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In this study, a novel approach to resolving separable fuzzy nonlinear programming 

problems is presented. Utilizing a parametric form, the issues associated with separable 

fuzzy nonlinear programming, particularly those arising from uncertainty, ambiguity, 

and vagueness, are addressed. To resolve these issues, each separable function within 

the Separable Fuzzy Nonlinear Programming Problem (SFNPP) is approximated via a 

piecewise linear function. This approximation is then subjected to the standard 

graphical and simplex techniques to obtain a solution. Significantly, a novel variant of 

the Gauss elimination method for inequalities, specifically designed for separable fuzzy 

nonlinear programming problems, has been developed and implemented. Compared to 

previous methods, our approach offers notable advantages in terms of reduced 

computational time and enhanced precision, due to the simplicity of the calculations 

involved. 
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1. INTRODUCTION

Separable programming problems are a specific class of 

challenges within the domain of nonlinear programming. 

These problems share the characteristic that both their 

objective functions and constraints can be represented as 

summations of functions involving a single variable. 

Nonlinear programming, which serves as a broader model for 

optimization, is by no means a narrow framework. Instead, it 

encompasses a wide range of scenarios characterized by 

nonlinearity, a prevalent feature in our natural surroundings. 

To illustrate, consider the case of doubling the dosage of a 

medicinal drug. The relationship between dosage and its 

efficacy is rarely a straightforward linear correlation due to the 

intricate nonlinear dynamics that underlie biological processes. 

Similarly, increasing the manpower on a project by twofold 

doesn't inherently lead to a proportional reduction in 

completion time. These practical instances highlight how 

nonlinearity is a pervasive aspect of diverse real-world 

situations. 

Nonlinear programming techniques play a pivotal role in 

optimizing objective functions involving non-negative 

variables while adhering to both linear and nonlinear 

constraints. The core objective within this context is to 

streamline the computational process required to optimize the 

given problem. This involves treating the objective function as 

an inherent constraint. Such constraints are prevalent in 

various domains, including but not limited to statistical data 

fitting, logistics, the design and management of water 

distribution systems, and the analysis of electrical networks. 

Within the scope of separable fuzzy nonlinear programming, 

a distinctive situation arises. Here, the objective function and 

constraints, some of which might contain nonlinear elements, 

can be effectively defined and articulated. 

Given the intricacies surrounding the elimination of 

inequalities, Gauss' initial method has undergone significant 

refinements within specialized fields. The computational 

framework of variable elimination presents a clear and 

straightforward approach, making it particularly appealing for 

integration into interpreters designed to tackle the 

complexities of next-generation constraint programming 

problems. Exploring the possibilities of variable elimination 

within broader linear constraints, utilizing techniques like 

Gaussian elimination and its extended methodologies, 

emerges as a topic of substantial importance and scholarly 

curiosity. 

Adabitabar et al. [1] applied the Gauss elimination 

technique and the investigation into variable elimination 

within linear constraints over real numbers has been explored 

by Allahviranloo et al. [2]. Chakraborty and Singh [3] applied 

some note that successfully addressing separable fuzzy 

nonlinear programming problems demands a solid grasp of 

optimization principles and fuzzy logic. Tailoring the 

approach to the problem's unique characteristics and available 

resources is essential for effective implementation studied by 

Chandru [4]. Darby-Dowman et al. [5] present a 

comprehensive strategy for dealing with a wide spectrum of 

optimization problems. This approach aims to establish a 

common framework that can be applied cohesively to address 

diverse problem types, including linear, integer, separable, and 

fuzzy programming problems. These studies have specifically 

concentrated on constraints that exist within discrete domains. 

Hedayatfar et al. [6] introduce a novel approach to address 

optimization challenges characterized by separable 

programming problems and constraints expressed through 

max-product fuzzy relation equations. 

Jain and Mangal [7-10] undertook a comprehensive 

exploration of various elimination techniques, especially for 

fractional programming problems. Their later work [10] 

extended this inquiry to the realm of problems involving 
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multiple linear objectives. Other researchers, such as 

Kanniappan and Thangavel [11], Karmarker [12], Kohler [13], 

Whereas Mayer [14] significantly contributed to enhancing the 

applicability of the interval Gaussian method.  Sharma and 

Bhargava [15] proposed They have introduced unique 

elimination methodologies customized to effectively tackle 

the difficulties posed by linear programming problems, 

Umamaheswari and Ganesan [16] present a methodological 

approach for tackling optimization problems that involve both 

fuzziness and nonlinearity studied by Williams [17], have 

presented distinct elimination methodologies tailored to 

address challenges in linear programming problems. 

