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 In today's interconnected world, diverse sensor types are critical for powering various 

applications and services. The limited energy resources of these sensors present a 

significant challenge in managing sensor networks efficiently. To address this, we propose 

an energy-saving sensor cloud that utilizes a data prediction technique. Typically, a sensor 

node in a Wireless Sensor Network (WSN) gathers and transmits data to the cloud every 

10 minutes, consuming substantial energy. In contrast, our proposed method requires 

sensor nodes to communicate with the cloud every 110 minutes, as the cloud system's 

forecasting method is capable of predicting ten steps ahead, thus reducing transmission 

frequency. We have applied Wavelet-based Forecasting (WBF), Auto-Regressive 

Integrated Moving Average (ARIMA), and a hybrid ARIMA-WBF for these predictions. 

The ARIMA model demonstrates superior performance compared to the other techniques 

when dealing with linear sensor data. Our method results in a power consumption that is 

approximately 90.9% lower than that of traditional methods within the sensor cloud, owing 

to reduced data transmission frequency. Additionally, our approach yields notably lower 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) in predictions. 
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1. INTRODUCTION 

 

Wireless Sensor Network (WSN) techniques have gained 

significant traction in recent applications. Cloud computing, 

known for providing on-demand resources such as 

infrastructure and storage, has been seamlessly integrated with 

sensor networks to create what is known as a sensor cloud [1]. 

This sensor cloud [2-4] offers sensing services to end-users, 

enabling them to access sensor data through the cloud system. 

Given the limited battery life of sensors and the substantial 

energy required to operate data centers, the creation of an 

energy-efficient sensor cloud is imperative [5-7]. The energy 

efficiency of such a network is crucial not only because of the 

finite lifetime of sensor batteries but also due to the high 

energy demands of running cloud data centers. 

The energy 𝐸𝑗 required by a sensor S’ to transmit data to a 

node S” at a data rate 𝐷𝑟  can be calculated using the following 

equation [8]:  

 

𝐸𝑗 = 𝐸1 + 𝐸′ 𝐷𝑟  𝑃𝑟𝑒𝑐𝑑𝜎  (1) 

 

where, 𝐸1 = the ideal energy consumption of the node S’. 

𝐸′ = Constant 

𝑃𝑟𝑒𝑐  = Minimum energy requirement for successful 

decoding at the node S” 

𝐷𝑟  = data rate of sensor S’ 

𝑑 = distance between the node S’ and S”.  

σ values are between 2 and 6.  
The energy consumption of WSNs is a function of data 

transmission rate and distance. A higher rate and longer 

distances of data transmission can rapidly deplete a sensor's 

battery. 

The implementation of a forecasting system in the cloud, 

which predicts future sensor data, can address this energy 

consumption issue. With accurate forecasts, end-users can 

retrieve predicted data directly from the cloud, reducing the 

frequency of data transmissions from sensors and, thereby, 

conserving energy within the sensor network. Anjali et al. [9] 

developed a machine learning method for temperature 

prediction. Chu et al. [10] achieved more accurate temperature 

estimates by applying neural network techniques to image 

data. Kisi and Shiri [11] utilized ANNs and Fuzzy systems for 

advanced air temperature forecasting at Iranian weather 

stations. Afroz et al. [12] introduced a method for forecasting 

indoor temperatures using various parameters and training 

algorithms. Park et al. [13] developed a deep learning model 

to predict temperatures using real weather datasets. 

Krishnaveni and Padma [14] presented a highly efficient and 

accurate weather prediction method using decision tree 

techniques. Yang et al. [15] formulated an advanced Markov 
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Model for indoor temperature forecasts. 

In addition, Panigrahi and Behera [16] discussed a hybrid 

ETS-ANN model that improved time series forecasting 

results. They also proposed a non-linear TLBO-MFLANN 

model, which yielded favorable outcomes across various 

datasets [17]. Pattanayak et al. [18] introduced a fuzzy time 

series forecasting method incorporating SVM and 

membership values. Panigrahi and Behera [19] developed an 

ANN-based forecasting method enhanced by differential 

evolution. Izonin et al. [20] created an ensemble method using 

GRNN-SGTM to tackle missing data challenges in datasets. 

