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In the context of critical medical equipment, particularly ventilators, the Corona Virus 

Disease 2019 (COVID-19) pandemic has heightened the importance of reliable 

respiratory support systems. Ventilators, designed to aid patient breathing, confront the 

challenge of delivering consistent air pressure and flow. This study explores the 

effectiveness of two control methods in ventilator systems: conventional Proportional-

Integral-Derivative (PID) control and an advanced nonlinear PID control. The former 

employs a fixed formula for system regulation, while the latter adopts an adaptive 

mechanism, offering potential improvements in responsiveness to patient-specific 

needs. This investigation centers on the formulation and generalization of a robust, 

calculus-based controller for ventilators, with a particular focus on the nonlinear control 

method. The efficiency of these control methods in ventilator units was assessed, 

comparing traditional PID and nonlinear PID controllers. It was found that both 

methods exhibited an equivalent error percentage between reference and actual air 

pressures, quantified at approximately 0.94 mbar. This similarity highlights the 

effectiveness of the nonlinear PID controller, matching the precision of the traditional 

approach. Crucially, the nonlinear PID controller demonstrated a faster response time, 

indicating an enhanced capability for rapid adjustments in response to sudden patient 

demand changes. This feature is particularly significant in critical care environments, 

where swift adaptation of ventilator settings is essential for patient safety. The study 

emphasizes the control systems of ventilators, rather than their complete mechanical 

design, with the term 'error' specifically referring to the variance between desired and 

actual air pressures. The results of this research suggest that the nonlinear PID controller 

represents a significant advancement over existing methods. Its rapid response 

capabilities offer a promising avenue for improving patient safety and adaptability in 

challenging clinical scenarios. The investigation underscores the potential of nonlinear 

PID control in ventilator systems, positioning it as a superior alternative in specific 

medical contexts. This work contributes to the ongoing development of more responsive 

and patient-tailored approaches in mechanical ventilation, highlighting the convergence 

of advanced control theory and practical healthcare applications. 
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1. INTRODUCTION

Ventilators, crucial in medical settings for aiding 

individuals with compromised respiratory functions, operate 

based on the patient's level of consciousness and breathing 

capacity. These devices typically employ two distinct 

methodologies: volume ventilation and pressure ventilation. In 

volume ventilation, a consistent amount of air is delivered, 

albeit with variable pressure, enabling the device to exert the 

necessary pressure to achieve the requisite air volume. 

However, this elevated pressure may pose risks of alveolar 

damage [1]. The focus of this study is to regulate air pressure 

in ventilators to maintain airflow that aligns with patient 

needs, minimizing fluctuations and excesses in the control 

signal. In addressing ventilator control, this study compares 

two prevalent methods: PID control and nonlinear PID control. 

The aim is to discern the efficacy of these methods in 

producing an effective control signal with minimal distortion. 

The impetus for this research is grounded in the critical role of 

ventilators in patient care and the inherent challenges in 

achieving precise, adaptive control. 

Borrello [2] posited that the human lung functions 

analogously to an electrical circuit, characterized by resistance 

and capacitance (RC). An adaptive Proportional Integral (PI) 

controller has been proposed for managing the dynamic 

changes in the RC circuit during respiration. Abolghasemi and 

Ferdowsi [3] employed a PID controller in a mechanical 

ventilator, highlighting its effectiveness in maintaining the 

desired ventilation rate. However, they emphasized the 

necessity of appropriate gain selection for optimal control. 
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Similarly, Li and Li [4] implemented a PID controller to 

regulate ventilator pressure output, observing its efficacy but 

cautioning against potential overshooting and instability due 

to gain tuning. In lieu of traditional gain tuning, an 

optimization approach has been explored for PID control in 

artificially ventilated respiratory systems. The linear nature of 

PID control, though widely adopted, faces challenges in 

addressing system nonlinearities and disturbances. Even with 

meticulous tuning, capturing dynamic patient breathing 

patterns remains a complex task. Conversely, nonlinear PID 

control offers adaptability but introduces complexities in 

selecting suitable nonlinear functions and in managing 

increased system intricacies. Bisht et al. [5] found that a 

nonlinear PID controller yielded more precise and stable 

control in pressure-controlled ventilators, especially in the 

presence of disturbances. Khakpour et al. [6] demonstrated the 

superiority of nonlinear PID control in maintaining desired 

tidal volumes in volume-controlled ventilators, as opposed to 

traditional PID control. 

The selection of an appropriate nonlinear function for 

mapping the error signal to control output remains a challenge 

in nonlinear PID control, compounded by the potential 

increase in controller complexity. Both PID and nonlinear PID 

controls have been validated as effective for ventilator control 

in various studies. However, the challenges in optimal gain 

and nonlinear function selection, coupled with the need for 

stable and accurate control amidst disturbances and nonlinear 

dynamics, are still prevalent. The dynamic nature of human 

lung function during inhalation and exhalation introduces 

complexities in ventilator control, particularly when model 

uncertainties are not adequately addressed [7]. Model-based 

control strategies, such as Model Predictive Control (MPC), 

have gained prominence in the realm of mechanical 

ventilation. Li and Haddad [8] proposed an MPC strategy for 

a multi-compartment respiratory system, utilizing a 

mathematical model to develop a controller capable of 

tracking desired tidal volumes and oxygenation trajectories. 

This MPC controller, operating on a predictive model, 

optimized control inputs over a finite horizon, factoring in 

constraints on inputs and system states. It was demonstrated 

that this MPC controller outperformed a traditional PID 

controller in tracking performance, particularly under model 

uncertainties and disturbances. 

Reinders et al. [9] introduced a repetitive control strategy to 

enhance mechanical ventilation. Their approach focused on 

improving the accuracy of tidal volume and respiratory rate 

tracking by exploiting the cyclic nature of ventilation. The 

strategy, tested through simulations and experiments on a 

mechanical ventilator, achieved superior tracking accuracy 

and reduced variability in tidal volume and respiratory rate 

compared to conventional PID and PI control methods. 