This research focuses on a novel approach that leverages 

piecewise fuzzy linear approximation to effectively tackle 

separable fuzzy nonlinear programming problems. The 

concept of separable fuzzy is elucidated within this context, 

and a modified Gauss elimination method is employed to 

provide a robust solution for these nonlinear programming 

challenges. 

The organization of the remaining content in this paper is as 

follows: In Section 2, the foundational aspects are introduced, 

followed by an exploration of the application of the modified 

Gauss elimination technique to address inequalities in Section 

3. Section 4 delves into the integration of the SFNPP's 

objective function within the discussed constraints. The 

subsequent section provides insights into the resolution of the 

SFNPP's systems of inequalities using the adapted Gauss 

elimination method. Finally, the paper concludes by 

presenting a numerical example. 

 

 

2. PRELIMINARIES 

 

2.1 Fuzzy set 

 

If X is a universal set and 𝑥 ∈ 𝑋, then a fuzzy set Ã defined 

as a collection of ordered pairs: 

 

Ã = {x, μ
Ã 

(x); x ∈ X} (1) 

 

where, μ
Ã 

 is called the membership function that maps X to 

the membership space M. 

 

2.2 Triangular fuzzy number 

 

A fuzzy number Ã on R is said to be a triangular fuzzy 

number if its membership function Ã: R → [0,1]  has the 

following characteristics: 

 

Ã(x) {

x−a1

a2−a1
, a1 ≤ x ≤ a2

a3−x

a3−a2
, a2 ≤ x ≤ a3 

0,            otherwise

  (2) 

 

We denote this triangular fuzzy numbers Ã = (a1, a2, a3). 

We use F(R) to denote the set of all triangular fuzzy numbers. 

 

2.3 Separable programming 

 

A Function f(𝐱𝟏, 𝐱𝟐, … . 𝐱𝐧) is said to be separable if it can 

be expressed as the sum of n single valued functions 

𝐟𝟏(𝐱𝟏), 𝐟𝟐(𝐱𝟐), ….𝐟𝐧(𝐱𝐧). 

 

i.e. f(𝐱𝟏, 𝐱𝟐, … . 𝐱𝐧) = 𝐟𝟏(𝐱𝟏), 𝐟𝟐(𝐱𝟐), ….𝐟𝐧(𝐱𝐧). (3) 

 

2.4 Parametric form 

 

Let �̃� = (𝑎1, 𝑎2, 𝑎3) be a triangular fuzzy number then the 

parametric form of the TFN is defined as �̃� = (𝑎0, 𝑎∗, 𝑎∗ ). 

Where 𝑎∗ = 𝑎0 − 𝑎, 𝑎∗ = 𝑎 − 𝑎0, 𝑎0 = 𝑎2.𝑟 ∈ [0,1]. 

 

2.5 Theorem: (Separation) 

 

Let �̃�  and �̃�  represent two nonempty disjoint convex 

subsets of Rn. Then a hyper plane exists that separates them, 

i.e., there is a nonzero vector c in Rn and a scalar α such that: 

 

cx ≤ 𝛼, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ �̃� 

cx ≥ 𝛼, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ �̃� 
} (4) 

 

 

3. FORMULATION OF THE MODIFIED GAUSS 

ELIMINATION PROBLEM [14] 

 

Here, we take the LPP as: 

 

Max Z = mx + 𝛼 

Ax ≤ 𝑏 

x ≥ 0 

(5) 

 

In order to apply the modified Gauss elimination approach 

to the LPP, by rephrasing it with the objective function as 

constraints and all constraints having the same sign of 

inequality. Hence, the reduced form of LPP using the 

improved Gauss elimination approach is as: 

 

Max Z 

Z − (mx + α) ≤ 0 

Ax ≤ b 

− x ≤ 0 

(6) 

 

We write 𝑙𝑗 ≤ 𝑥𝑗  ≤  𝑢𝑗 , a minimum of one ordered pair 

(𝑙𝑗 , 𝑢𝑗) gives a practical solution. 

