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The traditional assessment of wind resource considers the ambient factors like 

temperature, pressure and humidity as a secondary parameter, and focus on the 

statistically evaluation of wind magnitude and direction. Nevertheless, the evaluation 

requires a deeper analysis of the above ambient factors, because they are 

thermodynamically linked, and the energy flux among them will affect the wind 

dynamics. This research aims to analyse the interactions of temperature, pressure, and 

humidity variables with the wind speed with an inverse approach, it means that wind 

will be controlled by the ambient variables. We conducted a statistical analysis using 

data from a meteorological station located in the University of the Coast in Barranquilla, 

Colombia. The methodology is based on a Design of Experiments-Analysis of Variance 

(DOE-ANOVA) with a 32 factorial design. The estimated effects from the DOE-

ANOVA results were utilized to generate standardized effect equations, for evaluating 

the response of wind speed during changes of the studied ambient variables (factors). 

The results evidenced that the applied methodology provided information about the 

non-linear interactions of the analysed variables, and the standardized effect equations 

were tested against a liner regression model with satisfactory results. 
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1. INTRODUCTION

The rapid growth of humanity in all its dimensions can be 

translated into a greater demand for fossil fuels, which 

urgently need to be replaced by environmentally friendly 

energy sources. Energy transition is a necessary step to ensure 

the well-being of our planet. Wind energy is playing a crucial 

role in global energy growth as it is clean and free from 

pollution [1]. 

In this sense, wind energy is one of the most exploited 

energies resources, currently being the most efficient among 

all renewable energies [2]. Having a proper understanding of 

the behaviour of the various atmospheric variables that 

influence the wind speed plays a crucial role in the 

comprehension of wind energy. Also, evaluating the behaviour 

of the different atmospheric variables that drives the wind 

speed performance, plays a preponderant role for an efficient 

use of wind energy [3]. 

Several statistical methods are applied for assessing the 

wind resource, and the use of the Design of Experiments- 

Analysis of Variane (DOE-ANOVA) is little documented. 

DOE-ANOVA is a methodology that allows the development 

of a response variable model through the iteration of other 

input variables. Some authors have defined DOE as a set of 

methods used to develop a process aimed at obtaining 

information, which is then analysed using Analysis of 

Variance (ANOVA) [4]. A precise explanation of DOE is 

addressed by Trnka et al. [5], where the author explains how 

through these types of designs, the number of experiments can 

be minimized. Also, the method has shown versatility in the 

academic and industrial fields. For example, the DOE-

ANOVA applications can be seen in Gurba-Bryśkiewicz et al. 

[6]’s study, where is utilized like a strategy to optimize the 

composition and production of RNA-LNPs (lipid 

nanoparticles). Additionally, Adewumi and Azeez [7] 

presented a study focused on optimizing the production of 

biofuels from citrus peels using DOE as a technique. The 

research explains the response variables through the iteration 

of the independent variables. From Costa and Barros Bagno 

[8]’s study, it is noticed the used of ANOVA and its worldwide 

use like statistical method. Similarly, Elbanna et al. [9] 

mentioned that DOE ANOVA is a flexible methodology 

because allows to evaluate the response of a variable with 

different intervals within a defined limit range, hence, the 

behaviour of the evaluated parameter can be explained through 

the responses generated by the effects and interactions of the 

factors.  

The use of factorial DOE-ANOVA analysis has been 

reported in several studies of Oceanography and Ocean 

Engineering such as wave run-up, debris loads, coastal 
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protection, naval design, and ocean modelling [10-13]. 

Tahavorgar and Quaicoe [14] presented an example of a 

design of experiments that models the wind speed in wind 

turbine units is presented. Ukita et al. [15] explained how a 

factorial design works and how each input variable affects the 

response variables. In Lee et al. [16]’s study, a DOE-ANOVA 

is used to validate the researcher’s suggested method, 

demonstrating the versatility of the methodology. Zedan et al. 

Zedan et al. [17] explained how to construct an experimental 

design that studies the interaction of different variables 

considered in the study through the development of a 

regression model. Subsequently, an ANOVA is conducted to 

validate the fit and relevance of the model under the recreated 

conditions. 

