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Over the past three decades, there has been a notable increase in the occurrence of 

diabetes. The International Diabetes Federation (IDF) states that in 2021, over 537 

million individuals worldwide have been diagnosed with diabetes. Here, we derive a 

stochastic model with white noise (incidence rate fluctuation, treatment efficacy 

variability, behavioral factors, and environmental influence) to study the dynamics of 

type 2 diabetes. Since the dynamics of stochastically perturbed models are substantially 

different from those of deterministic models, stochastic models provide an additional 

degree of realism to real-world problems for epidemic diseasesFurthermore, we 

broadened our deterministic model by transforming it into an optimal control model and 

subjected it to analysis using Pontryagin's Maximum Principle. In addition, we have 

performed a numerical simulation, which may serve as a verification of our theoretical 

research findings. Consequently, we conclude that an elevation in the transition rate 

from susceptible to imbalanced glucose levels results in an increase in the treatment and 

restrain population of the stochastic model. 
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1. INTRODUCTION

As per the World Health Organization (WHO), diabetes is 

a chronic medical condition marked by hyperglycemia. This 

occurs either due to insufficient insulin secretion from the 

pancreas or resistance to insulin within the body [1]. The 

prominent signs and indicators of diabetes are frequent 

urination, blurred vision, thirst, dry mouth, weight loss, 

tiredness, and slow-healing wounds. Also, diabetes is 

associated with several risk factors, including heart attack, 

high blood pressure, blindness, and poor sleep quality. 

The International Diabetes Federation (IDF) reports that 

there are over 1.2 million individuals globally diagnosed with 

type 1 diabetes; one-sixth (21 million) of live births are 

affected by diabetes during pregnancy; nearly 966 billion 

dollars were spent on healthcare; about 6.7 million deaths were 

caused by diabetes: over 240 million individuals were living 

with diabetes are undiagnosed, more than 537 million 

individuals with diabetes in 2021, This number is projected to 

rise to 643 million by 2030 and is anticipated to further 

escalate to 783 million by 2045 [2]. 

In recent years, several mathematical models have been 

developed to investigate the characteristics of diabetes [3-7]. 

Some of them are, a model structured by age for complications 

associated with diabetes [8], an optimal control model for 

managing the diabetes population [9], obesity increases the 

susceptibility of individuals to develop type 2 diabetes. [10] 

and effect of physical exercise [11]. 

Conversely, Pinto and Carvalho [12] formulated a 

mathematical model to assess the clinical consequences of the 

concurrent presence of diabetes and tuberculosis. Moreover, 

Nath et al. [13] have discussed the importance of control-

oriented meal models and insulin dynamics. And reviewed 

briefly about the progress in the creating of knowledge-driven 

blood glucose dynamic models. Moreover, Kouidere et al. [14] 

presented a deterministic model examining the coexistence of 

COVID-19 and diabetes. They utilized an optimal control 

model to identify the adverse impact of quarantine on 

individuals with diabetes amid the COVID-19 pandemic. 

Specifically, Anusha and Athithan [15]’s work indicates 

that the model is taken into account in the space ℝ4
+, which

divided the model into diabetes susceptible class S(t), 

Imbalance Glucose Level(IGL) class I(t), treatment class T(t) 

and restrain class R(t). At the time 𝑡, the total population sizes 

is given by N(t)=S(t)+I(t)+T(t)+R(t). The differential equations 

are as follows: 

𝑑𝑆

𝑑𝑡
= Λ − 𝛼𝑆 − 𝜇𝑆 + ℓ𝑅,

𝑑𝐼

𝑑𝑡
= 𝛼𝑆 − 𝛽𝐼 − 𝜌𝐼𝑇 − 𝜇𝐼,

𝑑𝑇

𝑑𝑡
= 𝛽𝐼 + 𝜌𝐼𝑇 − 𝛾𝑇 − 𝜇𝑇,

𝑑𝑅

𝑑𝑡
= 𝛾𝑇 − 𝜇𝑅 − ℓ𝑅,

(1) 

where, Λ represents the recruitment rate of S, α is the rate of 

progression of individuals from S to I, β represents the 

progression rate from I to T, ρ denotes the interaction rate 

between IGL and treatment population, ℓ is the rate at which 

individuals who have recovered lose their immunity, γ 
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represents the recovered rate, and μ indicates the natural 

demise rate. It is presumed that all parameter values are 

positive constants. For model (1), there exist two non-negative 

equilibria namely: 

• Diseases Free Equilibrium (DFE) 𝐸(0) =

(𝑆0, 𝐼0, 𝑇0, 𝑅0) = (
Λ

𝛼+𝜇
, 0,0,0).  