Valente and Maldonado [21] applied SVM regression with 

feature selection for high-frequency time series forecasting. 

Dantas and Oliveira [22] demonstrated how combining 

Exponential Smoothing, Clustering, and bootstrap aggregation 

could improve time series forecasting. Deng et al. [23] crafted 

an ensemble of SVRs for time series prediction. Jaseena and 

Kovoor [24] surveyed various weather forecasting techniques 

and predictors. Baydilli and Atila [25] analyzed the impact of 

hyperparameters in deep learning. Fay and Ringwood [26], as 

well as Aminghafari and Poggi [27], proposed Wavelet 

transfer models for time series forecasting. Lastly, Nury et al. 

[28] conducted a comparative study on the effectiveness of 

wavelet-ANN and wavelet-ARIMA techniques in predicting 

Bangladesh's temperature data. 

By adopting such forecasting systems, sensor clouds can 

enhance their energy efficiency, extending the operational 

lifespan of sensor nodes and reducing the energy footprint of 

cloud data centers. 

 

 

2. PROPOSED MODEL 

 

In traditional models, sensor nodes gather data and transmit 

it to the cloud system so that the users get the information. As 

the sensor node of the WSN collects data every 10 minutes, 

and in the traditional approach, the node must send data every 

10 minutes to the cloud, which will consume more energy. In 

our proposed method, the sensor nodes transmit with the cloud 

every 110 minutes as the prediction technique within the cloud 

system forecasts ten steps ahead forecasted value. We have 

used ARIMA, WBF, and ARIMA-WBF as the forecasting 

techniques. The accuracy of the ARIMA model is better 

compare to others. Due to less transmission of data from the 

sensors to the cloud, the proposed method is energy efficient. 

The proposed model for the energy-efficient sensor cloud 

using the data prediction approach is shown in Figure 1. 

 

 
 

Figure 1. Data prediction-based energy-efficient sensor 

cloud 

 

2.1 Data and preliminary analysis 

 

2.1.1 Sensor datasets 

Nine sensors’ datasets [29] deployed at Library at the Dock 

and Fitzroy Gardens, Sidney, are used for the simulation. The 

environmental sensor measuring humidity, light levels, and 

temperature are analyzed. The data is collected every 10 min 

from 15/12/2014 to 20/05/2015 for all the nine sensors having 

three measurements, respectively.  

In total twenty-seven environmental sensor datasets are 

collected for measuring humidity, light levels, and temperature, 

respectively. Table 1 shows the nine environmental sensor 

data sets' descriptions for measuring humidity, light levels, and 

temperature, respectively. 

 

Table 1. Descriptions of sensor data sets of humidity, light, and temperature 

 
Sensor Data No. of Data Min Value Max Value Mean 1st Quartile Median 3rd Quartile 