According to the literature review, it was observed that there 

is not available studies about the use of wind speed, ambient 

pressure, humidity and temperature time series to perform a 

DOE-ANOVA factorial design for analysing non-linear 

interactions. Here in, this research proposes the use of a DOE-

ANOVA to analyse the response of wind speed when the 

ambient parameters change. In this context, the proposed 

method analyses the effects as input variables (temperature, 

pressure, and humidity) and the cause (i.e., wind) as the output 

or response variable. As a result, the methodology offers an 

inverse approach the evaluate the wind performance based on 

the effect of the ambient variables. 

 

 

2. METHODOLOGY 

 

To analyse the effect of atmospheric variables i.e. pressure, 

temperature and humidity, on the response of wind speed, the 

following methodological process was developed: 

1. START 

2. DEFINE The input and response variables of the model. 

3. DATA PREPARATION of the experiment (DOE) -

ANOVA conducted through the Statgraphics software. 

4. DESIGN OF THE EXPERIMENT 

5. ANALYSIS of the DOE-ANOVA results through 

standardized Pareto diagrams and main effect diagrams. 

6. CONFIGURE AND TUNE model. 

7. OPTIMIZE model parameters for best performance. 

8. COMPARE ANOVA vs multiple regression model. 

9. ESTABLISH parameterized equations according to the 

statistical results. 

10. END 

 

Table 1. Experimental factors for wind speed 

 
Symbol Factor Units Low High Levels 

A Humidity % 0 98 10 

10 B Pressure mmHg 753.1 761.3 

C Temperature ℃ 0 34.8 10 

 

A database obtained from the meteorological station at the 

University of the Coast was used to provide the measured 

input data. The dataset has one year of surface meteorological 

variables (10 m) with 5-minute intervals: wind speed, 

temperature, humidity, and atmospheric pressure. A 32 

factorial design without replicates was configured, were 

temperature, humidity, and atmospheric pressure are the 

factors and the minimum and maximum levels were set 

according the statistical results of each factor (Table 1). The 

multivariate analysis was performed through the Statgraphics 

Centurion XVI statistical software. This software offers a user-

friendly interface with high-quality graphics and easily 

interpretable data presentation. Additionally, it allows various 

data processing operations, enhancing versatility when 

comparing ANOVA with regression analysis. Analysis of 

Variance (ANOVA), Pareto chart, and response surface 

diagram were conducted by means of the software. 

An experiment is a research process that generate 

information through a structured process as DOE method does. 

The application of methods such as the Design of Experiments 

(DOE), as elucidated by Elbanna et al. [9], provides a 

systematic framework for understanding the effects of various 

factors, considered as independent variables, on a given 

response or dependent variable, in that sense, DOE 

methodology, offers a structured approach to experimentation. 

It involves carefully planning and executing a set of 

experimental runs to systematically vary the independent 

variables and observe their impact on the response. This 

method enables the identification of key factors influencing 

the response, providing a deeper understanding of the system 

under investigation. 

Importantly, the DOE process is a precursor to the Analysis 

of Variance (ANOVA) analysis, a statistical technique 

detailed by Rueda-Bayona et al. [10]. Before delving into 

ANOVA, the DOE methodology is applied to design an 

experiment that systematically explores the parameter space. 

This systematic exploration aids in the identification of 

significant factors and their potential interactions, the DOE-

ANOVA method, as explained by Rueda-Bayona et al. [10], 

delves into the intricate relationships between the response 

variable and the identified factors. It not only assesses the main 

effects of each factor but also explores the interactions among 

them. This nuanced understanding is crucial for 

comprehensively unravelling the dynamics of the system and 

discerning the unique contributions of each variable [18-20]. 

