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The autonomous navigation of Unmanned Ground Vehicles (UGVs) necessitates the 

precise identification of the surrounding outdoor environment, emphasizing the 

significance of terrain classification. This study introduces an Intelligent Double Spike 

Neural Network (IDSNN) that utilizes supervised learning with vision data for the 

classification of diverse terrains. Specifically, six terrain types are classified: hydrop, 

gravel, grass, sand, asphalt, and mud. The extraction of texture features, pivotal for the 

model's input, is conducted using the Local Binary Pattern (LBP) method. The IDSNN 

model, characterized by its utilization of a multi-spike learning mechanism with 

temporal coding, demonstrates superior performance in both accuracy and power 

efficiency. Comparative analyses reveal that the multi-spike learning approach of 

IDSNN significantly outperforms the single-spike learning employed in the Semi-

Recurrent Spike Neural Network (SRSNN). Evaluation metrics, including accuracy, 

precision, recall, and F1-score, are employed to quantify this advancement. Notably, 

IDSNN exhibits a 3% improvement in overall accuracy over SRSNN, achieving an 

impressive accuracy rate of 90.706%. The findings of this study underscore the potential 

of IDSNN in enhancing the safety and efficiency of Mobile Robot Navigation (MRN) 

through reliable terrain classification. 
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1. INTRODUCTION

In the evolving landscape of technology, the application of 

mobile robots has proliferated across various sectors including 

military, medical, and industrial applications [1-3]. The 

efficacy of these robots in performing tasks safely is 

contingent upon their ability to navigate and respond to their 

outdoor environments. A critical challenge faced by 

autonomous ground robots in these environments is the 

diverse array of terrain types, which can significantly impact 

their power usage and mobility [4, 5]. For example, navigation 

over grassland and sand terrains has been shown to lead to 

substantial energy depletion [6], while hydrop terrains pose 

risks of damage through inadvertent immersion [7]. It is thus 

imperative to develop robust terrain classification methods to 

enhance the safety and efficiency of robotic navigation. 

In the field of autonomous robotics, particularly in mobile 

robots, the challenge of terrain classification is pivotal for 

effective navigation. Terrain categorization is primarily 

facilitated by onboard sensors, employing two principal 

methods: Exteroceptive and Proprioceptive. The 

Exteroceptive method, which preempts the robot's movement 

by recognizing upcoming terrain, bifurcates into geometry-

based and appearance-based classifications [8]. Relying 

exclusively on geometry-based classification can result in 

ambiguities due to the similarity of geometric features across 

various terrains, such as the presence of tall grass and brief 

hedgerows [9]. In contrast, the appearance-based or vision-

based method provides comprehensive terrain surface 

information, including color, texture, and shape, typically 

implemented using laser sensors like cameras and lidars [10], 

[11]. Proprioceptive classification, alternatively, discerns 

terrain types based on the interaction between the robot's 

wheels and the ground [8], often utilizing sensors such as 

accelerometers and gyroscopes [11]. However, this method 

requires a vehicle platform capable of responding to 

challenges like rollovers or collisions. Recent advancements 

have favored vision-based methods for their cost-effectiveness 

and rich data acquisition capabilities [12]. 

Deep learning has been a significant contributor to resolving 

robot control issues, including terrain classification. However, 

despite their efficacy, deep neural networks entail complex 

structures and high energy consumption [13]. As an alternative, 

the Spiking Neural Network (SNN) with time coding has 

emerged, characterized by low power consumption, 

computational speed, and energy efficiency, thanks to its 

event-driven architecture [14, 15]. 