• Endemic Equilibrium (EE) E1=(S*, I*, T*, R*) where, 
 

𝑆∗ =
𝐼∗𝛽ℓ𝛾 + Λ𝑘3𝑘4 − 𝐼

∗Λ𝑘4𝜌

𝑘1𝑘4(𝑘3 − 𝐼
∗𝜌)

, 

 𝑇∗ =
𝐼∗𝛽

(𝑘3−𝐼
∗𝜌)
, 

𝑅∗ =
𝐼∗𝛽𝛾

𝑘4(𝑘3 − 𝐼
∗𝜌)
, 

 𝐼1
∗ =

−𝐺2+√𝐺2
2−4𝐺1𝐺3

2𝐺1
. 

 

where, 𝑘1 = 𝛼 + 𝜇, 𝑘2 = 𝛽 + 𝜇, 𝑘3 = 𝛾 + 𝜇, 𝑘4 = 𝜇ℓ, 𝐺1 =
𝜇𝜌𝑘1𝑘4, 𝐺2 = −(𝛼Λ𝑘4𝜌 + 𝑘5), 𝐺3 = Λ𝛼𝑘3𝑘4 . Further, by 

employing the “next-generation matrix method” the treatment 

reproduction number RT for our deterministic model (1) is 

calculated as: 
 

𝑅𝑇 =
𝜌

𝛾+𝜇
𝐼∗,  

 

which denotes the potential treatment level after the IGL 

population enters the treatment compartment. And the positive 

invariant set for our deterministic model (1) is as follows: 

 

Ω = {(𝑆, 𝐼, 𝑇, 𝑅) ∈ ℝ+
4 : 𝑆 > 0, 𝐼 > 0, 𝑇 > 0, 𝑅 > 0, 0 < 𝑆 + 𝐼 + 𝑇 +

𝑅 ≤
Λ

𝜇
}.  

 

Further, it is important to note that all the mathematical 

models for diabetes mentioned above are deterministic in 

nature. The random movements of population fluctuation, 

individual death rate, immigration rate, and other 

complications are ignored. Since the deterministic model has 

few restrictions in biological systems, we cannot predict the 

dynamics of diabetes more accurately. Therefore, the 

implement of randomness in the model (1) changes it to the 

stochastic differential equations which offer a more realistic 

approach to studying epidemic diseases [16-21]. 

For example, Rajalakshmi and Ghosh [22] suggest that the 

virotherapy success rate is relatively higher in the stochastic 

diffenrential model than in the deterministic model. In 

particular, Yuan and Allen [23] used stochastic model to 

investigate the dynamics of viruses and immune systems. 

Furthermore, Srivastav et al. [24] showed that, in a stochastic 

simulation, the criminal population level is notably less than 

the estimated value generated by the corresponding 

deterministic model. 

Motivated by the aforementioned works, we are extending 

the deterministic model proposed by Anusha and Athithan [15] 

to a stochastic model, since stochastic models have a greater 

capacity to capture the random variations present in the 

diabetes under consideration. Furthermore, a model for 

optimal control is created, leading to the derivation of 

mathematical results from it [25-27]. 

The remaining of this article is organized as: In Section 2, 

we extend model (1) by considering the effects of stochasticity; 

In Section 3, performing optimal control to identify key 

parameters for managing diabetes; In Section 4, we performed 

some numerical experiments to validate the analytical results; 

Section 5 provides a summary of our results. 

2. STOCHASTIC MODEL 

 

We will extend the model (1) to a stochastic one, 

recognizing that stochastic models are better suited for 

capturing the inherent random fluctuations in the biological 

dynamics of the diabetes.  