Upon the meticulous analysis of the results obtained from 

the Design of Experiments (DOE), the study progressed to the 

application of the Response Surface Method (RSM), as 

detailed by Fragasso et al. [11]. The RSM method proves 

instrumental in identifying optimal operational conditions that 

maximize the wind speed response. This method takes into 

account all main factors and their interactions, providing a 

comprehensive exploration of the parameter space. The 

multilevel factorial design comprises 1000 experiments, 

strategically executed in a randomized single block to mitigate 

any potential systematic bias. Table 1 succinctly outlines the 

factors under consideration and their respective levels. The 

strategic integration of the DOE and RSM methodologies 

enhances the depth of the study, facilitating the identification 

of optimal conditions that significantly influence wind speed. 

The deliberate use of a multilevel factorial design and 

randomized execution further ensures the robustness and 

reliability of the derived insights. 

The model evaluates the variables and their levels, the 

results are adjusted to a second-degree multivariable 

polynomial (1) that is described by GilPavas et al. [21]. 

 
𝑦𝑖 = 𝛽0  + ∑ 𝛽𝑖𝑋𝑖

3
𝑖=1 + ∑ 𝛽𝑖𝑖𝑋𝑖𝑖

23
𝑖=1 +

 ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗
3
𝑖=1

3
𝑖=1   

(1) 

 
where, yi is the response variable (dependent variable), β0, βi, 

βii & βij are the regression coefficients for the intercept and Xi, 

Xj represent the independent variables. The Eq. (1) can be used 

to make predictions of the process and for optimization. 

Rueda-Bayona et al. presented [19] the calculation of the 
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variable to be predicted through the ANOVA standardized 

effects represented in the Eq. (2): 

 

𝑦 = 𝜇 +
𝛼𝑖

2
∙ �̂�𝑖 +

𝛽𝑗

2
∙ �̂�𝑖 +

𝛿𝑖𝑗

2
∙ �̂�𝑖  (2) 

 

where, y is the dependent variable, μ is the mean of dependent 

variable, αi are the first-order effects, βi are second-order 

effects, δi are the iterations between effects, and �̂�𝑖  is the 

normalized factor. The �̂�𝑖 is calculated through Eq. (3), taken 

from Blanco León [22]’s study, where x is the independent 

variable and a, b are the normalized limits -1 y 1 respectively. 

 

�̂�𝑖 = 𝑎 +
[𝑥−min(𝑥)]∙(𝑏−𝑎)

max(𝑥)−min (𝑥)
  (3) 

 

 

3. RESULTS AND DISCUSSION 

 

In this section we present the results of the DOE-ANOVA, 

and the standardized effects model and multiple linear 

regression model as well. The effects of factors on wind speed 

are retrieved from the DOE-ANOVA (Figure 1). 

 

 
 

Figure 1. Standardized Pareto chart for wind speed 

 

In Figure 1, the standardized Pareto chart for wind speed 

visually represents the significant influence of various factors 

on the response variable. It is noteworthy that both 

temperature and pressure demonstrated an inverse correlation 

with wind speed, that is, the higher atmospheric pressure and 

air temperature coincide with lower wind speeds. In line with 

this, elevated humidity levels are associated with decreased 

wind speed. The figure also shows a positive effect of 

humidity-temperature and humidity-pressure on the wind 

speed, while pressure-temperature exhibits an inverse 

relationship.  

In Figure 2, the main effects plot provides a comprehensive 

visualization of the impacts of varying humidity, pressure and 

temperature on the system. The plot reveals a positive effect 

on humidity within the range of 0% to approximately 60%, 

followed by a subsequent negative effect as humidity 

approaches 98%. In the case of pressure, the effect is subtly 

positive initially and the transition to a slightly negative 

influence. Noteworthy is the marked negative effect of 

temperature, a trend consistent with the data observed in the 

Pareto diagram. These nuanced patterns underscore the 

intricate relationships among these variables, shedding light 

on their individual contributions to the system’s behaviour. 

The alignment between the main effects plot and the Pareto 

diagram further validates the robustness and consistency of the 

observed effects. 