Hunnekens et al. [10] proposed a variable-gain control strategy 

for respiratory systems, aimed at enhancing tracking 

performance by dynamically adjusting control system gains 

according to operating conditions. Simulations and 

experiments on a mechanical ventilator demonstrated that this 

variable-gain strategy surpassed traditional control methods, 

such as PID and PI control, in tracking accuracy and 

adaptability to changing conditions. 

Despite these advancements, previous studies have not 

comprehensively analyzed the control signal of the PID 

controller or diagnosed its weaknesses. Therefore, this 

research undertakes a thorough examination of the PID control 

signal, comparing it with nonlinear PID to discern variations 

in control signal behavior. The proposed method incorporates 

an advanced algorithm that adapts to patient-specific 

requirements while minimizing overshoots and response lags. 

By integrating real-time feedback mechanisms and harnessing 

the strengths of both PID and nonlinear PID, this method aims 

to achieve unparalleled control precision. This study 

represents a novel approach in ventilator control research. 

While previous investigations have primarily focused on PID 

controllers, this work delves into the evaluation of nonlinear 

PID controllers. The aim is to facilitate smoother respiratory 

transitions and robustly respond to unpredictable changes. A 

key observation is that prior research has largely overlooked 

the detailed analysis of the PID control signal’s behavior. This 

study contrasts conventional PID with nonlinear PID, 

highlighting subtle yet critical variations in control signal 

dynamics. Furthermore, it introduces a groundbreaking 

methodology centered on stimulus-response dynamics, 

enabling designers to develop a more sequential and effective 

control system for ventilation units. This approach is 

anticipated to surpass the limitations encountered in previous 

methods, promoting both patient safety and operational 

efficiency. 

 

 

2. MATHEMATICAL MODELING OF VENTILATOR 

SYSTEM 

 

In Figure 1, a schematic representation of a respiratory 

system is depicted, illustrating pressures (marked in red), 

flows (indicated in blue), resistances, and compliance. The 

mechanical ventilation device, comprising an electrically 

powered blower unit, generates the requisite pressure for 

patient lung inflation (Po) via a hose medium. Mathematical 

models have been instrumental in resolving complex 

engineering challenges [11, 12] and are similarly utilized to 

elucidate lung mechanics and enhance mechanical ventilation 

therapy [13]. A prevalent approach in existing literature 

involves the use of a single-compartment lung model, 

accounting for lung elastance (inverse of compliance) and 

airway resistance [14]. The foundational assumptions for this 

study are twofold: firstly, the resistances of the lung, hose, and 

leak are considered constant during each breath cycle, aligning 

with typical clinical scenarios. Secondly, lung compliance is 

treated as a fixed parameter, acknowledging potential inter-

patient variability. These assumptions are based on the study 

[10], and parameters are primarily derived from clinical 

literature and experimental data calibration [15]. 

 

 
 

Figure 1. Schematic of a mechanical ventilation unit 

 

In the schematic (Figure 1), air is inhaled at a rate of Qo and 

exhaled at a rate of Qleak through a leaky hose, leaving Qp as 

the net exhaled airflow [16]. 

 

𝑄𝑝 = 𝑄𝑜 − 𝑄𝑙𝑒𝑎𝑘  (1) 
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The airflow from the blower to the lung is analogous to 

current flow in an electric wire, where pressure is akin to 

electric voltage. This analogy allows for the conceptualization 

of the respiratory system as an electric circuit, where 

resistances represent airway obstructions, and the potential 

difference is denoted by pressures. The patient airflow 

depicted in Figure 1 can be expressed using an analogy to 

Ohm's Law [17]. This analogy is particularly relevant in 

understanding airflow and pressures in respiratory systems, 

especially for patients with increased airway resistance 

conditions like asthma or chronic obstructive pulmonary 

disease (COPD). Inside the ventilation unit, a pressure sensor 

measures the airway pressure, denoted as Pa. 

The control system’s objective is to ensure that the 

measured pressure aligns with the desired set point Pr. Hence, 

the error equation is defined as follows [14]: 

 

𝑒 = 𝑃𝑟 − 𝑃𝑎 (2) 

 

Assuming identified standard resistances for the hose, leak 

channel, and patient lungs, the flow rates of the blower, patient, 

and leak are expressed as functions of these resistances [14]: 

 

𝑄𝑜 =
𝑃𝑜 − 𝑃𝑎

𝑅ℎ

 (3) 

 

𝑄𝑙𝑒𝑎𝑘 =
𝑃𝑎

𝑅𝑙𝑒𝑎𝑘

 (4) 

 

𝑄𝑝 =
𝑃𝑎 − 𝑃𝑙𝑢𝑛𝑔

𝑅𝑙𝑢𝑛𝑔

 (5) 

 

Dynamics of the lung pressure Plung adhere to the following 

differential equation: 

 

𝑃𝑙𝑢𝑛𝑔 =
1

𝐶𝑙𝑢𝑛𝑔

. 𝑄𝑝 (6) 

 

In Eq. (5), Plung is analogous to voltage, while Qp can be 

compared to current. Integrating Eqs. (5) and (6) yields: 

 

𝑃𝑙𝑢𝑛𝑔 =
𝑃𝑎−𝑃𝑙𝑢𝑛𝑔

𝐶𝑙𝑢𝑛𝑔.𝑅𝑙𝑢𝑛𝑔
  (7) 

 

To determine airway pressure Pa, the equation is formulated 

by substituting Eqs. (3)-(5) into Eq. (1): 

 
𝑃𝑎−𝑃𝑙𝑢𝑛𝑔

𝑅𝑙𝑢𝑛𝑔
=

𝑃𝑜−𝑃𝑎

𝑅ℎ
−

𝑃𝑎

𝑅𝑙𝑒𝑎𝑘
  (8) 

 
𝑃𝑎

𝑅𝑙𝑢𝑛𝑔
−

𝑃𝑙𝑢𝑛𝑔

𝑅𝑙𝑢𝑛𝑔
=

𝑃𝑜

𝑅ℎ
−

𝑃𝑎

𝑅ℎ
−

𝑃𝑎

𝑅𝑙𝑒𝑎𝑘
  (9) 