SNNs are categorized based on the number of spikes 

produced during learning, namely single-spike and multi-

spike approaches. Single-spike learning, albeit more efficient 

than traditional artificial neural networks (ANNs), is limited 

by the finite amount of information it can process [16]. Multi-

spike learning, used in this study, addresses this limitation [17, 

18]. 
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The contributions of this study are as follows: first, the 

introduction of the IDSNN, a novel Multi-Spike Neural 

Network (MSNN) model, for classifying six types of terrain: 

hydrop, gravel, grass, sand, mud, and asphalt; second, 

classification of terrain types based on vision data, particularly 

texture features; third, enhancement of UGV navigation 

through the development of a safe, efficient, and cost-effective 

navigation environment. This is achieved by designing a 

MSNN capable of classifying multiple terrain types, thus 

ensuring low power consumption, high computational speed, 

and energy efficiency; finally, modification of the traditional 

MSNN model in IDSNN, incorporating time coding and 

feedback from each neuron in the output layer to all neurons 

in the hidden layer. 

The remainder of this study is structured as follows: Section 

2 presents related works employing different neural network 

methods for terrain classification. Section 3 describes the 

proposed IDSNN model. Section 4 details the simulation and 

evaluation of the IDSNN. Finally, Section 5 concludes the 

study. 

 

 

2. RELATED WORK 

 

Recent advancements in terrain classification for mobile 

robots have been marked by a diverse array of studies, 

employing various sensors and classification techniques. 

These studies are broadly categorized into three approaches: 

proprioceptive, exteroceptive, and hybrid methods that 

combine both. In the realm of proprioceptive methods, a semi-

supervised algorithm for terrain classification and estimation 

of terrain properties was proposed, utilizing tapered whiskered 

sensors. This approach, as presented by Yu et al. [19], 

leverages reservoir computing to achieve low computational 

costs while automatically labeling new terrains. The algorithm 

classifies six terrain types - hard rough cobblestones, hard 

roughish brick, soft rough grass, hard smooth flat, soft 

roughish sand, and soft smooth carpet - using logistic 

regression to train only the output weights. Wang et al. [20] 

introduced a proprioceptive method that relies on vibration 

data from an Inertial Measurement Unit (IMU), capturing the 

interaction between the wheel and ground surface. This study 

employed a random forest algorithm to classify four terrain 

types: hard ground, grassland, small gravel, and large gravel. 

Focusing on exteroceptive methods, Wang et al. [6] 

proposed a hybrid model combining a Convolutional Neural 

Network (CNN) and a Support Vector Machine (SVM) to 

classify terrains visually. This model employed CNN for 

multi-class classification of six terrain types (hydrop, sand, 

mud, gravel, asphalt, grass) and SVM for two-class 

classification (hydrop or other types). Yang et al. [21] 

introduced a novel terrain classification method using vision 

data. This method integrated a SegNet structure with a Simple 

Linear Iterative Clustering (SLIC) algorithm, achieving 

enhanced boundary detection of mixed terrains and accurate 

terrain type determination. 

Hybrid models incorporating both proprioceptive and 

exteroceptive methods have also been developed. Chen et al. 

[22] employed a one-dimensional CNN model for 

proprioception and a pre-trained CNN model for vision. A 

fusion network combining both models was able to classify 

seven types of terrain. Similarly, Zou et al. [4] developed a 

reservoir-SNN (r-SNN) terrain classification algorithm to 

classify grass, dirt, and road terrains. This algorithm utilized 

GPS, accelerometer, gyroscope, and visual information, with 

a recurrent layer for feature extraction. 

These approaches, while innovative, often encounter 

challenges in terms of energy consumption. In contrast, multi-

spike learning, as demonstrated by Soud et al. [23], presented 

a more efficient alternative. The cited study proposed a multi-

spike neural system with time-based coding for 5G Network 

Slicing, showing that the model outperformed CNN in terms 

of speed and accuracy. This efficiency is attributed to the 

model updating only neurons with weights exceeding a certain 

threshold. The present research employs the IDSNN for terrain 

classification, capitalizing on the benefits of energy efficiency, 

computation speed, and low power consumption inherent in 

the spiking neural network architecture. 
 

