

Enhance Speed Low Area FPGA Design Using S-Box GF and Pipeline Approach on Logic

for AES

K. Janshi Lakshmi* , G. Sreenivasulu

Department of Electronics and Communication Engineering, Sri Venkateswara University College of Engineering, Sri

Venkateswara University, Tirupati 517501, Andhra Pradesh, India

Corresponding Author Email: jansikaramala@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110322

ABSTRACT

Received: 14 September 2023

Revised: 1 November 2023

Accepted: 10 November 2023

Available online: 28 March 2024

 In the wireless communication technologies of today are used to transfer enormous

amounts of digital data frequently between various embedded devices. For avoiding

information loss and stopping cybercrimes, data security is regarded as a crucial factor.

Modern cryptography encryption techniques are essential for creating secure

communication. The Advanced Encryption Standard (AES) is widely regarded as the

cryptography field's strongest encryption technique. In AES has three types of keys

using that is AES128, AES192, AES256 and blocksize only 128bits. In this paper using

AES-256, because it’s very secure for valuable information. This research paper

describes how the AES algorithm uses a low area, little latency, high-speed FPGA

design to secure data. The implementation of the SubBytes and InvSubBytes phases of

AES encryption and decryption in this research did not rely on Look-Up Tables (LUTs).

Instead, this novel approach employed combinational logical circuits to construct the

SubBytes and InvSubBytes transformation. Here analysed AES Logic gates approach

reduced area in terms of number of slices LUTs are 6120, slice registers are 226, flip

flops are 6120, and bonded IOB are 513 when compared to the LUT. Unwanted delays

in this design are reduced because of the removal of LUTs, and a Three Stage pipelining

structure is added to enhance the performance of the AES algorithm. AES Logic gates

three stage pipeline approach reduced delay up to 60.55ns when compared to Logic

gates without pipeline approach. The proposed approach simulated, synthesized

Implemented with Virtex-5 FPGA device along with design in Verilog code in XILINX

14.7 Software.

Keywords:

security, cryptography, Advanced Encryption

Standard, S-Box, Galois field, Look-Up Table,

logic gates, three stage pipelines, area, speed

XILINX, Verilog, FPGA-Vertex-5

1. INTRODUCTION

Numerous Platforms — One Family. Four new platforms

are available from the Virtex--5 family of FPGA, each of

which offers an optimized mix of embedded processing, signal

processing, high-performance logic, and serial connection.

The Virtex line of FPGAs are built using Configurable Logic

Blocks (CLBs), where each CLB is comparable to a number

of ASIC gates. Numerous slices, which vary in design between

Virtex families and make up each CLB, are used. Military-

grade specialized processor is used by Virtex. The product's

primary market is high-latency broadband applications, which

necessitate processing a lot of data with little latency. For

Proposed approach we require a greater or equal number of

IOB up to 513, number of filp-flops up to 40791, number of

slices 15,034 we need. So Virtex5 perfectly suitable for my proposed

work.
Digital data is protected using cryptography. Changing

plaintext into illegible text and conversely is mention to as

cryptosystem. It is an approach of transferring and saving data

in a particular way so that just those who are meant to access

and analyze it may do so. It is focuses on converting data into

formats that can't be understood by unauthorized users. It's a

message. The fact that it was encrypted simultaneously with

the letters changing into other characters shows how basic the

encryption algorithm was. see the Figure 1. The main

cryptography principles are Data Confidentiality, Data

Integrity, Authentication and Non-repudiation in modern day.

Figure 1. Cryptography process

The fundamental elements of a cryptosystem include

plaintext, which is the information that must be kept secure.

The encryption algorithm is a mathematical process that takes

plaintext as input and produces ciphertext, the encrypted or

Mathematical Modelling of Engineering Problems
Vol. 11, No. 3, March, 2024, pp. 773-782

Journal homepage: http://iieta.org/journals/mmep

773

https://orcid.org/0000-0001-9671-0821
https://orcid.org/0009-0008-9025-1773
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110322&domain=pdf

unintelligible counterpart to plaintext. Cryptography is

divided into three main categories: secret key (symmetric key)

encryption, public key (asymmetric key) encryption, and hash

functions. In Symmetric Key Encryption, the same secret key,

referred to as 'secret key 1' in Figure 2, is used for both

encryption and decryption. In contrast, Asymmetric Key

Encryption uses different keys for encryption and decryption;

'secret key 1' for encryption and 'secret key 2' for decryption,

as shown in Figure 3.