1 Humidity (H1) 6626 7.00 74.30 46.12 38.50 48.60 56.30 

 Light (L1) 6626 4.50 98.20 36.56 7.80 8.50 89.00 

 Temperature (T1) 6626 4.50 42.60 16.88 13.20 16.50 19.40 

2 Humidity (H2) 12038 19.10 69.10 48.39 42.50 49.20 54.90 

 Light (L2) 12038 0.60 98.40 50.30 1.50 73.75 95.90 

 Temperature (T2) 12038 4.20 45.20 18.09 13.90 17.10 21.90 

3 Humidity (H3) 19119 1.50 68.60 53.53 46.10 56.20 63.00 

 Light (L3) 19119 1.50 98.40 47.44 2.90 29.10 95.70 

 Temperature (T3) 19119 5.20 41.30 18.18 14.20 17.40 21.30 

4 Humidity (H4) 2902 1.90 102.5 44.31 35.10 47.30 60.40 

 Light (L4) 2902 0.00 98.00 55.60 1.10 88.20 96.00 

 Temperature (T4) 2902 8.40 37.10 19.86 16.10 19.00 23.50 

5 Humidity (H5) 2727 7.00 67.70 42.27 33.50 43.30 50.80 

 Light (L5) 2727 0.80 97.30 54.48 1.90 83.25 93.40 

 Temperature (T5) 2727 9.70 34.50 19.91 16.80 19.00 22.30 

6 Humidity (H6) 2914 11.40 76.50 50.38 42.10 51.00 59.00 

 Light (L6) 2914 1.90 98.00 52.08 2.90 78.30 91.10 
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 Temperature (T6) 2914 11.00 35.80 20.42 17.70 20.00 22.90 

7 Humidity (H7) 2917 10.00 76.50 47.53 37.40 48.30 57.40 

 Light (L7) 2917 0.40 98.30 55.15 0.90 86.80 95.50 

 Temperature (T7) 2917 9.70 34.80 19.73 16.50 19.00 22.60 

8 Humidity (H8) 2724 10.90 74.90 48.68 39.30 49.90 57.60 

 Light (L8) 2724 1.90 97.80 54.33 3.10 84.60 94.00 

 Temperature (T8) 2724 8.70 36.8 19.03 16.10 18.10 21.90 

9 Humidity (H9) 4597 9.80 74.3 48.43 41.42 50.20 56.70 

 Light (L9) 4597 6.50 98.7 49.59 10.90 13.55 96.00 

 Temperature (T9) 4597 5.80 43.9 19.51 16.10 18.70 21.90 

Table 2. Training sensor data sets of humidity, light, and temperature and the ACF, PACF graphs for twenty-seven univariate 

time-series data 

 
Data Training Data ACF Graph PACF Graph 

H1 

   

L1 

   

T1 

   

H2 

   

L2 
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Data Training Data ACF Graph PACF Graph 

T2 

   

H3 

   

L3 

   

T3 

   

H4 

   

L4 

   

T4 

   

16



 

Data Training Data ACF Graph PACF Graph 

H5 

   

L5 

   

T5 

   

H6 

   

L6 

   

T6 

   

H7 

   

17



 

Data Training Data ACF Graph PACF Graph 

L7 

   

T7 

   

H8 

   

L8 

   

T8 

   

H9 

   

L9 
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Data Training Data ACF Graph PACF Graph 

T9 

   

 

2.1.2 Basic data analysis 

A summary of the environmental sensor data sets for 

measuring humidity, light levels, and temperature are shown 

in Table 1. 

Table 2 shows these twenty-seven sensor datasets for 

measuring humidity, light levels, and the temperature started 

with different 10 min, and these environmental curves not 

showing non-linear nature. We bound our attention to trend 

and linear models. To fit the individual conventional ARIMA 

model and ARIMA-WBF model, the parameters, namely 𝑝 

and 𝑞 , are specified by plotting PACF and ACF plots (see 

Table 2). 

 

2.1.3 Performance evaluation metrics 

The mean absolute error (MAE) and root mean square error 

(RMSE) are used to evaluate [30] the performance of different 

forecasting models for the sensor data sets. The mathematical 

expressions are explained as follows:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖= 1   (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1   (3) 

 

where, 𝑦̂𝑖  is the predicted output and 𝑦𝑖 is the actual output. 

 

2.2 Methodology 

 

We have used ARIMA, WBF, and ARIMA-WBF as the 

forecasting techniques. We have used the combination of 

ARIMA and WBF methods to forecast the environmental 

sensor for measuring humidity, light levels, and temperature. 

 

2.2.1 ARIMA model  

The ARIMA model [31] is a linear regression model. The 

ARIMA (p, d, q), where the model structure is decided by p, 

d, and q integer parameter values. The ARIMA model [32] is 

mathematically expressed as follows: 

 

𝑦𝑡 = 𝜃0 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 −

𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞  
(4) 

 

where, the random error at time t is 𝜀𝑡, the actual value is 𝑦𝑡 , 𝜑𝑖  

and 𝜃𝑗 are the model's coefficients. It is assumed that 𝜀𝑡−1 

(𝜀𝑡−1 = 𝑦𝑡−1 − 𝑦̂𝑡−1)  has constant variance and zero mean. 