 

3. METHODOLOGY 

 

This section delineates the methodology employed in the 

proposed model for addressing the terrain classification 

challenge, with an emphasis on the integration of a SNN and 

vision-based techniques. The model, as depicted in Figure 1, 

comprises three distinct stages: feature extraction, 

classification, and subsequent application in MRN. 

 

 
 

Figure 1. Terrain classification using the proposed model 
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3.1 Feature extraction stage 

 

Initially, a dataset comprising 42,000 terrain images (each 

of size 256x256) across six terrain classes was collated (source: 

https://www.pinterest.com/dsfafsh/textures/). The feature 

extraction stage leverages the LBP method for extracting 

texture features from these images. The LBP method, noted 

for its simplicity, speed, and discriminative power [24, 25], 

was chosen due to the variability in terrain appearance 

throughout different seasons [26, 27]. For instance, Figure 2 

illustrates variations in color for the same terrain type under 

different conditions; part (a) shows grass images in spring and 

winter, while part (b) contrasts dry and wet asphalt. Such 

variations in terrain appearance, influenced by factors like 

humidity, drought, and weather changes, significantly affect 

visual characteristics such as color. Reliance solely on color 

features could, therefore, lead to high misclassification rates. 

Consequently, the texture feature vector, consisting of 18 

elements, is extracted as the output of this stage. 

 

 
 

Figure 2. Terrain samples under different conditions 

 

 
 

Figure 3. Structure of IDSNN 

 
3.2 Classification stage 

 
The classification stage is centered around the IDSNN, 

which serves as the classifier. Figure 3 illustrates the fully 

connected feed-forward structure of the IDSNN. This structure 

comprises three layers: the input layer, the hidden layer, and 

the output layer. The output layer consists of six neurons, each 

representing a terrain class (hydrop, gravel, grass, sand, mud, 

and asphalt) via a dual spike mechanism. The hidden layer 

contains 42 neurons, and the input layer encompasses six 

neurons corresponding to the texture feature vector. Each 

neuron in the SNN is characterized by multiple connections or 

synapses, each with varying delays and weights, as depicted in 

part (B) of Figure 3. The computational process within each 

neuron involves three steps: initially, the summation of all 

input spikes forms the membrane potential. Subsequently, it is 

assessed whether this potential exceeds a threshold value. If 

exceeded, the neuron emits a spike at time tf and the membrane 

potential is reset to zero, as detailed in part (C). 

To facilitate classification, the methodology incorporates 

three main components: encoding and decoding functions, 

neuron model functions, and a modified learning method. 

 

3.2.1 Encoding and decoding functions 

In spiking neural networks, pulse information is dealt with 

instead of raw data. The initial stage of training involves the 

conversion of data into spike times using Eq. (1), where Tmax 

and Tmin denote the largest and smallest interval times, and Imax 

and Imin represent the maximum and minimum extracted 

feature values, respectively. Iin is the real value of the input 

data, and round is a function that rounds a number to specific 

digits. 

 

𝑡𝑟
𝑓

= 𝑇𝑚𝑎𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑇𝑚𝑖𝑛 +
(𝐼𝑖𝑛−𝐼𝑚𝑖𝑛)(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
)  (1) 

 

Post-training, the output spikes of each class are converted 

back to raw data using Eq. (2), wherein 𝑂𝑦(𝑡𝑦
𝑓

) denotes the 

actual output spike time. 

 

𝑂𝑦(𝑡𝑦
𝑓

) =
(𝑇𝑚𝑎𝑥−𝑡𝑦

𝑓
−𝑇𝑚𝑖𝑛)×(𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛)

(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)
+ 𝐼𝑚𝑖𝑛   (2) 

 

3.2.2 Neuron model function 

Among the biologically plausible models used in spiking 

neural networks, such as the Spike Response Model (SRM), 
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Izhikevich model, Hodgkin-Huxley (HH) model, and Integrate 

and Fire (IF) model [28], this paper utilizes the SRM due to its 

simplified mathematical approach [29]. The SRM's 

connection between input spikes and membrane potential is 

encapsulated in this model. In this study, the hyperbolic 

tangent function is employed in the SRM, as shown in Eq. (3), 

where ɛ(t) represents the spike response function, and τ is the 

time decay constant of ɛ. 