Figure 2. Symmetric key encryption

Figure 3. Asymmetric key encryption

Messages can be securely encrypted and decrypted utilizing

asymmetric cryptography, referred to as public key

cryptography, effectively prevents them towards unauthorized

access and utilization. A public key and a private key that are

linked jointly are utilized. A single key is used for both

encryption and decryption in symmetric encryption, which

speeds up the encryption process. Asymmetric encryption uses

two separate keys, one of which is related to the other by a

challenging mathematical process; hence the encryption

process is slower when using this method. Network security

authentication and digital signature applications: Date and

time stamping, electronic currency, the encryption and

decryption of email, encrypting WhatsApp, The encryption of

Instagram, Identification with a SIM card.

AES is the most well-known and often used symmetric

encryption method available today. It can be found at least six

times faster than triple DES. A replacement was required

while the key size of DES was inadequate. As processing

power spiked it became considered vulnerable to an

exhaustive key search assault. Triple Data Encryption

Standard was supposed to solve this disadvantage, but it was

proven to be sluggish. In both hardware and software, AES is

a popular and approved encryption method. AES has not yet

been the target of any actual attacks using cryptanalysis.

Additionally, the AES contains built-in flexibility for key

length, providing some "future-proofing" against

advancements in the capability of exhaustive key searches.

However, AES security is only guaranteed if it is deployed

correctly and sufficient key management is used, just like DES.

AES encryption is frequently used by departments of the

federal government, non-governmental organizations,

commercial businesses, and NGOs to protect sensitive data.

The AES algorithm is extensively used in many different fields,

such as file encryption, SSL/TLS, processor security, and

wireless security. Symmetric key encryption is used in the

proposed approach. the key created at the sender's side using

the input and the cipher key. The receiving side also generates

the same key between the cipher and output.

2. LITERATURE REVIEW

Teng et al. [1] enhanced the hardware used to implement the

AES Advanced Encryption Standard's SubBytes and Inverse

SubBytes operations. To achieve this, the SubBytes (and

inverse SubBytes) transformation's S-Box (and inverse S-Box)

building blocks are all optimized using the composite field

arithmetic (CFA) method. To increase area effectiveness, an

S-Box and inverse S-Box combo design is also suggested. An

S-Box throughput of 5.79 Gbps, 10% greater than in the prior

study, may be achieved on a Virtex CPU. The results of the

ASIC implementation indicate that the proposed design can

still attain the highest area efficiency. Efficiency is boosted

over conventional methods by roughly 30% when using the

TSMC 90nm technology.

Nandan and Gowrı Shankar Rao [2] implemented the

inverse of the improved affine transform is the main objective

in this case. The basic ZigBee S-Box approach and the

Rijndael method are compared in terms of a variety of factors.

This is due to the use of extra registers for the various stages.

A little adjustment to the affine (and inverse affine) transforms

can be made to get around SBox's time and power limitations.

The proposed transformation technique reduces the processing

time for AES SBox. The projected system is 39% more

powerful than the existing one. It is a system that works well.

Equihua et al. [3] showed the Galois Field Multiplier, which

has been determined that the operated, that is involved in the

Mix-Columns (and Inverse Mix-Columns) transformations, is

the most demanded in terms of processing performance and

area consumption. The Mix-Columns and Inverse Mix-

Columns transformations use an optimized Galois Field

Multiplier, which is discussed because it is the operation that

uses the most storage and computing resources. The suggested

GF (28) multiplier was optimized by two because to the huge

number of multiplications needed by this circuit, allowing us

to create a Mix-Columns circuit that is exceptionally compact.

Ueno et al. [4] represented Critical components combined

with fewer additional selectors utilizing Datapath's innovative

operation reordering and register-re timing algorithms. By

using logic synthesis and the Nand Gate 45nm open cell

library, it was possible to compared the performance of the

proposed and several standard data paths. The efficiency of

our suggested architectures is improved by about 51-64%.

Jindal et al. [5] researched on Simulation of the Advanced

Encryption Standard utilizing double 7th series capital to

examine cost and performance contrasts. The secret key is one

and the same. Programmes in the public, private, commercial,

etc. spheres may use it without restriction. Up to this point,

thorough investigation is being conducted to identify methods

to strengthen the AES algorithm's security.

Chauhan and Sasamal [6] specified about Generated

multiple Sbox for different rounds that is Sbox changes with

respect to key and hence increased the security of cipher. They

compare the avalanche impact of basic AES with our

suggested algorithm and alter AES so that it employs dynamic

Sbox, which is key dependent.