 
𝑃𝑎 

𝑅𝑙𝑢𝑛𝑔
+

𝑃𝑎

𝑅ℎ
+

𝑃𝑎

𝑅𝑙𝑒𝑎𝑘
=

𝑃𝑜

𝑅ℎ
+

𝑃𝑙𝑢𝑛𝑔

𝑅𝑙𝑢𝑛𝑔
  (10) 

 

𝑃𝑎 (
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘
) =

𝑃𝑜

𝑅ℎ
+

𝑃𝑙𝑢𝑛𝑔

𝑅𝑙𝑢𝑛𝑔
  (11) 

 

𝑃𝑎 =

1

𝑅ℎ
.𝑃𝑜+

1

𝑅𝑙𝑢𝑛𝑔
.𝑃𝑙𝑢𝑛𝑔 

1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘

  (12) 

 

Upon substituting the airway pressure expression from Eq. 

(12) into the differential equation for lung dynamics (Eq. (7)), 

a revised equation is formulated: 

 

𝑃𝑙𝑢𝑛𝑔 =
−𝑃𝑙𝑢𝑛𝑔 (

1

𝑅ℎ
+

1

𝑅𝑙𝑒𝑎𝑘
)+

1

𝑅ℎ
.𝑃𝑜

𝐶𝑙𝑢𝑛𝑔.𝑅𝑙𝑢𝑛𝑔 (
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘
)
  (13) 

 

With Eqs. (5), (12) and (13) considered, the combined 

system of the patient and hose is expressible as a linear state-

space system, where Po serves as the input, [
𝑃𝑎

𝑄𝑝
] the output, 

and Plung the state. 

 

𝑃𝑙𝑢𝑛𝑔 = 𝐴ℎ𝑃𝑙𝑢𝑛𝑔 + 𝐵ℎ𝑃𝑜  (14) 

 

[
𝑃𝑎

𝑄𝑝
] = 𝐶ℎ𝑃𝑙𝑢𝑛𝑔 + 𝐷ℎ𝑃𝑜  (15) 

 

where, 

 

𝐴ℎ = −

1

𝑅ℎ
+

1

𝑅𝑙𝑒𝑎𝑘

𝐶𝑙𝑢𝑛𝑔.𝑅𝑙𝑢𝑛𝑔 (
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘
)
  (16) 

 

𝐵ℎ =

1

𝑅ℎ

𝐶𝑙𝑢𝑛𝑔.𝑅𝑙𝑢𝑛𝑔 (
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘
)
  (17) 

 

𝐶ℎ =

[
 
 
 
 
 
 
 

1
𝑅𝑙𝑢𝑛𝑔

 
1

𝑅𝑙𝑢𝑛𝑔
+

1
𝑅ℎ

+
1

𝑅𝑙𝑒𝑎𝑘

−

1
𝑅ℎ

+
1

𝑅𝑙𝑒𝑎𝑘

𝑅𝑙𝑢𝑛𝑔 (
1

𝑅𝑙𝑢𝑛𝑔
+

1
𝑅ℎ

+
1

𝑅𝑙𝑒𝑎𝑘
)
]
 
 
 
 
 
 
 

 (18) 

 

𝐷ℎ =

[
 
 
 
 
 

1

𝑅ℎ

 
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘

1

𝑅ℎ

 𝑅𝑙𝑢𝑛𝑔 (
1

𝑅𝑙𝑢𝑛𝑔
+

1

𝑅ℎ
+ 

1

𝑅𝑙𝑒𝑎𝑘
) ]
 
 
 
 
 

  (19) 

 

Additionally, this system can be represented in transfer 

function notation: 
 

H(s)=𝐶ℎ
1

(𝑆𝐼−𝐴ℎ)
𝐵ℎ+𝐷ℎ (20) 

 

The blower system is designed to produce the desired 

module output pressure Po. Based on a steady-state 

characteristic, the blower's qualities have been defined to map 

the output pressure target Pcontrol(s) to the actual output pressure 

Po, yielding a unity gain, as depicted in Figure 2. However, the 

blower is a dynamic system with inherent inertia, resulting in 

a high-frequency roll-off similar to a servo system, which 

utilizes negative feedback for precise motion control. 
 

 
 

Figure 2. Linear controller employed in a closed-loop control 

system C(s) 
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Figure 2 illustrates a second-order system characterized by 

two poles, with some second-order systems also possessing 

one or two zeros [18]. To elucidate the control system response, 

the standard responses of a second-order system to step, ramp, 

and impulse inputs are examined. The blower is 

conceptualized as a second-order system analogous to a servo 

system. This introduction underscores the nonlinear dynamics 

present in the respiratory system, a critical consideration in 

clinical settings where linear responses do not always suffice. 

Figure 3(a) showcases a servo system comprising load 

elements, such as inertia and viscous-friction components, 

alongside a proportional controller. Here, the output position c 

corresponds to the input position r. The governing equation for 

the load elements is: 

 

𝐽�̈� + 𝐵�̇� = 𝑇 (21) 

 

where, T denotes the torque generated by the proportional 

controller with gain K, J represents the mass moment of inertia 

matrix, and B is the viscosity coefficient. Applying the Laplace 

transform to Eq. (21), given zero initial conditions, yields: 

 

𝐽𝑠2𝐶(𝑠) + 𝐵𝑠𝐶(𝑠) = 𝑇(𝑠) (22) 

 

The transfer function linking C(s) and T(s) is: 

 
𝐶 (𝑠)

𝑇 (𝑠)
=

1

𝑠 (𝐽𝑠+𝐵)
  (23) 

 

The transfer function represented in Figure 3(a) is 

reinterpreted in Figure 3(b) and further modified in Figure 3(c). 

From these representations, the closed-loop transfer function 

is derived as: 

 
𝐶 (𝑠)

𝑅 (𝑠)
=

𝐾

𝐽 𝑆2+𝐵𝑠+𝐾
=

𝐾 𝐽⁄

𝑠2+(𝐵 𝐽⁄ )𝑠+(𝐾 𝐽⁄ )
  (24) 

 

 
 

Figure 3. Servo system in (a); its block diagram in (b); and 

the simplified block diagram in (c) [18] 

 

The step response of a second-order system is derived from 

the closed-loop transfer function, as depicted in Figure 3(c). 