 

𝜀(𝑡) = {
0, 𝑡 ≤ 0

𝑡𝑎𝑛 ℎ(𝑡
𝜏⁄ ) , 𝑡 > 0

  (3) 

 

The derivative of this function is presented in Eq. (4). 

 
𝜕𝜀

𝜕𝑡
=

1

𝜏
(1 − 𝑡𝑎𝑛ℎ2(𝑡 𝜏⁄ ))  (4) 

 

3.2.3 Modified learning method 

Upon encoding real data into spike times, the forward phase 

commences, starting from the hidden layer. In this phase, 

neurons are evaluated to determine whether they emit a spike. 

This occurs when the neuron's membrane potential surpasses 

a predefined threshold, at which point a spike is emitted at time 

tf, followed by the resetting of the membrane potential to zero. 

Post-spiking, the neuron undergoes two phases: repolarization 

and hyperpolarization. The former, known as the absolute 

refractory period, involves the membrane potential's decline to 

zero. The latter phase, the relative refractory period, is 

characterized by the membrane potential remaining below 

zero, making it more challenging for the neuron to emit a spike 

(Figure 4).  

 

 
 

Figure 4. Absolute and relative refractory period phases 

 

These phases are particularly pertinent in MSNNs, which 

deal with multiple spikes, as opposed to single-spike neural 

networks that handle only one spike time. Consequently, the 

refractoriness function, expressed in Eq. (5), is incorporated 

into the membrane potential calculation. 

 

𝜂(𝑡) = {
−2 × 𝜗 × 𝑒𝑥𝑝(−𝑡 𝜏𝑎⁄ ), 𝑡 > 0

0, 𝑡 ≤ 0
  (5) 

 

Eq. (5) considers the threshold value 𝜗 and the time decay 

constant τa. The membrane potential is computed based on the 

arrival time of input spikes after (trf + Rl), considering the most 

recent output spike time trf and the duration of the absolute 

refractory period Rl. 

The general formula for the membrane potential of a spiking 

neuron in a multi-spike learning context, where neurons in 

adjacent layers are interconnected by multiple synapses s=1, 2, 

3, ..., Sy, transmitting various spike times Fi=ti
1, ti

2, ti
3, ..., ti

Fi 

from the presynaptic neuron (i) to the postsynaptic neuron (j), 

is shown in Eq. (6). This equation accounts for different delays 

ds and weights in the synaptic connections. The arrival spike 

time at neuron j is denoted as ti
f + ds. The equation of 

membrane potential mp(t) is shown below. 

 
𝑚𝑝(𝑡) = ∑ ∑ ∑ 𝑤𝑖𝑗

𝑠
𝑡

𝑖 
𝑓

∈𝐹𝑖

𝑡
𝑖 
𝑓

+𝑑𝑠>𝑡
𝑗
𝑟𝑓

+𝑅𝑙

𝜀(𝑡 − 𝑡𝑖 
𝑓

− 𝑑𝑠) + 𝜂(𝑡 − 𝑡𝑟𝑓)
𝑆𝑦

𝑠=1

𝑁𝑖

𝑖=1   
(6) 

 

where, Ni is the index of presynaptic neurons, 𝑊𝑖𝑗
s  is the 

weight of synapse between neurons i and j. Furthermore, the 

formula for the membrane potential of hidden neurons in the 

IDSNN model includes an additional term, reflecting the 

feedback from each output neuron to all hidden neurons, as 

shown in Eq. (7). This feedback mechanism, which comprises 

both current and previous outputs, enhances the model's 

memory and overall performance. Figure 5 depicts the sub-

connection between two neurons with output feedback in the 

IDSNN model. 