The development of a stochastic model follows the 

methodology introduced by Yuan and Allen [23]. Let the 

random variable Z(t)=(Z1(t), Z2(t), Z3(t), Z4(t))H be continuous 

for (S(t), I(t), T(t), R(t))H where the transpose of matrix is 

denoted by H. 

The random vector represents the change in random 

variables during the time interval Δ𝑡  is represented by 

ΔZ=Z(t+Δt)-Z(t)=(ΔZ1, ΔZ2, ΔZ3, ΔZ4)H. We will now 

delineate the transition maps that articulate all conceivable 

state changes within the stochastic model. Derived from our 

deterministic model (1), it becomes evident that there are 11 

potential state changes within a small time interval Δt. Table 1 

presents a discussion on state changes and their corresponding 

probabilities. 

Consider a scenario where a susceptible human transitions 

to an infected state due toIGL. In this instance, the state change 

ΔZ is represented as ΔZ=(-1, 1, 0, 0) its probability of the 

occurrence is expressed as: 

 
𝑃𝑟𝑜𝑏{(Δ𝑍1, Δ𝑍2, Δ𝑍3, Δ𝑍4) = (−1,1,0,0)|(𝑍1, 𝑍2, 𝑍3, 𝑍4)} 

= 𝑃2 = 𝛼𝑍1Δ𝑡 + 𝑜(Δ𝑡). 

 

The determination of the change in expectation E(ΔZ) and 

its covariance matrix V(ΔZ) related with ΔZ by disregarding 

terms bigger than o(Δt). The expectation of ΔZ is expressed as 

follows: 

 

𝐸(Δ𝑍) =∑

11

𝑖=1

𝑃𝑖(Δ𝑍)𝑖Δ𝑡 = (

Λ − 𝛼𝑆 − 𝜇𝑆 + ℓ𝑅
𝛼𝑆 − 𝛽𝐼 − 𝜌𝐼𝑇 − 𝜇𝐼
𝛽𝐼 + 𝜌𝐼𝑇 − 𝛾𝑇 − 𝜇𝑇
𝛾𝑇 − 𝜇𝑅 − ℓ𝑅

)Δ𝑡 = 𝑓(𝑍1, 𝑍2, 𝑍3, 𝑍4)Δ𝑡. 

 

It should be noted that in this context, both the function f 

and the expectation vector maintain the similar structure as 

those observed in the model (1). 

Further the covariance matrix V(ΔZ)=E((ΔZ)(ΔZ)H)-

E(ΔZ)(E(ΔZ)H) and E((ΔZ)(ΔZ)H)=f(Z)(f(Z)H)Δt, it can be 

approximated with diffusion matrix ɸ times Δt byslighting the 

term of (Δt)2 such that V(ΔZ)≈E((ΔZ)(ΔZ)H). 

Hence 

 
𝐸((Δ𝑍)(Δ𝑍)𝐻) = ∑11𝑖=1 𝑃𝑖((Δ𝑍)𝑖(Δ𝑍)𝑖

𝐻)Δ𝑡 =

(

 
 

𝑉11 𝑉12 0 𝑉14
𝑉21 𝑉22 𝑉23 0

0 𝑉32 𝑉33 𝑉34
𝑉41 0 𝑉43 𝑉44

)

 
 
. Δ𝑡 = ɸ. Δ𝑡, 

 

In this context, the aforementioned diffusion matrix is 

positive-definite and symmetric. The derivation of each 

element of this 4×4 diffusion matrix is given: 

 
𝑉11 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 = Λ + 𝛼𝑍1 + 𝜇𝑍1 + ℓ𝑍4, 

𝑉12 = 𝑉21 = −𝑃2 = −𝛼𝑍1, 𝑉14 = 𝑉41 = −𝑃4 = −ℓ𝑍4, 

𝑉22 = 𝑃2 + 𝑃5 + 𝑃6 + 𝑃7 = 𝛼𝑍1 + 𝛽𝑍2 + 𝜌𝑍2𝑍3 + 𝜇𝑍2, 

𝑉23 = 𝑉32 = −𝑃5 − 𝑃6 = −𝛽𝑍2 − 𝜌𝑍2𝑍3, 
𝑉33 = 𝑃5 + 𝑃6 + 𝑃8 + 𝑃9 = 𝛽𝑍2 + 𝜌𝑍2𝑍3 + 𝛾𝑍3 + 𝜇𝑍3, 