The aforementioned results of Figures 1-2 are considered 

proper when analysing the physics of the problem. When wind 

blows produce a stress over the study area, provoking 

momentum and energy transfer. The wind stress eases the 

thermal transfer energy in the surface atmospheric system, 

because the mechanical transport effect of wind changes the 

mass and heat balance. In the variable terms, when wind 

surface rises, the water vapor is dragged and the air humidity, 

temperature and pressure decreases. In the opposite, when 

wind speed reduces, a local increment of water vapor due to 

the solar radiation occurs, what provokes a rise in the 

temperature, humidity and ambient pressure.  

 

 
 

Figure 2. Main effects plot for wind speed 

 

 

 
 

Figure 3. Response surface plot for wind speed 

 

Figure 3 illustrates the estimated temperature response 

surface at 27.0℃, revealing a noticeable curvature that 

indicate the data conform to a second order model. The highest 

achievable speed corresponds to a specific parameters value 

explained by the pattern observed in previous presented figure 

namely, a humidity level close to 60% and a pressure around 

759 mmHg. Evaluating the impact of factors on the response 

variable involve analysing results the design of experiments 

(DOE) through Pareto charts and the main effects chart in the 

context of the analysis of variance (ANOVA). These 

visualizations provide a comprehensive understanding of how 

the considered factors influence the system, enhancing the 

interpretability of the observed relationships. 

Table 2 presents the estimates for individual effects and 

interactions, accompanied by their respective standard errors. 

the standard error quantifies the sampling error associated with 
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each effect, providing a measure of the precisions of the 

estimates, the ANOVA standardized effects model was written: 

 

𝑊𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 (𝑚/𝑠) = 7,16311 +
−8,99883

2
∙ �̂�𝐴 +

−1,27341

2
∙ �̂�𝐵 +

−15,04161

2
∙ �̂�𝐶 +

−33,1153

2
∙ �̂�𝐴

2
+

3,47771

2
∙

�̂�𝐴�̂�𝐵 +
315,2632

2
∙ �̂�𝐴�̂�𝐶 +

−2,35309

2
∙ �̂�𝐵

2
+

−5,41997

2
∙

�̂�𝐵�̂�𝐶 +
−17,3619

2
∙ �̂�𝐶

2
  

(4) 

 

Table 2. Estimated effects of DOE ANOVA factorial design 
 

Estimated Effects for Speed (m/s) 

Effect Estimate Error Estd. V.I.F. 

Average 7.6311 0.0159035  

A: Humidity -8.99883 0.0635189 6.20284 

B: Pressure -2.94355 0.0786011 1.61886 

C: Temperature -11.5207 0.0772618 6.13779 

AA -5.79621 0.0837993 84.5024 

AB 2.12921 0.154477 1.63225 

AC 2.93592 0.0955158 88.7514 

BB -5.03933 0.211863 1.3447 

BC -3.64674 0.19141 1.32862 

CC -3.67011 0.0484409 19.1494 
Note: Standard errors based on the total error with 61886 Df. 

 

Table 3. Statistical parameters of the DOE ANOVA factorial 

design 
 

Coef. Regression for Speed 

Coefficient Estimate 

constant -40191.0 

A: Humidity -5.94434 

B: Pressure 106.075 

C: Temperature 28.8907 

AA -0.00689615 

AB 0.00865533 

AC 0.00895099 

BB -0.0699907 

BC -0.0379869 

CC -0.0286727 

 

Using a linear regression analysis, the formulation of the 

equation representing the response variable is based on the 

regression coefficients derived from the DOE ANOVA 

factorial as detailed in Table 3 where the values of the 

variables are specificized in their original units, the results 

equation takes the form: 

 
𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 = −40191,0 − 5,94434 ∗ 𝑋𝐴 + 106,075 ∗

XB + 28,8907 ∗ XC − 0,00689615 ∗ XA
2 + 0,00865533 ∗

XA ∗ XB + 0,00895099 ∗ XA ∗ XC −  0,0699907 ∗ XB
2 −

0,0379869 ∗ XB ∗ XC − 0,0286727 ∗ XC
2  

(5) 

 

Table 4. ANOVA table of DOE ANOVA factorial design 
 

Analysis of Variance for Speed 

Source 
Sum of 

Squares 
Df 

Middle 

Square 
f-ratio 

P-

value 

Model 15786.0 3 5262.01 1162.90 0.0000 

Residual 280056 61892 4.52492   

Total 

(corr.) 
295842 61895    

 

Table 4 reveals that all the effects have a P-value lower than 

0.05, pointing their significant deviation from zero with a 95% 

of confidence level. This attests to the statistical significance 

of the factors influencing wind speed behaviour. This table 

also shows that the R2 and the adjusted R2 statistic explains 

46.59%, and 46,58% of the variability, respectively. These 

metrics underscore the model’s capability to account for 

nearly half of the observed variations in wind speed. 