 

𝑂𝐹𝐵 = 𝜂 ∑ ∑ 𝑤ℎ𝑜
𝑠 × 𝑆𝑜(𝑡 − 1)

𝑆𝑦

𝑠=1
𝑁𝑜
𝑜=1   (7) 

 

In the IDSNN model, several key parameters are integral to 

the functioning of the neural network. The learning rate, 

denoted by η, plays a crucial role in the network's training 

process. The number of output neurons, represented as NO, is 

a fundamental aspect of the network's architecture. 

Additionally, the weight of the synapse between the hidden 

and output layers, symbolized as 𝑤ℎ𝑜
𝑠 , contributes 

significantly to the synaptic strength and information 

transmission within the network. Another critical element is 

So(t-1), which signifies the previous output of the output layer, 

serving as a feedback mechanism to the hidden neurons. 

Therefore, the membrane potential of the hidden neurons in 

the IDSNN model is formulated as per the following equation: 

 
𝑚𝑝ℎ(𝑡) = ∑ ∑ ∑ 𝑤𝑛ℎ

𝑠
𝑡𝑛 

𝑓
∈𝐹𝑛

𝑡𝑛 
𝑓

+𝑑𝑠>𝑡
ℎ
𝑟𝑓

+𝑅𝑙

𝜀(𝑡 − 𝑡𝑛
𝑓

− 𝑑𝑠) +  𝜂(𝑡 − 𝑡ℎ
𝑟𝑓

) + 𝑂𝐹𝐵
𝑆𝑦

𝑠=1

𝑁𝑛

𝑛=1   
(8) 

 

Eq. (8) illustrates the membrane potential of hidden neurons 

in the IDSNN model, factoring in the number of neurons Nn in 

the input layer and the synaptic weights 𝑤𝑛ℎ
𝑠  between input 

and hidden neurons. 

The mean square error (MSE), represented in Eq. (9), serves 

as the error function, where 𝑡𝑜
𝑓

 indicates the actual output 

spike and 𝑡𝑜
𝑓′

 represents the desired spike time for the output 

neuron (o). The number of output spikes Fo and the number of 

neurons in the output layer No are also considered. 

 

𝑀𝑆𝐸 = 1/2 ∑ ∑ (𝑡𝑜
𝑓

− 𝑡𝑜
𝑓′

)
2

𝐹𝑜
𝑓=1

𝑁𝑜
𝑜=1   (9) 

 

Synaptic weights between neurons in the hidden and output 

layers are updated to minimize the error function, leveraging 

the gradient descent method. The computation of this update 

is outlined in Eqs. (10) and (11). 

 

𝑤ℎ𝑜
𝑠 (𝑡 + 1) = 𝑤ℎ𝑜

𝑠 (𝑡) + ∆𝑤ℎ𝑜
𝑠 (𝑡)  (10) 

 

where, 

 

∆𝑤ℎ𝑜
𝑠 (𝑡) = −𝜂 ∇𝐸ℎ𝑜

𝑠   (11) 

 

Similarly, the weights of synapses between neurons in the 
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hidden and input layers are updated as per Eq. (12), with the 

computation detailed in Eq. (13). 

 

𝑤𝑛ℎ
𝑠 (𝑡 + 1) = 𝑤𝑛ℎ

𝑠 (𝑡) + ∆𝑤𝑛ℎ
𝑠 (𝑡)  (12) 

 

where, 

 

∆𝑤𝑛ℎ
𝑠 (𝑡) = −𝜂 ∇𝐸𝑛ℎ

𝑠   (13) 

 

 
 

Figure 5. Synapses of one connection with feedback in 

IDSNN model 

 

 
 

Figure 6. Flowchart of the proposed model 

 

3.3 MRN 

 

