optimization objective. Through 

iteration, facilitated by the interchange of positions and the 

adoption of superior solutions, the algorithm encapsulates the 

essence of social dynamics within the crow population. The 

birds interact by switching between positions and updating a 

better solution. This concept reflects social behavior in the 

crow population. 

 

Algorithm 1. Original Crow Search Algorithm 

 Input: n Flock (population) size for the first iteration 

Ap Awareness probability 

fl Flight length 

iter number of iterations 

 itermax Maximum number of iterations 

 Output: Optimal crow position 

1 Initialize the position of n crows in the search space 

2 Evaluate the position of the crows 

3 mem = x → memory initialization 

4 fit_mem = ft → fitness memory 

5 while iter < itermax do 

6 for i=1 : n 

7 Choose a random crow to follow 

8 Define value of awareness probability 

9 if rj ≥ Apj, iter 

10 xni, iter+1 = xi, iter + ri × fli, iter × (mj, iter + xi, iter) 

11 else 

12 xni, iter+1 = a random position of search space 

13 end if 

14 end for 

15 Check the feasibility of new positions 

16 Determine the fitness of crows 

17 Memory updates for each crow 

18 mem = xn → memory initialization 

19 fit_mem = ft → fitness memory 

20 end while 

 

CSA algorithm is a flock-based optimization algorithm 

inspired by the behavior of a flock of crows in searching for 

food [22]. In the context of controller parameter optimization, 

as explained in this paper, CSA used as a methodology for 

tuning crucial parameters such as verr, xerr, and Vx parameters 

for straight roads as well as kp and ki for steering on ACC 

controller. The values for those CSA parameters are presented 

in Table 2. 

After adjusting the parameters, determining the parameters 

in CSA, such as flock size, flight length or fl, iteration, and 

awareness probability or AP, becomes an important step. The 

value of fl affects the scope of the solution, where a larger 

value broadens the scope of the solution in general, while a 

smaller value narrows the scope of the solution to a local 

region. Determination of a smaller fl value is needed to obtain 

the optimal solution. A smaller AP determination drives more 

new positions on the crows, ultimately providing new 

solutions to increase the percentage of better solutions. The 

algorithm runs by making as many individuals as the 

population, then calculates using Integral Absolute Error 

(IAE). IAE measures the error between the setpoint (target) 

and the system output over the entire observation time period 

by calculating the total of the absolute value of the difference 

between the setpoint and the system output. 

 

IAE = 105 / ∫
0

∞
|e (t) | dt (13) 

 

Table 2. Parameter for CSA 

 
Parameter Value 

Flock size 20 

Iteration 100 

verr 0-1 

xerr 0-1 

Vx 0-1 

kp 0-1 

ki 0-1 

 

2.4 Archived CSA algorithm 

 

The pseudo-code of ACSA is presented to succinctly 

summarize the conceptual steps undertaken in the algorithm. 

 

Algorithm 2. Archived Crow Search Algorithm 

 Input: n Flock (population) size for the first iteration 

Ap Awareness probability 

fl Flight length 

iter number of iterations 

 itermax Maximum number of iterations 

 Output: Optimal crow position 

1 Initialize the position of n crows in the search space 

2 Evaluate the position of the crows 

3 mem = x → memory initialization 

4 fit_mem = ft → fitness memory 

5 while iter < itermax do 

6 for i=1 : n 

7 Choose a random crow to follow 

8 Define value of awareness probability 

9 if rj ≥ Apj, iter 
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10 xni, iter+1 = xi, iter + ri × fli, iter × (mj, iter + xi, iter) 

11 else 

12 xni, iter+1 = a random position of search space 

13 end if 

14 end for 

15 Check the feasibility of new positions 

16 Determine the fitness of crows 

17 Memory updates for each crow 

18 Memory update for archived flock 

19 mem = xn → memory new crow 

20 fit_mem = ft → fitness memory 

21  Sort fit_mem, mem, x, and ft from best to worst 

22 xn, x, ft, mem, and fit_mem take only the first 4 rows. 

23 end while 

 

In stochastic traffic optimization, the computational time 

needed for CSA operators is typically insignificant compared to 

the time required for performance evaluation using simulation 

models. Thus, there's a critical need to improve the original CSA 

by reducing the overall computational time for assessing fitness 

functions. Recent advancements in computational intelligence 

have introduced an archive crow search algorithm, which 

employs a selection process utilizing a small population size 

alongside a large external archive. This external archive stores 

the best solutions found so far to effectively approximate the 

optimal solution in various applications. Leveraging the search 

history stored in the external archive, the selection process aims 

to minimize the number of function evaluations necessary for 

achieving convergence. ACSA has been implemented in our 

application and plays a pivotal role in finding optimal solutions. 