The pertinent equation is formulated as follows: 

 
𝐶 (𝑠)

𝑅 (𝑠)
=

𝐾

𝐽 𝑆2+𝐵𝑠+𝐾
  (25) 

 

This equation can also be represented alternatively: 

 
𝐶 (𝑠)

𝑅 (𝑠)
=

𝐾 𝐽⁄

[𝑠+
𝐵

2𝐽
+√(

𝐵

2𝐽
)
2
−

𝐾

𝐽
][𝑠+

𝐵

2𝐽
−√(

𝐵

2𝐽
)
2
−

𝐾

𝐽
]

  
(26) 

 

In transient-response analysis, the closed-loop poles are 

expressed as complex conjugates when B2-4JK<0, whereas for 

B2-4JK≥0, they are real. The expression is conveniently 

written as: 

 
𝐾

𝐽
= 𝜔𝑛

2,
𝐵

𝐽
= 2𝜁 𝜔𝑛 = 2𝜎  (27) 

 

where, σ is termed as the attenuation; ωn represents the 

undamped natural frequency; and ζ is the damping ratio of the 

system. The damping ratio is defined as the ratio of the actual 

damping B to the critical damping 𝐵𝑐 = 2√𝐽𝐾 or 

 

𝜁 =
𝐵

𝐵𝑐
=

𝐵

2√𝐽𝐾
  (28) 

 

 
 

Figure 4. Representation of a second-order system [16] 

 

The closed-loop transfer function of the system, as 

illustrated in Figure 3(c), can be expressed in terms of ζ and 

ωn, and subsequently transformed into the format depicted in 

Figure 4. The resulting transfer function for C(s)/R(s), derived 

from Eq. (24), is expressed as: 

 
𝐶 (𝑠)

𝑅 (𝑠)
=

𝜔𝑛
2

𝑠2+2𝜁 𝜔𝑛𝑠+𝜔𝑛
2   (29) 

 

This equation typifies the form of a second-order system. 

In the analysis of second-order systems, two critical 

parameters ζ and ωn are employed for explication. It is 

observed that when 0<ζ<1, the closed-loop poles of the system 

are complex conjugates and are located in the left-half of the 

s-plane. 

To analyze the system's response to a unit-step input, the 

case where the system is critically damped (ζ1) is considered. 

Assuming that the experimental blower has a damping ratio of 

ζ=1 and a natural frequency of ωn=2π/30, as illustrated in 

Figures 5 and 6, the equation is: 

 

𝐵(𝑠) =
𝑃𝑜(𝑠)

𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠)
=

𝑤𝑛
2

𝑠2+2𝜁 𝑤𝑛𝑠+𝑤𝑛
2  (30) 

 

The state-space form of Eq. (30) is delineated as follows: 

 
𝑋𝑏 = 𝐴𝑏𝑋𝑏 + 𝐵𝑏𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝑜 = 𝐶𝑏𝑋𝑏
}  (31) 
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with state Xb∈R2, output Pout, and control input pcontrol, the 

system matrices are detailed as: 

 

𝐵(𝑠) =
𝑃𝑜(𝑠)

𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠)
=

𝑤𝑛
2

𝑠2+2𝜁 𝑤𝑛𝑠+𝑤𝑛
2  (32) 

 

Eq. (32) is equivalent to Eq. (33): 

 

𝐵𝑠 =
𝑋 (𝑠)

𝑈 (𝑠)
∗

𝑦 (𝑠)

𝑋 (𝑠)
  (33) 

 

𝐵𝑠 =
𝑦 (𝑠)

𝑈 (𝑠)
=

𝜔𝑛
2  

𝑠2+2𝜁 𝜔𝑛𝑠+𝜔𝑛 
2   (34) 

 
𝑋 (𝑠)

𝑈 (𝑠)
=

1

𝑠2+2𝜁 𝜔𝑛𝑠+𝜔𝑛
2   (35) 

 

𝑈(𝑠) = 𝑋(𝑠)𝑠2 + 2𝑋(𝑠)𝜁 𝜔𝑛𝑠 + 𝑋(𝑠)𝜔𝑛
2  (36) 

 

Applying the Laplace  (ℒ−1)  transformation to Eq. (36) 

yields: 

 

𝑈(𝑡) = 𝑋(𝑡)̈ + 2𝜁𝜔𝑛 + �̇�(𝑡) + 𝑋(𝑡)𝜔𝑛
2  (37) 

 

𝑈 = �̈� + 2𝜁 𝜔𝑛 + �̇� + 𝑋 𝜔𝑛
2  (38) 

 

Eq. (38) elucidates the nonlinear dynamics inherent in the 

respiratory system. When denoting the state variable for the 

state equation [19, 20], the differential equation is expressed 

as: 
 

𝑋2 = 𝑋 (39) 

 

𝑋1 = �̈� = 𝑋2̇ (40) 

 

𝑋1̇ = �̈� (41) 

 

�̈� = −2 𝜁 𝜔𝑛 − �̇� − 𝑋 𝜔𝑛
2 + 𝑈 (42) 

 

�̇� = 𝑋1 (43) 

 

�̈� = −2 𝜁 𝜔𝑛 − 𝑋1 − 𝑋2 𝜔𝑛
2 + 𝑈 (44) 

 

[�̈�
�̇�
] = [−2 𝜁 𝜔𝑛 −𝜔𝑛 

2

1 0
] [

𝑋1

𝑋2
] + [

1
0
] 𝑈  (45) 

 
𝑌 (𝑠)

𝑋 (𝑠)
= 𝜔𝑛

2 ⟹ 𝑌(𝑠) = 𝑋(𝑠)𝜔𝑛
2  (46) 

 

The Laplace  (ℒ−1)  transformation applied to Eq. (46) 

results in: 

 