𝑉34 = 𝑉43 = −𝑃8 = −𝛾 

𝑉44 = 𝑃4 + 𝑃8 + 𝑃10 = ℓ𝑍4 + 𝛾𝑍3 + 𝜇𝑍4, 
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Table 1. Potential state transitions and their related probabilities 

 
Possible Stage Change  Probability of State Changes 

(Δ𝑍)1 = (1,0,0,0)
𝐻 Change when the recruitment increases. 𝑃1 = ΛΔ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)2 = (−1,1,0,0)
𝐻 

Change when some individuals moves from susceptible compartment to 

IGL compartment. 
𝑃2 = 𝛼𝑍1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)3 = (−1,0,0,0)
𝐻 Mortality rate of susceptible class. 𝑃3 = 𝜇𝑍1Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)4 = (1,0,0,−1)
𝐻 Change when some recovered individual moves to susceptible class. 𝑃4 = ℓ𝑍4Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)5 = (0,−1,1,0)
𝐻 Change when some individuals moves from IGL class to treatment class. 𝑃5 = 𝛽𝑍2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)6 = (0,−1,1,0)
𝐻 

Change when there is an interaction between IGL class and treatment 

class. 
𝑃6 = 𝜌𝑍2𝑍3Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)7 = (0,−1,0,0)
𝐻 Mortality rate of IGL class. 𝑃7 = 𝜇𝑍2Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)8 = (0,0,−1,1)
𝐻 

Change when some individuals Moves from treatment compartment to 

restrain compartment. 
𝑃8 = 𝛾𝑍3Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)9 = (0,0, −1,0)
𝐻 Mortality rate of treatment class. 𝑃9 = 𝜇𝑍3Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)10 = (0,0,0,−1)
𝐻 Mortality rate of restrain class. 𝑃10 = 𝜇𝑍4Δ𝑡 + 𝑜(Δ𝑡) 

(Δ𝑍)11 = (0,0,0,0)
𝐻 No change. 𝑃11 = (1 −∑

10

𝑖=1
𝑃𝑖) + 𝑜(Δ𝑡) 

 

We adhere to the approach outlined by Yuan and Allen [23] 

and generate a matrix Q in such a way that ɸ=QQH, where Q 

is a 4×9 matrix. 

 

𝐾 =

(

  
 

√𝑃1 + 𝑃3 √𝑃2 √𝑃4 0 0 0 0 0 0

0 −√𝑃2 0 √𝑃5 √𝑃6 √𝑃7 0 0 0

0 0 0 −√𝑃5 −√𝑃6 0 √𝑃8 √𝑃9 0

0 0 −√𝑃4 0 0 0 −√𝑃8 0 √𝑃10)

  
 

 

 

Therefore, Ito stochastic differential model holds the 

subsequent form: 

 
𝑑(𝑍(𝑡)) = 𝑓(𝑍1, 𝑍2, 𝑍3, 𝑍4)𝑑𝑡 + 𝑄. 𝑑𝑊(𝑡) 

 

with initial condition Z(0)=(Z1(0), Z2(0), Z3(0), Z4(0))H and 

W(t)=((W1(t), W2(t), W3(t), W4(t), W5(t), W6(t), W7(t), W8(t), 

W9(t))H is a Wiener process,. 