Davis et al. [7] presented by adding a new realization of the

774

ShiftRows operation utilizing muxes, new power-efficient

AES implementation is introduced. The average overall power

consumption of AES was reduced by 13.5% and 10.6%,

respectively, in simulations of these implementations

employing 45nm and 90nm technology nodes.

Gaded and Deshpande [8] represented S-Box, which uses

Composite Field arithmetic, significantly reduces the area

relative to FPGA slices and the gate latency as well as the

combinational path delay

Shashidhar et al. [9] researched on Pipeline design for AES

algorithm to increase the Performance of Hardware. They

suggested sequential AES architecture has a maximum

throughput of 37.21Gbps and a maximum operating frequency

of 291.68MHz. In the AES Hardware implementation, three

modules are used: encryption, decryption, and FPGA.

Srilaya and Velampalli [10] customized with when

compared to AES, DES has a higher throughput for both

encryption and decryption. Based on the input size, a

comparison analysis has been conducted utilizing performance

evaluation metrics for each approach. Throughput, power,

memory, and encryption/decryption time are all measured

together with simulation time.

Researchers [11-13] customized about the area-throughput

trade-off for an ASIC's implementation of the Advanced

Encryption Standard (AES) was stated. Throughputs of 30

Gbits/s to 70 Gbits/s are achievable in a 0.18-/spl mu/m CMOS

technology using loop unrolling and outer-round pipelining

techniques. Additionally, by pipelining the composite field

implementation of the AES algorithm's byte replacement

phase, the area consumption is reduced by up to 35%.

Sklavo and Koufopavlou [14] implemented two

architectures. The first, employed feedback logic to achieve a

throughput of 259 Mbit/sec. Applications with limited covered

area resources benefit from its effective performance. Using a

pipelined method, the second design is enhanced for high-

speed performance. 3.65 Gbit/sec is its maximum throughput

rate.

Abdel-Hafeez et al. [15] implemented in terms of

throughput rate and hardware area is ALTERA series FPGA.

They ran simulations to show that the proposed AES has a

throughput rate that is about 16% greater than the conventional

AES pipeline layout while reduced the hardware footprint by

36%.

Lakshmi and Sreenivasulu [16] represented about AES is a

symmetric encryption method that employs a private key. Key

Expansion, PreRound Operation, AddRoundKey, SubBytes,

ShiftRows, and MixColumn are some of the building blocks

used in this encryption procedure. The AES Algorithm

employs cryptographic secret keys with lengths of 128bits,

192bits, and 256bits for encryption and 128bits for decoding

input data. they displayed a study of the AES encryption

algorithm.

3. OVERVIEW OF AES ALGORITHM

3.1 AES-256 encryption

Advanced Encryption Standard (AES) has input data is

128bits, secret key is 128bits, 192bits and 256bits. Here using

256bit key algorithm. In 256bit key algorithm has total 14

rounds perform. There are 14 cycles for encryption and 14

rounds for AES decryption. It shows in Figures 4-5.

Substituting bytes (SubBytes): The design includes a

fixed table (S-Box) that is hunted up in order to replace the 16

input bytes. The outcome is represented as a matrix with 4

rows and 4 columns. The 4 rows of the matrix are all shifted

to the left. Any entries that 'fall off' are reinserted on the row's

right side. During shift, the subsequent methods apply: The top

row remains in place, The 2nd row has been moved 1(byte)

position left, the 3rd row has been moved 2 spaces left,

whereas the 4th row has been moved 3 spaces left. The end

result is a new matrix with the same 16 bytes but with various

locations.

Affine transformation [11]:

𝑏′𝑖 = 𝑏𝑖 𝑥𝑜𝑟 𝑏(𝑖 + 4)𝑚𝑜𝑑8 𝑥𝑜𝑟 𝑏(𝑖 + 5)𝑚𝑜𝑑8 𝑥𝑜𝑟 𝑏(𝑖
+ 6)𝑚𝑜𝑑𝑒8 𝑥𝑜𝑟 𝑏(𝑖 + 7)𝑚𝑜𝑑8 𝑥𝑜𝑟 𝑐𝑖

for 0<=i<8 where ci is the ith bit of a byte c with the value 85

or 10000101 and bi is the ith bit of the byte. If a variable's prime

value is b, it should be changed both here and elsewhere with

the value shown on the right.

Figure 4. AES-256 encryption [16]

MixColumns: Each column of 4 bytes is now treated to a

unique mathematical operation. In order to make use of this

function, four bytes from one column need to be supplied, and

four completely novel bytes should be output in its place. The

most recent matrix has 16 more bytes and is a fresh one. This

step does not appear in the final round, it should be highlighted.