Following the DOE ANOVA results, a multi-response 

optimization is conducted, aiming for an attainment of 6.7, as 

depicted in (Table 5). This optimization process seeks to 

identify optimal conditions that yield the desired outcome and 

further enhance the practical utility of the conducted 

experiments. 

 

Table 5. Multiple response optimization of the DOE 

ANOVA factorial design 

 
 Desirability  Weight Weight  

Response Low High Goal First Second Impact 

Speed 0.0 13.4 6.7 1.0 1.0 3.0 

 

Table 6. Desirability optimization of DOE ANOVA factorial 

design 

 
Factor Low High Optimum 

Humidity 57 98.0 78.2613 

pressure 751.0 763.0 756.94 

Temperature 19 35.0 27.4234 

 

Tables 5-6 delineate the optimal combination of factors for 

optimizing the wind speed, maintaining a desirability of 6.7. 

Specifically, Table 6 provides a comprehensive view of high, 

low and optimal values, emphasizing the key parameters to 

contribute to the desired wind speed. These findings serve as 

a roadmap for configuring the factors optimally, aligning with 

the pursuit of achieving optimal performance in the system. 

 

Table 7. Path of maximum ascent for speed 

 

Humidity Pressure Temperature 
Prediction for 

Speed 

(%) (mmHg) (℃) (m/s) 

77.5 757.0 27.0 7.16311 

78.5 757.099 27.498 6.54962 

79.5 757.202 27.9932 5.91424 

80.5 757.312 28.4858 5.25661 

81.5 757.426 28.9761 4.57633 

82.5 757.545 29.4644 3.87302 

 

 
 

Figure 4. Response surface plot for desirability 

 
Table 7 displays the trajectory of maximum ascent, 
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originating from the center of the current experimental region, 

this includes the desirability value factors and response 

variable. It illustrated the path along which the estimate 

response exhibits the most rapid change with minor 

adjustments in the experimental factors. This representation is 

crucial for identifying optimal conditions when conducting 

additional experiments, especially with the goal of increasing 

the speed.  

Table 7 shows 6 data points have been generated by 

systematically varying humidity in 1.0% increments. 

Figure 4 depicts the achieved desirability at its optimal 

value (1), indicative of a specific combination of humidity, 

pressure and temperature. This optimal condition represents an 

ideal state, maximizing the desirable outcomes according to 

the defined criteria. The figure provides a visual representation 

of the convergence towards the optimum, offering insights into 

the synergistic effects of the considered variables on achieving 

the system performance. 

3.1 Multiple regression 

The multiple regression analysis section plays a pivotal role 

in this study, providing a robust analytical framework to 

comprehend the intricate relationship between multiple 

independent variables and the response variable. Multiple 

regressions allow modelling and quantifying the joint 

influences of diverse variables, offering a powerful tool to 

explore patterns, identify trends, and predict outcomes. In this 

context, a multiple regression was constructed to analyse wind 

speed, incorporating three independent variables (factors) 

temperature, pressure and humidity. The formulation of the 

regression equation as represented in Eq. (6): 

Wind speed = 228,077 −  0,0285903 ∗ Humidity 
− 0,296461 ∗ Pressure + 0,109862
∗ Temperature

(6) 

This equation provides a quantitative representation of the 

relationships between the variables, revealing the impact of 

humidity, pressure, and temperature on wind speed. Notably, 

the coefficients, presented in the equation, are accompanied by 

a 95% confidence interval, a measure of the precision and 

reliability of the estimates. The incorporation of this 

confidence interval enhances the robustness of the regression 

model, instilling confidence in the accuracy of the identified 

relationships. These findings contribute to a more nuanced 

understanding of the factors influencing wind speed, backed 

by a rigorous statistical framework. 