The methods consist of the following three iterative steps: (1) 

The model Identification, (2) estimation of the parameters, (3) 

using the residual analysis for checking the model to get the 

best fitted. In the first step differencing is applied to make the 

data stationary. Once the data is stationary, the partial 

autocorrelation function (PACF) and the autocorrelation 

function (ACF) graph are analyzed to select the MA and AR 

model types. The Akaike Information Criterion (AIC) is used 

for the estimation of parameters. At last, residual analysis is 

carried out to check the model to get the best-fitted model. 

ARIMA model generally does not perform well in non-linear 

data sets, so in the next session, we have discussed the WBF 

model. 

 

2.2.2 WBF model 

Generally, the wavelet models are used in nonstationary 

datasets, unlike ARIMA [33]. Most climatic and epidemic 

time-series analysis of datasets are nonstationary; thus, the 

wavelet model [34, 35] is mostly used to forecast. The 

selection of the optimal number of decomposition level in the 

WBF model is as follows: 

 

WL = int[ log(m )] (5) 

 

where, m is the time-series length. The working principle of a 

wavelet-based forecasting model is explained by Messina et al. 

[34]. Daubechies wavelets can generate events in so many 

fashions across the observed time series that most other time 

series forecasting models cannot recognize [36].  

 

2.2.3 ARIMA-WBF model  

 

 
 

Figure 2. Flow chart for the hybrid ARIMA-WBF model 

 

For the environmental sensor datasets, a combination of the 

stationary ARIMA and WBF model, which is nonstationary in 

nature, reduces the component models' individual biases. The 

present sensor datasets for twenty-seven univariate time series 
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are linear. If it is non-linear, then the ARIMA model fails to 

produce random errors. The current sensor datasets are linear. 

We have used a hybrid model for proving this practically, 

which is a combination of WBF and ARIMA. The wavelet 

function is chosen to model the residual series generated from 

the ARIMA model. Several hybrids [37, 38] models using 

ARIMA and neural networks. The algorithm of the hybrid 

ARIMA-WBF model is described in Figure 2. 

 

 

3. RESULTS AND DISCUSSION 

 

It is challenging to study the limited environmental sensor 

nine datasets' characteristics and nature of measuring humidity, 

light, and temperature. So, we consider one significant 

problem relevant to the environmental sensor datasets for a 

total of twenty-seven sensor datasets. This paper deals with the 

data-driven forecasts of the ten-minute sensor datasets of 

measuring humidity, light, and temperature. We have used a 

novel parsimonious ARIMA model of the twenty-seven sensor 

datasets. Hundred minutes ahead (short-term) out of sample 

forecasts is predicted for these twenty-seven datasets. Twenty-

seven univariate time series sensor datasets of humidity, light, 

and temperature are used to train the hybrid model and the 

traditional constituent models. The datasets are linear, 

nonstationary, and statistical tests confirmed this. We 

experimentally evaluate ARIMA, WBF, and hybrid ARIMA-

WBF models for all these twenty-seven sensor datasets. We 

have used MAE and RMSE for the evaluation of the predictive 

performance [39] of the models.We start evaluating our 

experiment for the twenty-seven univariate ten min time series 

datasets with the ARIMA model using the 'forecast’ [40] 

package in R. We fit the wavelet model using the ARIMA 

function. Once the ARIMA is fitted, predictions are generated 

ten steps ahead for short-term forecasts for all the twenty-

seven sensor datasets measuring humidity, light, and 

temperature. We compute the predicted values of training data 

and analyze the residual errors using traditional and advanced 

individual models, namely ARIMA and the hybrid ARIMA-

WBF model. Plots of the residual series are given in Table 3.  