AddRoundKey: The 16 bytes of the matrix, which are now

regarded as 128 bits, are EX-ORed with the 128 bits of the

round key. If this is the final attempt, the ciphertext will be

generated. Otherwise, the outcome's 128 bits are transformed

into 16 bytes, and the process is restarted. In the encryption's

1st round, 5 operations are performed, i.e., Pre-round,

ShiftRow, AddRoundKey, SubBytes, and MixColumns. From

the 2nd round to the 13th round, 4 operations are performed,

775

i.e., SubBytes, ShiftRow, MixColumns, and AddRoundKey.

For the 14th round, it performs only 3 operations, i.e.,

SubBytes, ShiftRow, and AddRoundKey operation (see

Figure 4). Finally, the output is a 128-bit cipher key generated

[1].

Depending on the key length, the State array is subjected to

a round function 10, 12, or 14 times, with the final round

differing somewhat from the early Nr-1 rounds. The cipher's

definition is given in the pseudocode shown below. Each

function handles the State separately: SubBytes(), ShiftRows(),

MixColumns(), and AddRoundKey().

Encryption PseudoCode for the Cipher [11]:

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

 begin

 byte state[4,Nb]

 state = in

 AddRoundKey(state, w[0, Nb-1])

 for round = 1 step 1 to Nr–1

 SubBytes(state)

 ShiftRows(state)

 MixColumns(state)

 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

 end for

 SubBytes(state)

 ShiftRows(state)

 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

 out = state

 end

Where Nb: Number of Blocks

 Nr: Number of Rounds

3.2 AES-256 decryption

AES-256 decryption has input is cipherkey 128bits, cipher

key means combined of input data and secret key. Secret key

is 128bits, 192bits and 256bits. Here using 256bit key

algorithm. In 256bit key algorithm has total 14 rounds perform.

For decryption has 14 rounds İt shows in Figure 5. The

reversal of the encryption process is used in the decryption of

an AES ciphertext. The four procedures are carried out each

round in reverse sequence. Inverse SubByte replacement,

Inverse Mixcolumn, Inverse Shiftrow, and Inverse

Addroundkey are all examples of inverse operations. Despite

having extremely close relationships, the encryption and

decryption algorithms must be implemented independently

since each round's sub-processes function backwards. In

decryption 1st round perform 5 operations i.e., Preround, Inv

shift row, addround key, Invsubbyte and Invmixcolumn. From

2nd round to 13th round perform 4 operations i.e., Invsubbyte,

Invshiftrow, Invmixcolumn and addround key. For 14th round

it performs 3 operations only i.e., Invsubbyte, Invshiftrow,

Addroundkey operation see the Figure 5. Finally, the output is

128bits original data or input data generates.

An easy-to-use Inverse Cipher for the AES algorithm can

be created by inverting the cipher transformations and then

implementing them in reverse order. the various Inverse

Cipher transformations InvShiftRows(), InvSubBytes(),

InvMixColumns(), and AddRoundKey(). The array w[]

includes the key schedule, and the pseudocode describing the

Inverse Cipher is provided below.

Decryption PseudoCode for the InverseCipher [11]:

InvCipher(bytein[4*Nb],byteout[4*Nb],word w[Nb*(Nr+1)])

begin

 byte state[4,Nb] state = in

 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

 for round = Nr-1 step -1 downto 1

 InvShiftRows(state)

 InvSubBytes(state)

 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

 InvMixColumns(state)

end for

InvShiftRows(state)

InvSubBytes(state)

AddRoundKey(state, w[0, Nb-1])

out = state

end

Figure 5. AES-256 decryption [16]

4. PROPOSED METHODOLOGY

4.1 S-Box using logic gates

The Example for Computing the Sub Byte Operation with

XOR Gates in S-Box is show in Figure 6(a), the dissemination

of the data input of (04)16 into a composite field based

Substitute Box. The precomputed values were formerly kept

in a ROM-based lookup table, which was one of the most

popular and simple implementations of the StandardBox for

the SubByte operation (LUT). In this approach, the input byte

would be connected to the ROM's address bus and all 256

values would be kept in a ROM. The multiplicative inversion

of the supplied data is the first step. The four bit numbers

outside of the logical blocks show the new values that are

applied to the high and low nibbles. Since the results

containing for GF(24) multiplication and multiplicative

776

inverses are provided, the example can be completed by hand.