The IDSNN model is designed to enhance the outdoor 

navigation capabilities of UGVs. This process involves a 

sequence of three steps for environment identification and 

subsequent navigation. In the initial step, terrain images are 

captured by the UGV utilizing vision sensors, such as a Point-

Grey Firefly color camera with a resolution of 640×480, 

positioned 50cm above the ground. Images are acquired 

starting from a 30cm distance. Following this, the features are 

extracted from the captured images. The second step entails 

the input of the extracted feature vector into the trained 

IDSNN model to determine the upcoming terrain type. This 

identification is crucial for the subsequent navigation strategy 

of the UGV. The final step involves the actual navigation of 

the UGV. Special attention is given to hydrop terrain, 

identified as particularly hazardous due to its potential to cause 

damage to the robot. In scenarios where the classified terrain 

is hydrop, the UGV is programmed not to proceed. Conversely, 

if the terrain is classified as any type other than hydrop, 

commands are sent to the on-board motors to facilitate 

movement. 

The operational flow of the proposed model is summarized 

in a flowchart, depicted in Figure 6. 

 

 

4. SIMULATION RESULTS 

 

The implementation of the IDSNN was conducted using the 

Spyder simulator on a DELL laptop, featuring a Windows 10 

operating system and an Intel CORE i5 CPU. Python language 

was utilized for programming purposes. The dataset gathered 

for this study was divided into two segments: 70% allocated 

for the training set and 30% for the testing set. The neuronal 

parameters of the IDSNN are detailed in Table 1. Synaptic 

connections between pairs of neurons were characterized by 

five synapses, each having distinct delays of 1, 5, 9, 13, and 17 

milliseconds. The IDSNN model's performance was evaluated 

using key metrics such as accuracy, precision, recall, and F1-

score. A comparative analysis between the IDSNN and the 

SRSNN, which shares a similar structure with the IDSNN, was 

undertaken to ensure a fair comparison. Figure 7 depicts the 

error rates of both models across various epochs, illustrating a 

faster decrease in error rate for the IDSNN (represented by a 

red line) compared to the SRSNN (blue line). This is evident 

from the IDSNN's initial error rate of 0.62 decreasing rapidly, 

reaching the error goal by the 22nd epoch, whereas the SRSNN 

starts at an error rate of 0.85 and achieves the error goal around 

the 63rd epoch. This data underscores the IDSNN's enhanced 

accuracy and more rapid learning capability, attributable to the 

efficacy of its multi-spike structure, which improves 

classification reliability. 

 

 
 

Figure 7. Error rate of IDSNN vs. SRSNN 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100% (14) 

 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100% (15) 

 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100% (16) 

 

F1-score=
(2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 
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Table 1. Neuron parameters in IDSNN 

 
Parameters Values 

τ 11ms 

Rl 1ms 

τr 80 ms 

ϑ 1v 

η 0.001 

 

Table 2. Overall performance of IDSNN vs. SRSNN 

 
Metrics SRSNN IDSNN 

Accuracy 87.222% 90.706% 

Precision 87.310% 90.768% 

Recall 87.231% 90.715% 

F1-score 87.270 90.741 

 

In the IDSNN evaluation, standard classification metrics 

were employed. True Positives (TP) represents the count of 

samples correctly classified as belonging to the positive class, 

while True Negative (TN) denotes the count of samples 

accurately identified as belonging to the negative class. 

Conversely, False Positive (FP) exemplifies instances where 

negative class samples are incorrectly classified as positive, 

and false negative (FN) indicates misclassification of positive 

class samples. Figure 8 presents a comparison of the accuracy 

for each terrain class between the multi-spike learning 

approach of IDSNN and the single-spike learning of SRSNN. 