 

Table 3. Plots of residuals and predicted values of sensor data sets for ARIMA model for humidity, light, and temperature 

 
Value Sensor Data Humidity (H) Light (L) Temperature (T) 

Residual 1 

   

Predicted 1 

   

Residual 2 

   

Predicted 2 

   

Residual 3 
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Value Sensor Data Humidity (H) Light (L) Temperature (T) 

Predicted 3 

   

Residual 4 

   

Predicted 4 

   

Residual 5 

   

Predicted 5 

   

Residual 6 

   

Predicted 6 

   

Residual 7 
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Value Sensor Data Humidity (H) Light (L) Temperature (T) 

Predicted 7 

   

Residual 8 

   

Predicted 8 

   

Residual 9 

   

Predicted 9 

   
 

Table 4. ARIMA models of sensor data sets of humidity, light and temperature 

 

Sensor Data 
ARIMA 

(p,d,q) 
ARIMA Model 

H1 (1,1,1) ∆𝑦̂𝑡 = 0.2295∆𝑦̂𝑡−1 − 0.7168𝜀𝑡̂−1 

L1 (2,1,1) ∆𝑦̂𝑡 = 0.3037∆𝑦̂𝑡−1 + 0.0615∆𝑦̂𝑡−2 − 0.7158𝜀𝑡̂−1 

T1 (0,1,2) ∆𝑦̂𝑡 = −0.4163𝜀𝑡̂−1 − 0.0897𝜀𝑡̂−2 

H2 (3,1,1) ∆𝑦̂𝑡 = 0.3232∆𝑦̂𝑡−1 − 0.0026∆𝑦̂𝑡−2 + 0.0195∆𝑦̂𝑡−3 − 0.7486𝜀𝑡̂−1 

L2 (1,1,2) ∆𝑦̂𝑡 = 0.3036∆𝑦̂𝑡−1 − 0.6928𝜀𝑡̂−1 − 0.0423𝜀𝑡̂−2 

T2 (0,1,3) ∆𝑦̂𝑡 = −0.4364𝜀𝑡̂−1 − 0.1527𝜀𝑡̂−2 − 0.0329𝜀𝑡̂−3 

H3 (2,1,2) ∆𝑦̂𝑡 = 0.0009 + 0.9188∆𝑦̂𝑡−1 − 0.2583∆𝑦̂𝑡−2 − 1.2571𝜀𝑡̂−1 + 0.3738𝜀𝑡̂−2 