Following the multiplicative inversion module's inverse

isomorphic mapping operation, to create the S-Box Shown in

Figure 6 (a). replacement value for the input, an affine

transformation is applied to the multiplicative inverse of

(CB)16. Finally, the output is (F2)16, which is consistent with

the S-Box table given. Combinational logic(XOR Gate) is a

more sophisticated method of implementing the S-Box, and

this kind of S-Box has the benefit of having low space

occupancy or less area occupied in the Virtex FPGA system

[11, 12].

4.2 Isomorphic and inverse isomorphic mapping

The logical XOR operation can be used to translate the

matrix multiplication as shown in Figure 7. Below is a diagram

of the matrices' logical form.

7

6

5

4

3

2

1

0

j1 0 1 0 0 0 0 0

j1 1 0 1 1 1 1 0

j1 0 1 0 1 1 0 0

j1 0 1 0 1 1 1 0

j1 1 0 0 0 1 1 0

j1 0 0 1 1 1 1 0

j0 1 0 1 0 0 1 0

j0 1 0 0 0 0 1 1

  
  
  
  
  
  =
  
  
  
  
  

   
   

δxj x

7

6

5

41

3

2

1

0

j1 0 1 0 0 0 0 0

j1 1 0 1 1 1 1 0

j1 0 1 0 1 1 0 0

j1 0 1 0 1 1 1 0

j1 1 0 0 0 1 1 0

j1 0 0 1 1 1 1 0

j0 1 0 1 0 0 1 0

j0 1 0 0 0 0 1 1

−

  
  
  
  
  
  =
  
  
  
  
  

   
   

δ xj x

The above matrices simplified then becomes:

7 5

7 6 4 3 2 1

7 5 3 2

7 5 3 2 1

7 6 2 1

7 4 3 2 1

6 4 1

6 1 0

j j

j j j j j j

j j j j

j j j j j

j j j j

j j j j j

j j j

j j j



 
 

     
   
 

    =
   
 

    
  
 
   

xj

7 6 5 1

6 2

6 5 1

6 5 4 2 11

5 4 3 2 1

7 4 3 2 1

5 4

6 5 4 2 0

j j j j

j j

j j j

j j j j j
j

j j j j j

j j j j j

j j

j j j j j

x −

   
 

 
  
 

    =
    
 

    
 
 
     

4.3 Addition of GF(24)

The basic bitwise XOR operation between two elements in

a Galois Field corresponds to the addition of two elements.

Polynomial Form:

(p6+p4+p2+p+1)+(p7+p+1)=p7+p6+p4+p2

Binary Form:

(10101111) xor (01111001) = (11010110)

Hexadecimal Form:

(AF) xor (79) = (D6)

4.4 Squaring of GF(24)

Let b=j2 where b and j are elements of GF(24), represented

by the binary number of {b3 b2 b1b0}2 and {j3 j2 j1 j0}2

respectively. It shows in Figure 6 (b) and Figure 7.

(a)

(b)

Figure 6. (a) S-Box values; (b) Diagram of squaring GF(24)

777

Figure 7. The example for computing the sub byte operation with logic gates in S-Box

Figure 8. Diagram of multiplying GF(24)

4.5 Multiplying with λ

λ is constant, let b=j λ, where b={b3 b2 b1 b0}2, j={j3 j2 j1 j0}2

and λ={1100}2 are elements of GF(24).It shows in Figures 7-

8.

5. STANDARD BOX USING THREE STAGE

PIPELINING

The concept of pipelining is based on sending water through

a pipe continuously rather than waiting for it to empty. It

therefore causes an increase in speed. Pipelining is a method

of implementation where several instructions are executed

simultaneously. There are many phases in the computer

process. Each step simultaneously completes a portion of an

instruction. Instructions enter at one end, go through the stages,

and emerge at the other end of the pipe that connects them.

Efficient systems include three pipeline stages for the byte

substitution phase, as shown in Figure 9, the pipel registers for

the three-stage S-Box are shown here in dotted lines. The input

for Stage-I is an 8-bit value, GF(28), which is provided to the

isomorphic mapping. One of the two resulting 4-bit values is

given to the square in GF x2, and the remaining four bits are

supplied to the ex-or block. Stage I's output serves as Stage II's

input. It consists of multiplying by constants and x2, followed

by multiplying by GF(24), and then xoring. Stage-II's output

serves as Stage-III's input in Stage-III. It consists of

multiplexing the inverse, multiplying two four-bit numbers,

and isomorphic inversion obtained an 8 bit input value

eventually. The main advantage of pipeline architecture

reduces delay of system rather than increases speed of system.