In ACSA after updating the crow positions, the algorithm 

checks the feasibility of the new positions and determines the 

fitness values of these crows. Subsequently, the memory is 

updated for each crow, and information regarding fitness, 

memory, positions, and fitness values is sorted from best to 

worst. Only the first four rows of xn, x, ft, mem, and fit_mem are 

retained. In the optimization phase, the population size is reset 

to four in the first iteration, ensuring that only the top four 

individuals continue the search. 

Overall, the computational efficiency of ACSA makes it a 

preferable algorithm for specific applications. The 

implementation of ACSA in this particular application context 

plays a central role in discovering optimal solutions within a 

complex search space. 

 

 

3. EXPERIMENT RESULT 
 

3.1 Performance of archived crow search algorithm 

 

In this paper, both ACSA and OCSA using parameters kp, 

ki, verr, xerr and Vx with the objective function combining ACC 

and steering control were tested to determine whether it could 

perform well or not. One of the key indicators was the 

reduction in IAE from each test. Before optimization, IAE 

reflected the shortcomings of ACC in maintaining speed and 

distance between the ego car and the lead car. This indicates 

that the designed CSA is capable of functioning effectively in 

finding optimal control parameters. Figure 7 illustrates the 

decrease in IAE values obtained from each test, both from 

ACSA and OCSA. 

In Figure 7, display graphical representations are observed 

between the ACSA and OCSA methods, indicating variations 

in their performance trajectories. The ACSA method exhibits 

a notable reduction in Integral of Absolute Error (IAE) values, 

reaching its lowest point in the 39th iteration. This 

achievement is underscored by two significant drops in IAE 

during the 5th and 39th iterations. Conversely, the OCSA 

method showcases a more fluctuating trend, characterized by 

multiple decreases in IAE values. It requires a longer series of 

iterations before attaining its optimal IAE value, which occurs 

in the 47th iteration compared to the optimal trial outcomes. 

However, it's too early to conclusively assert that ACSA 

consistently outperforms OCSA in swiftly reaching the 

optimal point. To validate the consistent performance of CSA, 

it's imperative to extend beyond single-test conclusions. 

Therefore, ensuring a robust presentation of CSA's optimal 

performance necessitates a thorough examination involving 

the repetition of tests at least 20 times. This iterative testing 

approach provides a more comprehensive understanding of the 

algorithm's stability and effectiveness across multiple trials, 

thereby offering greater confidence in its performance 

evaluation and comparison. 

As illustrated in Figure 8, This repetitive testing approach 

provides a more comprehensive and statistically significant 

evaluation of the algorithm's capabilities. The result is that 

after 20 tests OCSA has an average computational time of 

103.35 minutes. while ACSA has an average computational 

time of 17.5. The confidence interval for the computational 

time ACSA has (16.03,18.17) and for OCSA has 

(141.48,144.22). In comparison, the efficiency is around 

87.41-88.64%. 

 

 
 

Figure 7. Performance comparison between ACSA and 

OCSA 

 

 
 

Figure 8. Computational time comparison 
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Table 3. IAE change after optimization 

 
 Integral Absolute Error 
 Steering ACC Addition Mean 

Before 

optimization 
0.3591 18.5967 18.9558  

Optimization 

using ACSA 
0.0562 1.9952 2.0514 2.1464 

Optimization 

using OCSA 
0.0327 1.9674 2.0002 2.0830 

 

Analyzing the results depicted in Table 3, it becomes 

evident that the IAE values derived from optimization in the 

best generation for the Optimal OCSA are slightly better than 

those for the ACSA. Nevertheless, it is imperative to 

underscore the remarkable consistency observed in the mean 

IAE across both ACC and steering control for two controller, 

which 2.0830 for OCSA and 2.1464 for ACSA minute with an 

average result of IAE is only different 0.0634. This stability in 

the average IAE across diverse control aspects strongly 

indicates that CSA maintains a dependable performance level 

consistently. Also, confidence interval for the performance 

seen from IAE OCSA has (2.0708, 2.1072) and ACSA has 

(2.0765, 2.1315). In performance comparison between before 

optimization with OCSA has improvement around 88.91-

89.12% and for ACSA has 88.71-89.07% 

 

Table 4. Optimized parameter after tuning 20 time with CSA 

 

Criteria 
Optimized 

Parameter 

Optimal 

Solution 

Standard 

Deviation 

ACSA 

Kp 0.7492 0.2382 

Ki 0.6506 0.2784 

Verr 0.9716 0.2698 

Xerr 0.9778 0.2903 

Vx 0.7012 0.0572 

OCSA 

Kp 0.9547 0.2244 

Ki 0.8985 0.2107 

Verr 0.3015 0.1364 

Xerr 0.9819 0.0147 

Vx 0.7088 0.0130 

 