Taking into account the aforementioned information, we 

form the stochastic model in the following manner: 
 
𝑑𝑆 = [Λ − 𝛼𝑆 − 𝜇𝑆 + ℓ𝑅]𝑑𝑡 + √Λ + 𝜇𝑆𝑑𝑊1 + √𝛼𝑆𝑑𝑊2 + √ℓ𝑅𝑑𝑊3,

𝑑𝐼 = [𝛼𝑆 − 𝛽𝐼 − 𝜌𝐼𝑇 − 𝜇𝐼]𝑑𝑡 − √𝛼𝑆𝑑𝑊2 + √𝛽𝐼𝑑𝑊4 + √𝜌𝐼𝑇𝑑𝑊5 +√𝜇𝐼𝑑𝑊6,

𝑑𝑇 = [𝛽𝐼 + 𝜌𝐼𝑇 − 𝛾𝑇 − 𝜇𝑇]𝑑𝑡 − √𝛽𝐼𝑑𝑊4 −√𝜌𝐼𝑇𝑑𝑊5 + √𝛾𝑇𝑑𝑊7 + √𝜇𝑇𝑑𝑊8,

𝑑𝑅 = [𝛾𝑇 − 𝜇𝑅 − ℓ𝑅]𝑑𝑡 − √ℓ𝑅𝑑𝑊3 −√𝛾𝑇𝑑𝑊7 +√𝜇𝑅𝑑𝑊9.

  (2) 

 

 

3. OPTIMAL CONTROL MODEL 

 

Here, we extend our deterministic model to an optimal 

control model since optimal control theory has emerged as a 

promising tool for minimizing the overall number of infectives 

within a finite time span while minimizing the effort cost. In 

examining this model, we will apply Pontryagin’s Maximum 

Principle [28-31]. The ensuing expression represents the 

formulated optimal control system along with the objective 

functional: 

 
𝑑𝑆

𝑑𝑡
= Λ − 𝛼𝑆 − 𝜇𝑆 + ℓ𝑅,

𝑑𝐼

𝑑𝑡
= 𝛼𝑆 − 𝛽𝐼 − 𝜌(𝑡)𝐼𝑇 − 𝜇𝐼,

𝑑𝑇

𝑑𝑡
= 𝛽𝐼 + 𝜌(𝑡)𝐼𝑇 − 𝛾(𝑡)𝑇 − 𝜇𝑇,

𝑑𝑅

𝑑𝑡
= 𝛾(𝑡)𝑇 − 𝜇𝑅 − ℓ𝑅.

  (3) 

 

3.1 The optimal control problem 

 

We employ optimal control theory to analyze the dynamics 

of the provided model. The objective functional, for a fixed 

time tf, is expressed as follows: 

 

𝐽 = ∫
𝑡𝑓
0
(𝐶1𝐼 +

1

2
𝐶2𝜌

2 +
1

2
𝐶3𝛾

2)𝑑𝑡  (4) 

 

in compliance with the state system provided by (3). Here, the 

parameter C1≥0, C2≥0, C3≥0 and they symbolize the weight 

constants. 

Our aim is to ascertain the control parameters ρ* & γ*, such 

that: 

 

𝐽(𝜌∗, 𝛾∗) = min
𝜌,𝛾𝜖Γ

𝐽(𝜌, 𝛾), 

 

where, Γ represents the control set and is defined as Γ={ρ, γ: 

measurable and 0≤ρ(t), γ(t)≤1} and 𝑡𝜖[0, 𝑡𝑓]. 

The Lagrangian problem is termed as 𝐿(𝐼, 𝜌, 𝛾) = 𝐶1𝐼 +
1

2
𝐶2𝜌

2 +
1

2
𝐶3𝛾

2. 

In addressing our problem, we formulate the Hamiltonian 

ℋ in the following manner: 

 

ℋ(𝐼, 𝜌, 𝛾) = 𝐿(𝐼, 𝜌, 𝛾) + 𝜆1
𝑑𝑆

𝑑𝑡
+ 𝜆2

𝑑𝐼

𝑑𝑡
+ 𝜆3

𝑑𝑇

𝑑𝑡
+ 𝜆4

𝑑𝑅

𝑑𝑡
, 

 

where, λi, i=1, 2, 3, 4 are the co-state\adjoint variables and can 

be found by solving the model (5): 

 

( )

( )

( ) ( )

( )

1
1 2 1

2
1 2 3 2

3
2 3 3 4 3

4
4 1 4

,

( ) ,

,

,

d

dt S

d
C T

dt I

d
I

dt T

d

dt R


   


    


      


  


= − = − +




= − = − + + − +




= − = − + − +




= − = − +



 

(5) 

 

Let 𝑆̃, 𝐼, 𝑇̃  and 𝑅̃  be the optimal value of S, I, T and R. 