Table 8. Analysis of variance multiple regression variance analysis 

Source 
Sum of 

Squares 
Df Middle Square f-ratio P-value

A: Humidity 1234.78 1 1234.78 483.65 0.0000 

B: Pressure 96.6441 1 96.6441 37.85 0.0000 

C: Temperature 4217.45 1 4217.45 1651.94 0.0000 

AA 12214.2 1 12214.2 4784.19 0.0000 

AB 485.028 1 485.028 189.98 0.0000 

AC 2412.09 1 2412.09 944.80 0.0000 

BB 1444.41 1 1444.41 565.76 0.0000 

BC 926.694 1 926.694 362.98 0.0000 

CC 14655.1 1 14655.1 5740.30 0.0000 

Total error 157997 61886 2.55303 

Total (corr.) 295842 61895 

Table 8 displays critical metrics for evaluating the efficacy 

and robustness of the regression model. The R2 coefficient, 

indicates the fraction of variance in the dependent variable 

explained by the model, reaches 5.34%. Simultaneously, the 

adjusted R2, tailored for models with varying independent 

variables, stands at 5.33%. The use of adjusted R2 is 

particularly pertinent when contrasting models of variable 

complexity. The proximity between these two values suggests 

that the inclusion of all variables is justified, with no need to 

exclude any factors from the model. 

Delving into the specifics, the R2 statistic indicates that the 

adjusted model explains 5.34% of the variance, while the 

adjusted R2 refines this figure to 5.33%. This consistency 

reinforces the model's robustness, supporting the decision to 

retain all variables. 

Regarding to the individual predictors, the statistical 

significance of 'speed' is evident, as reflected in a p-value less 

than 0.05. This low p-value provides compelling evidence to 

assert a statistically significant relationship between 'speed' 

and predictor variables. In practical terms, this implies that 

alterations in predictor variables significantly impact speed, 

with a probability of less than 5% for this relationship to be 

random, establishing a confidence level of 95%. The 

consistency of these findings underscores the reliability of the 

model's predictions, emphasizing the crucial importance of 

predictor variables in explaining variations in speed. 

In summary, the meticulous analysis of the regression 

model, considering both overall fit and individual predictor 

significance, confirms the validity and robustness of the 

model's predictions. The inclusion of all variables is supported, 

providing valuable insights into the fundamental influence of 

these predictors on speed variations. 

4. CONCLUSIONS

The study used wind speed data from a local meteorological 

station in Barranquilla (Colombia) with five-minute intervals 

over the course of one year, demonstrated that the response 

variable, namely Wind Speed, to perform a DOE-ANOVA 

analysis. The results showed that wind speed can be explained 

by the effects of Temperature, Humidity, and ambient Pressure. 

This means that DOE-ANOVA is a tool that enable the 

recreation of experimental scenarios capable of explaining the 

behaviour and interaction of variables while maximizing 

efficiency and seeking reliable conclusions.  

It was evident that wind speed is directly and indirectly 

influenced by the input variables considered in the experiment: 
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temperature, pressure, and humidity. This study evaluated the 

capability of modelling the wind speed through two statistical 

models: a standardized effect model written with the DOE-

ANOVA results and a linear regression model. Both models 

explained the data behaviour, however, as seen in the results, 

the standardized effect model worked better. 

The DOE ANOVA 23 factorial design allowed to identify 

the non-linear effects of the ambient parameters on the wind 

speed, and provided statistical parameters to set a 

parameterized equation to model the wind speed. The 

comparison between the standardized effect model and the 

linear regression model showed that the first outperformed. 

Finally, this research not only evidence that DOE-ANOVA 

ease the understanding of non-linear interactions among 

variables, but also, evidenced that the use of estimated effects 

to generate a standardized effect model is an alternative to 

estimate the response of wind speed varying the magnitude of 

temperature, pressure and humidity within local value ranges. 
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