L3 (1,1,2) ∆𝑦̂𝑡 = 0.3940∆𝑦̂𝑡−1 − 0.7289𝜀𝑡̂−1 − 0.0727𝜀𝑡̂−2 

T3 (2,1,2) ∆𝑦̂𝑡 = 1.1458∆𝑦̂𝑡−1 − 0.3685∆𝑦̂𝑡−2 − 1.4940𝜀𝑡̂−1 + 0.5721𝜀𝑡̂−2 

H4 (1,1,2) ∆𝑦̂𝑡 = 0.9150∆𝑦̂𝑡−1 − 1.3709𝜀𝑡̂−1 + 0.3877𝜀𝑡̂−2 

L4 (1,0,2) ∆𝑦̂𝑡 = 55.5964 + 0.9448∆𝑦̂𝑡−1 − 0.3933𝜀𝑡̂−1 − 0.0683𝜀𝑡̂−2 

T4 (2,1,1) ∆𝑦̂𝑡 = 0.0040∆𝑦̂𝑡−1 − 0.0987∆𝑦̂𝑡−2 − 0.4868𝜀𝑡̂−1 

H5 (1,1,2) ∆𝑦̂𝑡 = 0.5239∆𝑦̂𝑡−1 − 0.8898𝜀𝑡̂−1 + 0.0981𝜀𝑡̂−2 

L5 (1,0,2) ∆𝑦̂𝑡 = 54.4748 + 0.9494∆𝑦̂𝑡−1 − 0.4222𝜀𝑡̂−1 − 0.0952𝜀𝑡̂−2 

T5 (1,1,1) ∆𝑦̂𝑡 = 0.2480∆𝑦̂𝑡−1 − 0.6649𝜀𝑡̂−1 

H6 (2,1,2) ∆𝑦̂𝑡 = −0.0075∆𝑦̂𝑡−1 + 0.1346∆𝑦̂𝑡−2 − 0.3735𝜀𝑡̂−1 − 0.2404𝜀𝑡̂−2 

L6 (1,0,2) ∆𝑦̂𝑡 = 52.0821 + 0.9490∆𝑦̂𝑡−1 − 0.4210𝜀𝑡̂−1 − 0.0643𝜀𝑡̂−2 

T6 (3,1,1) ∆𝑦̂𝑡 = 0.0593∆𝑦̂𝑡−1 − 0.0173∆𝑦̂𝑡−2 − 0.0561∆𝑦̂𝑡−3 − 0.5477𝜀𝑡̂−1 

H7 (2,1,1) ∆𝑦̂𝑡 = 0.2243∆𝑦̂𝑡−1 − 0.0337∆𝑦̂𝑡−2 − 0.6424𝜀𝑡̂−1 

L7 (2,0,4) ∆𝑦̂𝑡 = 55.1164 + 1.9534∆𝑦̂𝑡−1 − 0.9565∆𝑦̂𝑡−2 − 1.4398𝜀𝑡̂−1 + 0.4138𝜀𝑡̂−2 − 0.0.0419𝜀𝑡̂−3 + 0.0822𝜀𝑡̂−4 

T7 (2,1,2) ∆𝑦̂𝑡 = −0.0042∆𝑦̂𝑡−1 + 0.0324∆𝑦̂𝑡−2 − 0.4084𝜀𝑡̂−1 − 0.1645𝜀𝑡̂−2 
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Sensor Data 
ARIMA 

(p,d,q) 
ARIMA Model 

H8 (3,1,2) ∆𝑦̂𝑡 = −0.5797∆𝑦̂𝑡−1 + 0.0948∆𝑦̂𝑡−2 − 0.0442∆𝑦̂𝑡−3 + 0.1462𝜀𝑡̂−1 − 0.4148𝜀𝑡̂−2 

L8 (1,0,2) ∆𝑦̂𝑡 = 54.3273 + 0.9464∆𝑦̂𝑡−1 − 0.4072𝜀𝑡̂−1 − 0.0815𝜀𝑡̂−2 

T8 (3,1,1) ∆𝑦̂𝑡 = 0.0714∆𝑦̂𝑡−1 − 0.0261∆𝑦̂𝑡−2 − 0.0679∆𝑦̂𝑡−3 − 0.5506𝜀𝑡̂−1 

H9 (1,1,1) ∆𝑦̂𝑡 = 0.2360∆𝑦̂𝑡−1 − 0.6570𝜀𝑡̂−1 

L9 (1,1,1) ∆𝑦̂𝑡 = 0.2705∆𝑦̂𝑡−1 − 0.7163𝜀𝑡̂−1 

T9 (1,1,1) ∆𝑦̂𝑡 = 0.2326∆𝑦̂𝑡−1 − 0.6177𝜀𝑡̂−1 

 

The ARIMA residual forecasts and WBF forecasts are 

added to find the out-of-sample forecasts using the hybrid 

ARIMA-WBF model for the next ten steps ahead. The best 

fitted parsimonious ARIMA models of twenty-seven 

environmental sensor datasets measuring humidity, light, and 

temperature are presented in Table 4.  

The real-time forecasted values of sensor data sets for the 

ARIMA model, out of sample Real-time (short-term) forecasts 

(hundred ten minutes ahead) of sensor data sets for both 

ARIMA and hybrid ARIMA-WBF models are displayed in 

Table 5. 