Figure 9. The diagram of three pipeline stages S-Box

778

6. AES-256 RTL SCHEMATIC DIAGRAM

Figure 10. AES RTL schematic diagram

AES - 256 algorithms Encryption and Decryption schematic

diagram is depicted in see Figure 10. Here taking clk, rst,

enc_dec are input active low it acts as Encryption.

Example: If clk=0, rst=0, enc_dec=0 it operates as AES

encryption. Encryption input is

aesin=(43727970746f20416c676f726974686d)16, keyin

=(416476616e63656420456e6372797074696f6e20616c676f

726974686d414553)16. Finally got encryption output or cipher

key bits are (1cfd136722c0ed5dedb4e2f45827eb65)16.

Later clk, rst, enc_dec are input active high it acts as

Decryption. And aesin is 128 bit input, keyin is 256bit, aesout

is 128bit.

Example: If clk=1, rst=1, enc_dec=1 it operates as AES

decryption. Decryption input is cipher

key=(1cfd136722c0ed5dedb4e2f45827eb65)16.

keyin=(416476616e63656420456e6372797074696f6e20616c

676f726974686d414553)16. Finally got decryption output or

aesin bits are (43727970746f20416c676f726974686d)16.

7. SIMULATION RESULTS

The Xilinx ISE design suite 14.7 tool was used to simulate

each of the waveforms mentioned above once they had been

incorporated in the Verilog testbench. Results of the AES-256

algorithm simulation for encryption and decryption Figures

from Figures 11-16. demonstrate hexadecimal and ASCII

coding formats. When the inputs clk, rst, and enc_dec are

active low, encryption is performed. Key size is 256 bits, and

input is 128 bits. It produces an aesout, commonly known as a

cipherkey 128 bit. Example: If clk=0, rst =0, enc_dec=0 it

operates as AES encryption. Encryption input is aesin(ASCII

Form)=“Crypto Algorithm”, keyin(ASCII Form) =

“Advanced Encryption AlgorithmAES”.Finally got

encryption output or cipherkey bits (Hexadecimal Form) are

(1cfd136722c0ed5dedb4e2f45827eb65)16.

This cipherkey is used for decryption and outputs a 256-bit

key that is identical to the encryption key. When clk, rst, and

enc_dec are input and active high, decryption occurs. Later, it

creates original data with a 128 bit encryption.

Example: If clk=1, rst=1, enc_dec=1 it operates as AES

decryption. Decryption input is cipherkey (Hexadecimal

Form)=(1cfd136722c0ed5dedb4e2f45827eb65)16.

keyin=(ASCII Form)=“Advanced Encryption

AlgorithmAES”. Finally got decryption output or aesin

(ASCII Form)=“Crypto Algorithm”.

All inputs and outputs shown in above Table in form of

HEX code and ASCII code forms (see Tables 1-2).

Figure 11. AES-256 Algorithm encryption (Hex Code)

Figure 12. AES-256 Algorithm encryption (ASCII Code)

Figure 13. AES-256 Algorithm decryption (Hex Code)

779

Figure 14. AES-256 Algorithm decryption (ASCII Code)

Table 1. AES-256 input, Cipher Key and output data

AES-256 Encryption Input/Output

Input/Output In form of Hexadecimal Code Size

aesin 43727970746f20416c676f726974686d 32 bytes

keyin 416476616e63656420456e6372797074696f6e20616c676f726974686d414553 64 Bytes

aesout (Cipher Key) 1cfd136722c0ed5dedb4e2f45827eb65 32 bytes

Input/Output In form of ASCII Code Size

aesin Crypto Algorithm 16 bytes

keyin Advanced Encryption Algorithm AES 32 bytes

aesout (Cipher Key) 1cfd136722c0ed5dedb4e2f45827eb65 (Hex Code) 32 bytes

AES-256 Decryption Input/Output

Input/Output In form of Hexadecimal Code Size

aesin (Cipher Key) 1cfd136722c0ed5dedb4e2f45827eb65 32 bytes

keyin 416476616e63656420456e6372797074696f6e20616c676f726974686d414553 64 Bytes

Aesout 43727970746f20416c676f726974686d 32 bytes

Input/Output In form of ASCII Code Size

aesin (Cipher Key) 1cfd136722c0ed5dedb4e2f45827eb65 (Hex Code) 32 bytes

keyin Advanced Encryption Algorithm AES 32 bytes

Aesout Crypto Algorithm 16 bytes

Table 2. AES input, Cipher Key and output data size format

I/O Data Size format AES Input Key Cipher Key AES Output

Binary Form 128 bits 256 bits 128 bits 128 bits

Hexadecimal Form 32 bytes 64 bytes 32 bytes 32 bytes

ASCII Form 16 bytes 32 bytes 16 bytes 16 bytes

Figure 15. AES-256 Algorithm encryption and decryption (Hex Code)