𝑌 (𝑡) = 𝑋 (𝑡) 𝜔𝑛 
2  (47) 

 

𝑌 = 𝑋2  𝜔𝑛 
2  (48) 

 

𝑌 = [0 𝜔𝑛 
2 ] [

𝑋1

𝑋2
] (49) 

 

∴  Ab = [−2 ζ ωn −ωn
2

1 0
]  (50) 

 

𝐵𝑏 = [
1
0
]  (51) 

 

𝐶𝑏 = [0 𝜔𝑛 
2 ]  (52) 

 

𝐷𝑏 = [0] (53) 

 

The plant P(s), subject to feedback control, is articulated in 

a general state-space form by amalgamating Eq. (10), which 

delineates the patient-hose system dynamics, with Eq. (12), 

elucidating the blower dynamics as illustrated in Figure 2. This 

formulation is expressed as follows: 

 

𝑋𝑝 = [
𝑋𝑏

𝑃𝑙𝑢𝑛𝑔
] = [

𝐴𝑏 0
𝐵ℎ𝐶𝑏 𝐴ℎ

] [
𝑋𝑏

𝑃𝑙𝑢𝑛𝑔
] + [

𝐵𝑏

0
] . 𝑃𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

 

                                𝐴𝑝              𝐵𝑝 

(54) 

 

𝛧 = [
𝑃𝑎

𝑄𝑝
] = [𝐷ℎ𝐶𝑏    𝐶ℎ] [

𝑋𝑏

𝑃𝑙𝑢𝑛𝑔
] 

 

                                                 𝐶𝑝 

(55) 

 

𝑃(𝑠) = [
𝑃𝑝(𝑠)

𝑃𝑄(𝑠)
] = 𝐵(𝑠)𝐻(𝑠) = 𝐶𝑝(𝑆𝐼 − 𝐴𝑝)

−1
𝐵𝑝  (56) 

 

Table 1 enumerates the specifications of the ventilator unit 

[10]. Utilizing MATLAB's response optimization toolbox, the 

controllers' settings were adjusted to optimize performance for 

the reference signal Pr. Table 2 presents the finely-tuned 

settings of these controllers. 

The ventilator underwent testing under the following 

scenarios: 

·Application of set system parameters to evaluate 

performance under ideal conditions. 

·Operation with an unknown parameter to assess system 

robustness. 

 

Table 1. Parameters of the ventilator system [10] 

 
Name Value Unit Parameter 

Rlung 0.005 mbar/(mL⁄s) Lung resistance 

Clung 20 mL/mbar 
Lungs compliance 

(Capacitance) 

Rleak 0.06 mbar/(mL⁄s) Leak resistance 

Rh 0.0045 mbar/(mL⁄s) Hose resistance 

wn 2π60 rad/s Undamped natural frequency 

ζ=1 1 mbar/(mL⁄s) damping ratio 

 

Table 2. Control system parameters [15] 

 
PI Value 

kp 3 

ki 250 

 

Validation tests were conducted to ascertain the model's 

fidelity. Experimental setups, replicating the mathematical 

representation under controlled conditions, were aligned 

closely with the model’s predictions. Additionally, 

comparisons with documented data from previous studies [15] 

demonstrated congruence, thereby reinforcing the model’s 

credibility. 

 

∷  𝐴ℎ = −
1

0.0045
+

1

0.06

0.005∗20(
1

0.005
+

1

0.0045
+

1

0.06
)
= −

238.89

43.89
= −5.443, 

 𝐵ℎ =
1

0.0045

0.005∗20(
1

0.005
+

1

0.0045
+

1

0.06
)
=

222.222

43.89
= 5.0632 
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𝐶ℎ =

[
 
 
 
 

1

0.005
1

0.005
+

1

0.0045
+

1

0.06

−
1

0.0045
+

1

0.06

0.005(
1

0.005
+

1

0.0045
+

1

0.06
)]
 
 
 
 

= [
0.4557

−108.8615
], 

𝐷ℎ =

[
 
 
 
 

1

0.0045
1

0.005
+

1

0.0045
+

1

0.06
1

0.0045

0.005(
1

0.005
+

1

0.0045
+

1

0.06
)]
 
 
 
 

= [
0.50633
101.266

]  

𝐴𝑏 = [
−376.8 −35494.56

1 0
], 𝐵𝑏 = [

1
0
], 𝐶𝑏 = [0   35494.56] 

𝐴𝑝 = [
−376.8 −35494.56 0

1 0 0
0 179716.0562 −5.443

], 

𝐵𝑝 = [
1
0
0
], 𝐶𝑝 = [

0 17971.96056 0.4557
0 3594392.113 −108.8615

] 

 

 

3. CONTROL SYSTEM DESIGN 

 

The control system design aims to fulfill dual objectives: (i) 

maintaining the patient's airflow Qp within acceptable limits to 

ensure comfort and safety, and (ii) regulating the airway 

pressure Pa to adapt to varying patient conditions and external 

disturbances. The primary goal of the closed-loop control 

system is the smooth and consistent delivery of the patient's 

airflow by regulating airway pressure. Selection of an 

appropriate control law is critical for ensuring patient safety, 

necessitating a control system that can rapidly and smoothly 

modulate air pressure while minimizing overshoots and 

oscillations in control excitation signals. Initially, a robust 

controller utilizing integer calculus is developed, inspired by 

the objective of achieving smooth regulation of patient 

pressure and flow, as illustrated in Figure 5. 