 

Table 5. Forecasted values of sensor data sets for the ARIMA model, out of real-time sample forecasts (10 ten steps ahead) of 

sensor data sets for both ARIMA and hybrid ARIMA-WBF models  
 

Sensor Data Forecasted Value by ARIMA ARIMA 10 Step ahead Hybrid ARIMA-WBF 10 Step ahead 

H1 

   

L1 

   

T1 

   

H2 

   

L2 

   

T2 
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Sensor Data Forecasted Value by ARIMA ARIMA 10 Step ahead Hybrid ARIMA-WBF 10 Step ahead 

H3 

 
  

L3 

   

T3 

 
  

H4 

 
  

L4 

 
  

T4 

 
  

H5 

 
  

L5 
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Sensor Data Forecasted Value by ARIMA ARIMA 10 Step ahead Hybrid ARIMA-WBF 10 Step ahead 

T5 

 
  

H6 

 
  

L6 

 
  

T6 

 
  

H7 

 
  

L7 

 
  

T7 

 
  

H8 
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We applied an advanced hybrid ARIMA-WBF model for 

the nonlinearity, nonstationarity, and non-Gaussian 

environmental sensor datasets of measuring humidity, light, 

and temperature for comparison purposes. The results of the 

simulations are displayed in Table 6. Our proposed individual 

ARIMA model performance is better than the hybrid model in 

twenty-one out of twenty-seven datasets of sensor datasets. 

The RMSE and MAE values are lower in ARIMA compared 

to the other two models in 78 percent of datasets which 

signifies the forecasting accuracy of ARIMA is better in most 

of the cases. 

In the simulation, 100 nodes are distributed uniformly in a 

square of side 100 meters. The rate of the data flow of all the 

nodes is 40Kbps. And the sink is at the left corner of the square. 

We have calculated the energy consumption by forwarding the 

network traffic using the shortest path algorithm to reach the 

sink. list of parameters used in the simulation is explained in 

Table 7. 

 

Table 6. The performance in terms of quantitative measures for various prediction models on twenty-seven sensor datasets for 

humidity, light, and temperature 

 
 Performance  

 

Model  

 H1 L1 T1 H2 L2 T2 H3 L3 T3 

RMSE          

ARIMA  8.8 23.7 2.1 4.63 28.39 2.93 5.9 27.04 2.33 

WBF  9.4 24.6 2.2 4.72 33.94 3.19 7.2 37.59 3.29 

ARIMA-WBF  9.5 25.7 2.8 5.01 30.72 3.16 6.4 29.17 2.52 

  H1 L1 T1 H2 L2 T2 H3 L3 T3 

Model MAE          

ARIMA  4.77 12.25 1.16 2.84 15.1 1.74 3.54 15.04 1.35 

WBF  5.32 13.39 1.24 3.01 26.7 1.96 5.10 31.15 2.42 

ARIMA-WBF   5.18 14.13 1.27 3.04 17.9 1.85 3.78 16.26 1.43 
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 Performance  

 

Model  

 H4 L4 T4 H5 L5 T5 H6 L6 T6 

RMSE          

ARIMA  10.65 25.01 2.58 5.52 25.04 2.1 5.65 23.32 1.94 

WBF  10.83 27.07 3.30 5.64 27.28 2.2 5.80 24.58 2.58 

ARIMA-WBF  11.43 26.96 2.87 6.23 27.11 2.4 6.30 25.63 2.19 

 

Model 

 H4 L4 T4 H5 L5 T5 H6 L6 T6 

MAE          

ARIMA  5.77 14.53 1.53 3.24 15.0 1.2 3.20 13.54 1.12 

WBF  5.89 14.10 2.45 3.44 14.6 1.3 3.43 13.36 1.91 

ARIMA-WBF  5.74 13.93 1.64 3.58 14.9 1.4 3.55 13.59 1.12 

 Performance  

Model   H7 L7 T7 H8 L8 T8 H9 L9 T9 

 RMSE          

ARIMA  6.67 24.61 2.29 5.94 24.8 2.2 6.08 25.13 2.55 

WBF  7.25 25.39 3.01 6.11 25.6 2.7 6.21 27.09 2.61 

ARIMA-WBF  7.34 26.89 2.51 6.58 27.0 2.5 6.61 27.21 2.76 

 