Figure 16. AES-256 Algorithm encryption and decryption (ASCII Code)

780

8. SYNTHESIS RESULTS

8.1 Comparison of synthesis results of LUT based AES-256

with AES-256 using logic gates in terms of size or area

The FPGA device was used and synthesized on the

evaluation platform Virtex-5 ML510. Following the synthesis

of location and route, three parameter modifications occur, as

represented by red colour stars in Table 3 and green colour

stars in Table 3. The parameters are as follows: i) the number

of LUTs, ii) the number of occupied slices, and iii) the average

fanout of non-clock nets. These parameters reduced in Table

3, because this is using logic gate using for AES- 256

algorithm. So reduces above parameters that means area

reduced AES-256 using Logic Gates than LUT based AES-

256 and the chart representation as shown in Figure 17.

Table 3. Comparison between AES-256 logic gates Galois

field approach vs utilizing LUTs in terms of size or area

Slice Logic Utilization Using LUTs
Using Logic

Gates

Number of Slice LUTs 40,791 34,671

Number of Occupied Slices 15,034 14,808

Number of LUT Flipflop

Pair Used
40,791 34671

Number of IOBs 513 513

Average Fanout of Non-

Clock Nets
7.69 5.59

Peak Memory Usage 5157 MB 5171 MB

Figure 17. Chart representation of comparing parameters of

LUT and Logic Gates using AES-256

Comparison of AES-256 using LUTs (Existing

Methodology) with using Logic gates Galois field approach

(Proposed Methodology) shows in Table 3. AES using logic

gates Galois field approach is reduced area comparing Using

LUT. And also it shows Figure 17 in graphical diagram format

i.e. chart representation. In Chart, Blue color represents LUT

Based Aes-256 utilization; Red color indicates AES -256

Using Logic Gates for Galois field approach utilization.

Yellow color specifies available in FPGA device.

8.2 With and without pipelined logic gates using for AES-

256 in terms of delay

The FPGA Device used and synthesis with Virtex -5 ML510

Evolution platform. After synthesis of place and route then

generate timing report. In timing summary path delay

generates. The latency for AES-256 utilizing logic gates

without pipelining is 299.782ns. It represents red colour in

Figure 18. Delay high means speed also high. For reduce delay

using AES-256 using Logic gates with three stage pipelining.

Used pipelining the path Delay is 239.227ns it represents

green colour in Figure 19. This system reduced path delay is

60.555ns. So this system performs fast compared to without

pipeline. Delay Reduced and speed increased AES- 256 using

Gates with pipeline than AES- 256 using Gates without

pipeline. The chart representation shown in Figure 20.

Comparison of path delay AES-256 using Logic gates without

pipelining and Logic gates with Three stage pipelining shows

in Table 4.

Figure 18. AES-256 using Logic gates without pipelining

Figure 19. AES-256 using Logic gates with pipelining

Table 4. Comparison of path delay AES-256 using Logic

gates without and with Logic gates with pipelining

Timing

Summary

Logic Gates

Without Pipelining

Logic Gates with Three

Stage Pipelining

Path Delay

(ns)
299.782 239.227

Figure 20. Chart representation of comparing path delay of

AES-256 using logic gates with and without pipelining

9. CONCLUSIONS

This paper represented Area or size efficient of S-Box AES-

781

256 using Logic Gates Galois Field approach than S-Box LUT.

Here analyzed and compared AES Logic gates approach

reduced area and it occupies less space in Virtex FPGA chip

in terms of number of slices LUTs are 6120, slice registers are

226, flip flops are 6120, and bonded IOB are 513 when

compared to the LUT. Unwanted delays in this design are

reduced because of the removal of LUTs, and a Three

Stage pipelining structure is added to increase the performance

of the AES algorithm. AES Logic gates three stage pipeline

approach reduced delay up to 60.55ns when compared to

Logic gates without pipeline approach. The proposed

approach simulated and synthesized with Virtex-5 ML510

Evolution platform FPGA device along with design in Verilog

code in XILINX 14.7 Software. In future work can add or

combined hash algorithm with AES for better performance.

REFERENCES

[1] Teng, Y.T., Chin, W.L., Chang, D.K., Chen, P.Y., Chen,

P.W. (2021). VLSI architecture of S-Box with high area

efficiency based on composite field arithmetic. IEEE

Access, 10: 2721-2728.

http://doi.org/10.1109/ACCESS.2021.3139040

[2] Nandan, V., Gowri Shankar Rao, R. (2022). Low-power

and area‐efficient design of AES S-Box using enhanced

transformation method for security application.