 

 
 

Figure 5. Mechanical ventilation breathing cycle of a patient 

[15] 

 

Theoretical framework and equations 

Eqs. (14) and (15) are rewritten as follows: 

 

𝑃𝑙𝑢𝑛𝑔
̇ = 𝐴ℎ 𝑃𝑙𝑢𝑛𝑔 + 𝐵ℎ𝑃𝑜 (57) 

 

𝑃𝑎 = 𝐶ℎ1 𝑃𝑙𝑢𝑛𝑔 + 𝐷ℎ1𝑃𝑜 (58) 

 

𝑄𝑝 = 𝐶ℎ2 𝑃𝑙𝑢𝑛𝑔 + 𝐷ℎ2𝑃𝑜 (59) 

 

Modeling the blower system 

The blower system’s transfer function is represented as: 

 

𝑃𝑜

𝑃𝑐
=

(2𝜋30) 2

 𝑠2+4𝜋30𝑠+(2𝜋30)
  (60) 

 

A universal first-order blower system model with a single 

pole is expressed in the following equation [21]: 

 
𝑃𝑜

𝑃𝑐
=

𝑘

𝑠+𝑎
  (61) 

 

In Eq. (61), parameters k and a are calculated using a 

response optimization toolbox to ensure minimal deviation 

between the outputs of Eqs. (60) and (61). Based on insights 

from the study, these parameters are determined as k=80 and 

a=80, effectively approximating the true second-order 

dynamics as evidenced by data from the study [17]. 

State space representation of the blower system 

The essence of the blower system’s behavior is 

encapsulated in the following state space representation, 

derived from Eq. (61) and the specified parameters: 

 

𝑃�̇� = −𝑎 𝑃𝑜 + 𝐾𝑃𝑐 (62) 

 

The outcomes of the investigations conducted in the 

preceding sections can be succinctly summarized as follows: 

a=80, K=80, Ah=-5.443, Bh=5.063, Ch1=0.45, Dh1=0.5063, 

Ch2=-108.862, Dh2=101.27. 

The system outputs associated with the error e are given by 

[22]: 

Derivation and control equations 

The airway pressure error is formulated as: 

 

𝑒 = 𝑃𝑟 − 𝑃𝑎  (63) 

 

where, Pr represents the reference pressure and Pa the airway 

pressure. 

 

𝑃𝑐 = 𝑈 (64) 

 

Eq. (58) is further derived to yield: 

 

𝑃�̇� = 𝐶ℎ1 𝑃𝑙𝑢𝑛𝑔
̇ + 𝐷ℎ1𝑃�̇� (65) 

 

Substituting Eqs. (57) and (62) into Eq. (65) results in: 

 

𝑃�̇� = 𝐶ℎ1 (𝐴ℎ 𝑃𝑙𝑢𝑛𝑔 + 𝐵ℎ𝑃𝑜) + 𝐷ℎ1(−𝑎 𝑃𝑜 + 𝐾𝑃𝑐) (66) 

 

This equation can be concisely represented as: 

 

𝑃�̇� = 𝐶ℎ1 𝐴ℎ 𝑃𝑙𝑢𝑛𝑔 + 𝐶ℎ1 𝐵ℎ𝑃𝑜 − 𝐷ℎ1𝑎 𝑃𝑜 

+𝐷ℎ1 𝐾𝑃𝑐 = −𝜇 𝑒 − 𝛽 ∫𝑒 
(67) 

 

PID control equation 

The PID control equation, crucial for system performance, 

is defined as: 

 

𝒰 = −
1

𝐷ℎ1 𝐾

(−𝜇 𝑒 − 𝛽 ∫ 𝑒 − 𝑎𝑐1𝑝𝑙𝑢𝑛𝑔 − 𝑏1𝑐1𝑃𝑜 + 𝑎𝑑1𝑃𝑜 )

𝜇 = 1, ∫ 𝑒 = 3

}  (68) 

 

Nonlinear PID control equation 

For systems requiring enhanced precision, the nonlinear 

PID control equation is introduced: 
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𝒰 = −
1

Dh1 K

(−μ e − β ∫ tan−1(γ 𝑒(𝑡))𝑑𝑡 − a c1plung − b1c1Po + ad1Po )

μ = 1, ∫ e = 3

}  (69) 

 

Compared to traditional ventilation control systems, the 

proposed method offers advantages such as faster response 

times, improved adaptability to patient conditions, and a more 

robust response to external disturbances, thereby enhancing 

patient safety and comfort. 

Simulations using MATLAB and Simulink (Version 

R2022a), with the Control System Toolbox, were conducted. 

A range of patient breathing patterns, from relaxed to rapid 

shallow breathing, was modeled to evaluate the controller’s 

performance under diverse conditions.  

Performance was assessed based on key metrics: settling 

time, overshoot, and steady-state error, crucial for gauging the 

system's efficacy in reaching and maintaining the desired state. 

 

 

4. RESULTS AND DISCUSSION 

 

Section 3 presented the control modeling for the design of 

PID and nonlinear PID control models. In the context of 

nonlinear PID control for ventilator systems, the challenges 

are twofold: selecting an appropriate nonlinear function to 

map the error signal to the control output, and managing the 

increased complexity due to the incorporation of nonlinear 

elements [23]. Additionally, it is crucial to choose suitable 

controller gains and nonlinear functions while ensuring stable 

and accurate control in the presence of disturbances and 

nonlinear dynamics. To solve the control equations, both PID 

and nonlinear PID control models were utilized, and 

MATLAB code was developed for this purpose. 

 

4.1 Comparison between PID and nonlinear PID 

 

This section discusses the results obtained from the PID and 

nonlinear PID control. Figure 6 illustrates that the nonlinear 

control system exhibits greater sensitivity to disturbances and 

changes in the process variable. This increased sensitivity may 

stem from the use of more complex mathematical models in 

nonlinear PID controllers, potentially leading to more 

fluctuations and less stability. 

 

 
 

Figure 6. Pout at PID and nonlinear PID control 

 

In the comparative analysis of PID and nonlinear PID 

control systems, it has been observed that when a PID control 

system exhibits more oscillations than its nonlinear 

counterpart, it indicates a lesser efficacy in managing complex 

and highly variable systems. This phenomenon can be 

attributed to the intrinsic characteristics of the PID controller, 

which establishes a linear correlation between the error signal 

and the control output. Such a linear approach may not 

adequately capture the nonlinear dynamics inherent in certain 

systems. 

Furthermore, Figure 7 indicates that the phase plane in a 

nonlinear PID control system covers a smaller area than a PID 

control system. This observation suggests that the nonlinear 

controller might possess more limited control capabilities for 

the system being controlled. Potential factors for this 

limitation include the choice of control parameters and the 

complexity of the mathematical model used by the controller. 