Model 

 H7 L7 T7 H8 L8 T8 H9 L9 T9 

MAE          

ARIMA  3.83 14.16 1.36 3.54 14.7 1.35 3.63 13.77 1.43 

WBF  4.35 13.41 2.23 3.80 13.7 2.02 3.87 15.29 1.54 

ARIMA-WBF  4.36 14.72 1.51 4.01 13.7 1.48 4.00 15.62 1.59 

Table 7. List of parameters 

 
Parameters Values/Unit 

No of Sensor Nodes 100 

Area of Simulation 100 * 100 square meter 

Types of Communication Multi-hop 

Nodes Distribution Uniform 

Simulation Time 100 Hours 

Data Rate 40Kbps 

Transmission Range 20 Meter  

σ  4 

Gateway Position  Corner of the square 

 

 
 

Figure 3. The energy consumption in the proposed and 

traditional method 

 

In the conventional approach, sensor nodes send data every 

10 minutes to cloud systems as data is collected every 10 

minutes. In the proposed approach, ten steps ahead forecasting 

is used in the cloud system, so sensors send data every 110 

minutes to the cloud. The power consumption in the proposed 

and traditional approach is explained in Figure 3. In the 

traditional method, sensor nodes send data every 10 minutes 

to cloud systems as data is collected every 10 minutes. In the 

proposed approach, ten steps ahead forecasting is used in the 

cloud system, so sensors send data every 110 minutes to the 

cloud.  

It is observed that the proposed methods consume less 

energy as compared to the traditional method for the sensor 

cloud system. 

This paper used the ARIMA-WBF model using residual 

modelling for humidity, light, and temperature forecasting for 

the sensor data 1 to 9. The ARIMA-WBF model explains the 

non-linear, linear, and nonstationary tendencies present in the 

humidity, light, and temperature data sets of nine different 

sensors. Since all the data sets are linearity and nonstationarity, 

the proposed ARIMA model can perform better than the other 

two models. It also provides better accuracy in forecasting 

than other advanced models like WBF and ARIMA-WBF for 

twenty-seven out of twenty-seven data sets under RMSE and 

twenty-one out of twenty-seven data sets under MAE of 

humidity, light, and temperature, respectively considered in 

this study. The present model can forecast with better accuracy 

if the linearity of the ARIMA model is satisfied. Ten minutes 

for ten steps ahead of sample forecasts are provided separately 

for twenty-seven environmental sensor datasets measuring 

humidity, light, and temperature. As the sensor node of the 

WSN collects data every 10 minutes, and in the traditional 

approach node and sends data every 10 minutes to the cloud, 

which will consume more energy. In our proposed approach, 

the sensor nodes communicate with the cloud every 110 

minutes as the forecasting technique within the cloud system 

forecasts the ten steps ahead forecasted value. We have used 

ARIMA, WBF, and ARIMA-WBF as the forecasting 

techniques. Our results show the accuracy of the ARIMA 

model is better compare to others. 

 

 

4. CONCLUSIONS 

 

A Sensor-Cloud using the data forecasting technique is 

proposed, which is energy efficient. We have used ARIMA, 

WBF, and ARIMA-WBF as the forecasting techniques. Our 

results show the accuracy of the ARIMA model is better 

compare to others. The sensor nodes gather data and send it to 

the cloud system. The end users get the sensor information 

from the cloud. As the sensor node of the WSN collects data 

every 10 minutes, and in the traditional approach, the node 

must send data every 10 minutes to the cloud, which will 

consume more energy. In our proposed approach, the sensor 

nodes transmit data to the cloud every 110 minutes as the 

forecasting technique within the cloud system forecasts the ten 
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steps ahead forecasted value. Due to less transmission of data 

to the cloud from the sensors, the proposed approach is energy 

efficient. Our proposed method consumes 0.090909 times 

lower power as compared to existing methods in the sensor 

cloud due to less data transmission, and the RMSE and MAE 

in the prediction are also significantly less. 
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