It is observed that the IDSNN model exhibits higher accuracy, 

attributable to the enhanced reliability of classification 

fostered by the multi-spike learning mechanism, where double 

spikes represent each class. The precision ratio of IDSNN, in 

comparison to SRSNN, is illustrated in Figure 9. A higher 

precision ratio in IDSNN indicates a lower frequency of false 

positive predictions and a higher occurrence of true positives, 

signifying enhanced model precision. In the context of recall, 

which is critically important for identifying hazardous terrains 

such as hydrop, IDSNN surpasses SRSNN in recall ratio, as 

depicted in Figure 10. This indicates that IDSNN is more 

effective in minimizing misclassifications, especially in 

critical terrain types. Furthermore, the F1-score, which reflects 

the balance between precision and recall, is employed to assess 

the overall efficacy of the models. A higher F1-score suggests 

a harmonious balance between precision and recall within the 

model. As shown in Figure 11, the F1-score for IDSNN is 

superior to that of SRSNN, indicating that IDSNN is more 

efficient in its classification capabilities. 

The overall accuracy of the proposed two models is 

compared with the overall accuracy of Wang et al. [6], where 

the IDSNN model and SRSNN model achieve better 

performance in accuracy compared to Wang et al. [6], as 

shown in Figure 12. This is because the intelligent structure of 

the proposed two models contains feedback from the output 

layer to the hidden layer. With feedback, the input includes the 

previous output and the present input. Hence, the memory of 

the model will be enhanced. Thus, enhancing the performance 

of the model and making the model more accurate. 

Additionally, the SNN deals with spike time, unlike the 

traditional neural network which deals with real data. 

Moreover, the IDSNN model achieves better performance in 

accuracy compared to SRSNN model. This is because dealing 

with double spikes can be more robust to noise and variations 

in the input data compared to SRSNN that made the IDSNN 

more accurate. 

 

 
 

Figure 8. Accuracy values of IDSNN vs. SRSNN 

 

 
 

Figure 9. Precision values of IDSNN vs. SRSNN 

 

 
 

Figure 10. Recall values of IDSNN vs. SRSNN 

 

 
 

Figure 11. F1-score values of IDSNN vs. SRSNN 
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Figure 12. The overall accuracy of IDSNN vs. SRSNN and 

Wang et al. [6] 

 

Table 1 lists the neuron parameters used in the IDSNN 

model, while Table 2 presents a comprehensive comparison of 

the overall performance between IDSNN and SRSNN. It is 

evident that IDSNN outperforms SRSNN by approximately 

3%. 

A potential limitation of this study is the selection of the 

spiking neural network structure, which was determined 

through trial and error. Future research could explore the 

application of a fuzzy logic controller to optimize the 

parameters of the SNN, potentially enhancing the model's 

efficiency and accuracy. 

 

 

5. CONCLUSIONS 

 

The IDSNN has been proposed as a solution to the terrain 

classification challenge, leveraging the advantages of multi-

spike learning with temporal coding. This model successfully 

determines six types of terrains (hydrop, gravel, grass, sand, 

mud, and asphalt) based on texture features. When compared 

with the SRSNN using metrics such as accuracy, precision, 

recall, and F1-score, the IDSNN model demonstrates superior 

performance. 

The simulation results lead to several key conclusions: 

·The IDSNN model exhibits a more robust capability than 

the SRSNN model. This superiority is attributed to the 

limitations of single-spike learning in handling finite 

information, a constraint effectively overcome by multi-spike 

learning. 

·IDSNN's accuracy and learning speed surpass that of 

SRSNN, owing to the enhanced reliability of classification 

provided by multi-spike learning. 

·In terms of classification performance for all six terrain 

types, especially in hazardous terrains such as hydrop, the 

IDSNN model shows significant advancements over the 

SRSNN model. 

·The IDSNN model effectively assists UGVs in outdoor 

navigation by accurately identifying areas as traversable or 

untraversable, thus enabling optimal decision-making for 

movement. 

Suggestions for future work: 

·Further enhancement of the proposed model can be 

achieved by integrating a fusion of visual and geometric 

features, instead of relying solely on visual features. 

·Development of a more intelligent terrain classification 

controller is recommended, particularly for classifying mixed 

terrain. 
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