 

 
 

Figure 7. Phase plane between Pl and Pout at PID and 

nonlinear PID control 

 

 
 

Figure 8. Control signal (U) at PID and nonlinear PID 

control method 

 

It is imperative to acknowledge that the magnitude of the 

phase plane in isolation does not conclusively determine the 

effectiveness of a controller. An adeptly calibrated nonlinear 

PID controller, even with a more compact phase plane, is 

capable of providing effective control of the system. 

Conversely, a PID controller, despite possessing a larger phase 

plane, may fail to offer efficient control if not properly tuned. 

This observation underscores the complexity of control system 
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design and the necessity of precision in controller tuning. 

Further, Figure 8 illustrates key concepts in pressure control, 

specifically focusing on overshoot and oscillation phenomena. 

In the context of respirator pressure control, overshoot refers 

to the magnitude by which the pressure surpasses the set or 

desired value before returning to the required level. Such 

overshoot can transpire when the inspiratory flow rate is 

excessively high or the expiratory flow rate is insufficiently 

low, leading to a temporary exceedance of the desired pressure 

level. In the realm of bellows pressure control, overshoot 

might occur when the internal pressure of the bellows 

surpasses the set pressure prior to being alleviated via a relief 

valve. Oscillation in pressure is characterized by the 

fluctuation of pressure around a set point or a desired level. 

Within respirator pressure control systems, oscillations can 

arise due to a variety of factors, including alterations in patient 

demand, changes in flow rate, or variations in airway 

resistance. These oscillations are pivotal in understanding the 

dynamic response of the system to external and internal 

changes, highlighting the importance of a controller's ability 

to mitigate such fluctuations while maintaining the desired 

pressure levels. 

Clinical implications of oscillatory behavior in ventilation 

control systems are profound, particularly concerning patient 

comfort and safety. Oscillations in airway pressure, especially 

when frequent or intense, may contribute to patient discomfort 

and risk of ventilator-induced lung injury. This underscores 

the criticality of employing control systems that maintain 

smooth pressure profiles, a necessity that becomes even more 

pressing for vulnerable groups such as neonates or patients 

with pre-existing lung conditions. The selection of an 

appropriate control system is contingent upon the specific 

demands and limitations of the application at hand. Generally, 

nonlinear PID controllers exhibit greater efficacy in managing 

systems characterized by high nonlinearity and complexity. 

Conversely, traditional PID controllers are better suited to 

simpler, more linear systems. In cases where the controlled 

system displays complex, nonlinear dynamics, a finely tuned 

nonlinear PID controller is likely to outperform a standard PID 

controller. However, in scenarios involving more 

straightforward and linear dynamics, a well-calibrated PID 

controller may prove more effective. The robustness of a 

controller, particularly in medical settings, is of utmost 

importance. The study found that both PID and nonlinear PID 

controllers displayed certain vulnerabilities under specific 

conditions. For example, while the nonlinear PID controller 

showed heightened sensitivity to disturbances, it adeptly 

captured the nonlinearities intrinsic to the system dynamics. 

Nonetheless, the increased complexity of the nonlinear PID 

controller may introduce additional potential failure points, a 

consideration that must be carefully managed in practical 

applications. On the other hand, the PID controller, with its 

simpler and more established design, might fail to effectively 

manage certain complex dynamics, potentially leading to 

suboptimal outcomes for patients. 

Effectiveness of a control system depends on the specific 

requirements and constraints of the application. The choice 

between PID and nonlinear PID controllers should be based on 

the system's complexity and the quality of tuning and 

implementation. Careful evaluation of both systems is 

essential to determine the most appropriate balance of 

performance, stability, and sensitivity to disturbances. 

Additionally, this study acknowledges the potential 

relevance of other control strategies for ventilator systems, 

such as adaptive control, model predictive control, and fuzzy 

logic controllers. A comparative study including these 

methods would provide a more comprehensive view of the 

optimal control strategy for ventilators. 

 

4.2 PID and nonlinear PID results 

 

The PID and nonlinear PID controllers, as delineated in the 

previous section, have been employed to simulate the 

ventilator system. The effectiveness of the PID controller is 

assessed and compared with other recommended controllers to 

demonstrate the limits of control techniques. Ventilator unit 

parameters, outlined in Table 1, were utilized in this 

simulation. The controller configurations were adjusted using 

MATLAB's response optimization toolbox with the reference 

signal Pr. Table 2 presents the tuned settings of the controllers. 

Two distinct tests were conducted on the ventilator system: 

·System testing under fixed parameters to simulate an 

ideal situation. 

·Testing under ambiguous conditions to evaluate 

robustness. 

 

4.2.1 PID control test 

In the first test, the ventilator unit's settings were considered 

constants. The system parameters a1, b1, c1, d1, and d2 were 

derived using the parameters reported in Table 2. 

 

 
 

Figure 9. Comparison between Pa and Pset at PID and 

nonlinear PID controllers 

 

Figure 9 depicts a comparison between Pa and Pset using 

PID and nonlinear PID controllers. The airway pressure 

command Pset is selected as follows: 

 

Pset=0 mbar,  

t=(0→3 and 6→10) s,  

Pset=20 mbar, t=(3→6) s  

(70) 

 

Figure 9 delineates the airway pressure tracking response 

utilizing a PID controller of integer order. Notably, the 

reference command undergoes abrupt changes at t=3s and 6s. 

For enhanced clarity, Figure 10 presents magnified views of 

specific instances from Figure 9, specifically at t=1s and 5s. 

Examination of Figure 10 reveals that the airway pressure 

tracking via the PID controller results in diminished 

oscillations at t=3s and 6s. The system experiences overshoots 

peaking at 18 mbar and 0.6 mbar during these respective time 

606



 

intervals. Moreover, these oscillations stabilize at 

approximately 3.9s and 6.9s when deploying an integer-order 

PID controller. This behavior is attributable to the integral gain 

K of the PID controller, which enhances the rise time but 

concurrently extends the response duration [24, 25]. Such a 

modulation culminates in a suboptimal tracking response for 

the ventilator system, characterized by a protracted rise time. 