The standard deviation plays a crucial role in providing 

insights into the dispersion or clustering of optimized 

parameters around the optimal solution. Examining the values 

presented in Table 4, it becomes apparent that the standard 

deviation associated with both the ACC and steering control is 

consistently observed to be relatively small and often below 

zero. This finding implies that the optimized parameters, 

critical for achieving efficient performance in both the ACC 

and steering control systems, exhibit a tendency to be stable 

and converge toward the best possible solution. The smaller 

standard deviation values mean reduced variability and a more 

reliable optimization process, indicating a higher level of 

precision and confidence in the model's performance. This 

stability in the optimized parameters is paramount for ensuring 

the effectiveness and reliability of the control mechanisms, 

contributing to a more robust and dependable overall system. 

 

3.2 Performance of ACC and steering control 

 

Figure 9 shows promising results for both CSA. This 

carefully designed system showcases a level of optimization 

that has a profound impact on both ACC and steering control. 

Its efficacy becomes evident in its ability to judiciously 

manage the relative distance (𝐷𝑅) between the ego car and the 

lead car, always diligently approaching the designated safe 

distance (𝐷𝑠𝑎𝑓𝑒 ) without ever subsiding it. CSA's profound 

contributions extend to the ACC system, which gains the 

capability to not only accurately measure the speed and 

position of the vehicle in front but also provide road users with 

an elevated level of safety and comfort during their journeys. 

To show that the test was carried out on a curved road 

scenario, Figure 10 shows the parameters used by CSA as an 

optimization objective. The graph shows a very small lateral 

displacement error, especially below 0.002, reflecting the high 

level of accuracy and stability of the car system in maintaining 

its lateral position. Lateral displacement error measures how 

far the car is from the desired position on the lateral axis, 

which is parallel to the direction of the car's movement. 

 

 

 

 
 

Figure 9. Performance (a) before optimization, (b) using 

OCSA and (c) using ACSA 
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Figure 10. Lateral displacement error before and after 

optimization using OCSA and ACSA 

 

  

 

 

 
 

Figure 11. Velocity and acceleration (a) before and (b) after 

optimization using ACSA 
 

 

 
 

Figure 12. Response to disturbance before and after 

optimization using (a) OCSA and (b) ACSA 

 

To show that the test was carried out on a curved road 

scenario, Figure 10 shows the parameters used by CSA as an 

optimization objective. The graph shows a very small lateral 

displacement error, especially below 0.002, reflecting the high 

level of accuracy and stability of the car system in maintaining 

its lateral position. Lateral displacement error measures how 

far the car is from the desired position on the lateral axis, 

which is parallel to the direction of the car's movement. 

The implementation of this algorithm in ACC is a 

resounding success, one that speaks volumes about its 

potential to significantly enhance traffic safety and vehicle 

efficiency. The algorithm empowers ACC to expertly oversee 

the maximum acceleration within a range spanning from -3 

m/s² to 2 m/s² [23]. This control ensures that not only are road 

users safe from abrupt and uncomfortable speed changes, but 

the overall efficiency and functionality of vehicles are 

maximized. In a world increasingly driven by the pursuit of 

safer and more efficient transportation solutions. Figure 11 

shows that CSA can be used for optimization and in the future 

is not only for simulation but can be used for real hardware 

implementation. 

The initial speed of the ego and lead car is same, but 

suddenly the lead car has an increased velocity. Figure 12 

shows how the controller on the ego car responds to changes 

in the speed of the lead vehicle. The ego car will be increasing 

speed to match the speed to lead car. The speed response 

generated before optimized has overshoot 0.49%, settling time 

13 second and overshoot 6 seconds. As for OCSA has 9 

seconds settling time and ACSA has 9.1 seconds settling time. 

It shows that there is no significant difference in performance 

between OCSA and ACSA. 

 

 

4. CONCLUSION 
 

This article describes quite promising results in the 

implementation of adaptive cruise control in curving road 

conditions using steering control, along with the optimization 

of its parameters through the use of the crow search algorithm 

as the optimization method. The results of this research 

indicate that the OCSA and ACSA have successfully 

improved the performance of ACC in accurately controlling 

distance and speed, thus providing a more comfortable and 

safe driving experience. Performance of both methods is 

similar. Moreover, ACC can now maintain a more stable 

distance in curved roads due to its integration with steering 

control, both of which have been optimized simultaneously 

using CSA. 
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However, significant challenges exist in translating 

simulation results into real-world applications. The 

implementation of ACC requires careful consideration of 

vehicle hardware requirements and calibration processes to 

ensure optimal performance and safety in various driving 

situations. Future research should focus more on overcoming 

these challenges to facilitate the deployment of optimized 

ACC in real-world driving scenarios. 
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