Additionally, let {λ1, λ2, λ3, λ4} be the solutions of the model 

(5). 

 

3.2 Optimal control theorems 

 

In modelling, optimal control strategies are applied to 

model and manage the spread of diseases. By optimizing 

intervention measures such as vaccination campaigns or 
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quarantine protocols [31], public health officials can better 

control and alleviate the repercussions of infectious diseases 

[32]. 

Theorem 3.1 There exist optimal controls ρ*,γ*𝜖Γ in such 

a way that 𝐽(𝜌∗, 𝛾∗) = 𝑚𝑖𝑛
𝜌,𝛾→𝛤

𝐽(𝜌, 𝛾) subject to system (3).  

Proof. Lenhart and Workman's model (2007), outlined in 

"Optimal control applied to biological models," applies 

optimal control theory to optimize biological systems, offering 

insights for effective decision-making in areas such as disease 

management and resource allocation [32]. It is easy to see that 

all the the state variables and the control are non-negative. For 

this minimization problem, the requisite convexity of our 

objective function in ρ and γ is also verified. The control 

variable set 𝜌, 𝛾𝜖Γ is also closed and convex by definition. 

Furthermore, the integrand in the functional (4), 𝐶1𝐼 +
1

2
𝐶2𝜌

2 +
1

2
𝐶3𝛾

2 is bounded and convex on the control set Γ, as 

well as for the state variables. Atlast, the theorem is proved.  

Given the presence of an optimal control to reduce the 

function under the constraints of Eqs. (3) and (5), the optimal 

solution can be acquired through the use of Pontryagin's 

Maximum Principle. The sufficeint conditions can be derived 

in the following manner: 

Let (x, u) be an optimal solution to an optimal control 

problem. Then, there exists a non trivial vector function λ=(λ1, 

λ2, ..., λn) that satisfies the following equalities. 

 
𝑑𝑥

𝑑𝑡
=

𝜕𝐻(𝑡,𝑥,𝑢,𝜆)

𝜕𝜆
,

0 =
𝜕𝐻(𝑡,𝑥,𝑢,𝜆)

𝜕𝑢
,

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻(𝑡,𝑥,𝑢,𝜆).

𝜕𝑥

  (6) 

 

Utilizing Theorem 3.1 alongside the Pontryagin’s 

Maximum Principle [33], our aim is to introduce and clarify 

the following theorem. 

Theorem 3.2 The optimal controls ρ*, γ* minimizes J over 

the region Γ defined by 𝜌∗ = max{0,min(𝜌̃, 1)}  and 𝛾∗ =

max{0,min(𝛾̃, 1)}, where, 𝜌 =
𝐼𝑇̃(𝜆2̃−𝜆3̃)

𝐶2
, 𝛾 =

𝑇̃(𝜆3̃−𝜆4̃)

𝐶3
. 

Proof. By applying the optimality conditions 
𝜕𝐻

𝜕𝜌
= 0 

and 
𝜕𝐻

𝜕𝛾
= 0, we get 

𝐼𝑇̃(𝜆2̃−𝜆3̃)

𝐶2
, 𝛾 =

𝑇̃(𝜆3̃−𝜆4̃)

𝐶3
. 

These controls have upper and lower boundaries of 0 & 1 

respectively. That is ρ=0 if 𝜌̃ < 0 & ρ=1 if 𝜌̃ > 1 & γ=0 if 𝛾̃ <
0 & γ=1 if 𝛾̃ > 1, apart from that ρ=𝜌̃ & γ=𝛾̃. Therefore for 

this controls (ρ*) & (γ*) the optimal value of the functional J, 

as defined in Eq. (4), is determined, hence proved. 