It is pertinent to note that augmenting the integral gain of the 

PID controller might reduce the rise and settling times, but this 

adjustment risks inducing additional overshoots and 

oscillations. 

 

 
(a) 

 
(b) 

 

Figure 10. Airway pressure Pa at PID control: (a) 

Enlargement of upper corner and (b) Enlargement of bottom 

corner 
 

 
 

Figure 11. Flowrate (Qp) at PID and nonlinear PID control 

Figures 11 and 12 compare the response of patient flow rate 

Qp using the controllers. Figure 11 shows that the flow rate 

response is delayed with the PID controller. Figure 12 

provides a clearer view of the patient flow rate response using 

the fractional order PID controller. 

 
(a) 

 
(b) 

 

Figure 12. Enlargement shape of Qp at PID control: (a) 

Enlargement of upper corner (b) Enlargement of bottom 

corner 

 

The peak recorded value of Qp with the PID controller is 

3100 mL/min. The PID controller offers smoother patient 

airflow with enhanced rise time and fewer oscillations. 

 

4.2.2 Nonlinear PID control test 

In the second test, the ventilator unit's parameters were 

subjected to uncertainty, as delineated in Eqs. (71) and (72) 

[15]. 

 

𝐷𝑝1 = −0.01𝑎1 ∗ 𝑝1 + 0.01𝑏1 ∗ 5𝑝𝑜 (71) 

 

𝐷𝑃𝑎 = −0.25 ∗ 𝑐1 ∗ 𝑑1 + 0.01𝑑1 ∗ 𝑝𝑜 (72) 

 

The reference airway pressure command Pset remained 

unchanged, as stated in Eq. (70), with disturbance terms 

introduced at t=3s. Figure 9 compares the airway pressure 

tracking response using the PID controller under these 

conditions. For enhanced visibility, Figure 13 provides an 

enlarged view of the airway pressure and its error response at 

t=3s. Results in Figure 13 indicate that, at t=3s, the PID 

controller records a peak overshoot of 4 mbar. Conversely, the 
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PI controller exhibits a lagging response. 

 

 
(a) 

 
(b) 

 

Figure 13. Enlargement shape of  𝑃𝑎 at nonlinear PID control: 

(a) Enlargement of bottom corner (b) Enlargement of upper 

corner 

 

The simulation and comparison of patient flow rate are 

portrayed in Figures 11 and 14. Figure 14 presents an enlarged 

view of Qp, focusing on the interval of uncertainty application 

at t=3s. 

Upon the introduction of uncertainty terms at t=3s, the 

nonlinear PID controller exhibits a peak overshoot of 

approximately −1500 mL/min. Figures 10 and 12 demonstrate 

that the proposed PID controller ensures stable airflow to the 

patient, devoid of high-frequency oscillations. In contrast, 

Figures 13 and 14 reveal that the nonlinear PID controller 

induces some frequency oscillations. Moreover, the 

introduction of uncertainty terms leads to a delayed response 

in patient flow Qp, as observed in Figure 14. 

This study's broader impacts and limitations must be 

recognized. First, the simulations rely on mathematical models, 

which, though robust, do not encompass all complexities of 

real-world clinical scenarios. Factors such as patient-specific 

lung mechanics, humidification effects, and equipment 

variability can significantly influence controller performance. 

Furthermore, long-term effects of utilizing a specific 

controller on patient outcomes remain unexplored in this study. 

Metrics such as patient comfort, lung tissue stress, or outcomes 

after extended ventilation periods need further investigation. 

This study serves as an initial exploration into the comparison 

of PID and nonlinear PID control for ventilators. 

Comprehensive clinical trials and in-depth studies are required 

to validate these findings and refine the control strategy further. 

 

 
(a) 

 
(b) 

 

Figure 14. Enlargement shape of the Qp at nonlinear PID 

control: (a) Enlargement of upper corner; (b) Enlargement of 

bottom corner 

 

 

5. CONCLUSIONS 

 

In this study, the primary aim was to design a proficient 

control system for a ventilator unit, with a focus on optimizing 

blower model reduction techniques. This aim was driven by 

the urgent requirement to enhance the adaptability and 

efficiency of ventilator control systems, particularly in light of 

escalating medical challenges. 

The research findings revealed that the airway pressure 

tracking exhibited significant oscillations when a nonlinear 

PID controller was utilized at t=3s and 6s. Furthermore, with 

a conventional PID controller, overshoots reached peak values 

of 18 mbar and 0.6 mbar at t=3s. Despite this, the nonlinear 

PID controller demonstrated superior performance compared 

to the conventional PID controller, particularly in terms of 

faster rise time, improved settling time, and reduced 

oscillations in airway pressure. It is noted that while 

overshoots peaked at 18 mbar and 0.6 mbar with the nonlinear 

PID controller at t=3s, the oscillations swiftly stabilized. 

However, it is crucial to recognize the limitations of this study. 

One such limitation is the computational intensity associated 
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with the proposed fractional-order controller. While efforts 

have been made to mitigate this challenge, further 

optimization may be required for real-time implementation. 

Future investigations could focus on refining these 

computations and potentially incorporating new technologies 

to enhance efficiency. Additionally, conducting more 

extensive in-vivo testing could yield deeper insights into the 

practical efficacy of the system. 

From a clinical perspective, the advantages of a responsive, 

accurate, and robust control system in a ventilator unit are 

paramount. In critical medical scenarios, particularly for 

patients with compromised respiratory functions, the capacity 

of the ventilator to swiftly and effectively adapt can be crucial 

for patient outcomes. 

In conclusion, this study represents a significant 

contribution to the field of ventilator control systems, 

particularly in the nuanced management of blower dynamics. 

By integrating model reduction techniques and innovating the 

nonlinear PID approach, this study introduces a novel method 

that promises enhanced performance metrics. These findings 

not only advance the capabilities of ventilator design but also 

pave the way for future developments in this vital area of 

medical technology. 
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