International Journal of Communication Systems, 35(2):

e4308. http://doi.org/10.1002/dac.4308

[3] Equihua, C., Anides, E., García, J.L., Vázquez, E.,

Sánchez, G., Avalos, J.G., Sánchez, G. (2021). A low-

cost and highly compact FPGA-based

encryption/decryption architecture for AES algorithm.

IEEE Latin America Transactions, 19(9): 1443-1450.

http://doi.org/10.1109/TLA.2021.9468436

[4] Ueno, R., Morioka, S., Miura, N., Matsuda, K., Nagata,

M., Bhasin, S., Homma, N. (2019). High throughput/gate

AES hardware architectures based on datapath

compression. IEEE Transactions on Computers, 69(4):

534-548. http://doi.org/10.1109/TC.2019.2957355

[5] Jindal, P., Kaushik, A., Kumar, K. (2020). Design and

implementation of Advanced Encryption Standard

algorithm on 7th series field programmable gate array. In

2020 7th International Conference on Smart Structures

and Systems (ICSSS), Chennai, India, pp. 1-3.

http://doi.org/10.1109/ICSSS49621.2020.9202114

[6] Chauhan, Y.S., Sasamal, T.N. (2019). Enhancing

security of AES using key dependent dynamic Sbox. In

2019 International Conference on Communication and

Electronics Systems (ICCES), Coimbatore, India, pp.

468-473.

http://doi.org/10.1109/ICCES45898.2019.9002543

[7] Davis, C., Muthineni, A., John, E. (2019). Low-power

Advanced Encryption Standard for implantable cardiac

devices. In 2019 IEEE 62nd International Midwest

Symposium on Circuits and Systems (MWSCAS),

Dallas, TX, USA, pp. 41-44.

http://doi.org/10.1109/MWSCAS.2019.8884946

[8] Gaded, S.V., Deshpande, A. (2019). Composite field

arithematic based S-Box for aes algorithm. In 2019 3rd

International Conference on Electronics,

Communication and Aerospace Technology (ICECA),

Coimbatore, India, pp. 1209-1213.

http://doi.org/10.1109/ICECA.2019.8821862

[9] Shashidhar, R., Mahalingaswamy, A.M., Kumar, P.,

Roopa, M. (2018). Design of high speed AES system for

efficient data encryption and decryption system using

FPGA. In 2018 International Conference on Electrical,

Electronics, Communication, Computer, and

Optimization Techniques (ICEECCOT), Msyuru, India,

pp. 1279-1282.

http://doi.org/10.1109/ICEECCOT43722.2018.9001535

[10] Srilaya, S., Velampalli, S. (2018). Performance

evaluation for des and AES algorithms-An

comprehensive overview. In 2018 3rd IEEE International

Conference on Recent Trends in Electronics, Information

& Communication Technology (RTEICT), Bangalore,

India, pp. 1264-1270.

http://doi.org/10.1109/RTEICT42901.2018.9012536

[11] FIPS 197. (2001). Advanced Encryption Standard (AES).

November 2.

[12] Biasizzo, M.M.F.N.A., Mali, M., Novak, F. (2005).

Hardware implementation of AES algorithm. Journal of

Electrical Engineering, 56(9-10): 265-269.

[13] Hodjat, A., Verbauwhede, I. (2006). Area-throughput

trade-offs for fully pipelined 30 to 70 Gbits/s AES

processors. IEEE Transactions on Computers, 55(4):

366-372. http://doi.org/ 10.1109/TC.2006.49

[14] Sklavos, N., Koufopavlou, O. (2002). Architectures and

VLSI implementations of the AES-proposal Rijndael.

IEEE Transactions on Computers, 51(12): 1454-1459.

http://doi.org/ 10.1109/TC.2002.1146712

[15] Abdel-Hafeez, S., Sawalmeh, A., Bataineh, S. (2007).

High performance AES design using pipelining structure

over GF ((24)2). In 2007 IEEE International Conference

on Signal Processing and Communications, Dubai,

United Arab Emirates, pp. 716-719. http://doi.org/

10.1109/ICSPC.2007.4728419

[16] Lakshmi, K.J., Sreenivasulu, G. (2021). A review on

FPGA based design of Advanced Encryption Standard

(AES) cryptography secure algorithm. i-Manager's

Journal on Communication Engineering and Systems,

10(1): 30. https://doi.org/10.26634/jcs.10.1.18378

782