 

 

4. NUMERICAL SIMULATION 

 

We carried out numerical experiments for the model (2) by 

applying the Euler-Maruyama method. We assumed that all 

the parameters are in years. Now, choosing the parameter 

values of the system as: 

 
𝑌1 = (Λ, 𝛼, 𝜌, 𝛽, 𝛾, 𝜇, ℓ) =

(100,0.0099,0.000009,0.0199,0.0170,0.0167,0.0009).  

 

For this parameter set, model (1) and (2) has the EE point 

which is stable. Further, Figure 1 depicts the comparison 

outcomes of the model (1) and model (2) for the parameter set, 

and the mean of the 500 runs is plotted. It is observed that the 

dynamics of the susceptible population are similar for both 

models. However, the stochastic simulation of IGL, treatment 

and restrain population are little deviate from the 

corresponding deterministic simulation. 

Subsequently, we choose the following set of parameters: 

 
𝑌2 = (Λ, 𝛼, 𝜌, 𝛽, 𝛾, 𝜇, ℓ) =

(100,0.0099,0.000009,0.0150,0.0170,0.0167,0.0009).  

 

For this set of numerical values, we obtain the unique EE 

point for the model (1) and (2) which is shown in Figure 2. 

From the Figure, it is noticed that the simulation of the 

stochastic model (2) is quite close to the model (1). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. Time evolutions of (a) susceptible population, (b) 

IGL population, (c) treatment population, and (d) restrain 

population for model (1) and model (2) using the parameter 

set Y1 
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(a) 

(b) 

(c) 

(d) 

Figure 2. Time evolutions of (a) susceptible population, (b) 

IGL population, (c) treatment population, and (d) restrain 

population for model (1) and model (2) using the parameter 

set Y2

(a) 

(b) 

(c) 

(d) 

Figure 3. Variation of (a) susceptible population, (b) IGL 

population, (c) treatment population, and (d) restrain 

population for stochastic model (2) with respect to time for 

various values of α and other parameters as in Y2 

5. CONCLUSIONS

The causes of diabetes are still an unpredictable 

phenomenon in most people, and therefore it is essential to 

include environmental effects like the behavior of individuals, 

and genetic and lifestyle factors as white noise in the 

deterministic model to study stochasticity. This motivates us 

to study stochastic perturbation in the physical world problem. 

Here, a deterministic model is improved by introducing 

environmental noise effects into the stochastic model to make 

the system can handle more practical circumstances. 

We studied the simulation results of both models after 

transitioning the model (1) to a stochastic model (2). For the 

parameter set Y1, the results obtained from the stochastic 

model suggest a less number of IGL population in comparison 

to the outcomes of the corresponding deterministic model. 

However, for parameter Y2, the simulation results of the 

stochastic model closely resembles those of the deterministic 

model. 

Here we had considered the white noise terms which 

represents the physical and mental dilemma of every human 

being due to the environmental/situation changes that occur in 
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society. Based on this fact only the evolution of stochasticity 

has been started and it goes beyond our level of thinking 

nowadays. The rise and fall of the population in each of our 

compartments are not only based on the individual’s dilemma 

alone. It is the effect created by decision-makers in any group 

or society. It’s harder to specify any reason for that. 

Even small suggestions in the advertisements about the 

reduction of diabetes may develop a concern about that in any 

individual/group of people’s mindset. In that sense, we may 

say that there may be many reasons for such kinds of 

fluctuations here and there for producing the effect among 

each compartment. These fluctuations were effectively 

depicted in Figures 1-2. These visuals were exhibiting a 

particular effect on the population. 

Finally, we conclude that there are many fluctuations 

among the population of diabetes based on the white noise 

level arrangement or natural arousement of situations. Also, 

we would like to comment on the fact that if the progression 

rate from susceptible to IGL is high then the probability of the 

IGL population will become higher as shown in Figure 3. Our 

findings illustrate that the stochastic model gives an additional 

dimension to the diabetes epidemic model. In our forthcoming 

research, we intend to incorporate Levy noise and telegraph 

noise into the deterministic model. 

Blood glucose levels can exhibit random fluctuations 

influenced by factors such as physical activity, diet, stress, and 

other environmental variables. Including Lévy noise in 

mathematical models helps researchers capture and 

understand the stochastic nature of these fluctuations. 
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