 

 

4. SEPARABLE NON-LINEAR PROGRAMMING 

PROBLEM 
 

Consider the nonlinear programming problem (NLPP)  

 

Max (or Min) fj(x1, x2, … . xn) 

gij(x1, x2, … . xn) ≤ 𝑏𝑖   

xj ≥ 0 

(7) 

 

If the restrictions and objective function can be expressed 

separately, it can be written as: 

 

fj(x1, x2, … . xn) = ∑ fj(xj)
n
j=1   

gij(x1, x2, … . xn) = ∑ gij(xj)
n
j=1   

(8) 

 

Hence, the separable nonlinear programming issue is 

expressed as: 
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Max (or Min) ∑ fj(xj)
n
j=1  

∑ gij(xj)
n
j=1 ≤ bi  

xj ≥ 0 

(9) 

 

where, some or all gij, xij and f(xj) are non linear. 

 

Max.(or Min.) ∑ ∑ fj(ajk)
Kj

k=1
wjk

n
j=1  

∑ ∑ gij(ajk)
Kj

k=1
wjk ≤ bi

n
j=1   

0 ≤ wj1 ≤ yj1 

0 ≤ wjk ≤ yj,k−1 + yjk  

0 ≤ wjKj ≤ yj,Kj−1 

∑ wjk

Kj

K=1 = 1, ∑ yjk

Kj−1

k=1
= 1 

yjk = 0 or 1. 

(10) 

 

 

5. NUMERICAL EXAMPLES 

 

Here we take our proposed method an example of SFNPP 

as: 

 

Max Z =�̃�1 + �̃�2
4 (11) 

 

Subject to: 

 3�̃�1 + 2�̃�2
2 ≤ 9̃ 

�̃�1, �̃�2 ≥ 0 

Let us assume that, 

 

1̃ = (0,1,2)           1̃ = (0,1,3)           3̃ = (2,3,4) 

2̃ = (1,2,3)            9̃ = (8,9,10) 

 

Hence, the problem may be expressed as, 

 

Max Z = (0,1,2)�̃�1 + (0,1,3)�̃�2
4 

 

Subject to: 

 

(2,3,4)�̃�1 + (1,2,3)�̃�2
2 ≤ (8,9,10) 

�̃�1, �̃�2 ≥ 0 

 

Step-1: Creating the provided problem's standard form 

requires taking the objective function and putting it in 

maximising form, however in this case the problem is already 

in maximising form, therefore move on to the next step. 

“Step-2: Gather the separable components of the given 

problem. 
 

𝑓1(𝑥1) = (0,1,2)�̃�1, 𝑓2(𝑥2) = (0,1,3)�̃�2
4 

g11(𝑥1) = (2,3,4)�̃�1, g12(𝑥2) = (1,2,3)�̃�2
2 

 

Used the parametric form, 

 

(a0, a∗, a∗) = (𝑎1, 𝑎2, 𝑎3) 

(a0, a∗, a∗) = (1,1 − κ, 1 − κ) 

𝑓1(𝑥1) = (1,1 − κ, 1 − κ)�̃�1, 

𝑓2(𝑥2) = (1,1 − 1κ𝑟, 2 − 2κ)�̃�2
4 

g11(𝑥1) = (3,1 − κ, 1 − κ)�̃�1 

g12(𝑥2) = (2,1 − κ, 1 − κ)�̃�2
2 

 

Step-3: When limitations are applied, it is shown that: 

 

Max Z =(1,1 − κ, 1 − κ)�̃�1 + (1,1 − κ, 2 − 2κ)�̃�2
4 

 

Subject to: 

 

(3,1 − κ, 1 − κ)�̃�1 + (2,1 − κ, 1 − κ)�̃�2
2

≤ (9,1 − κ, 1 − κ) 

�̃�1, �̃�2 ≥ 0 

𝑥1 ≤ (3,1 − κ, 1 − κ)         𝑥2 ≤ (√
9

2
, 1 − r, 1 − r)  

𝑥1 ≤ (0,1 − κ, 1 − κ)          𝑥2 ≤ (2.1,1 − κ, 1 − κ) 

(12) 

 

The upper limit for the variables 𝑥1&𝑥2 is (3,1 − κ, 1 − κ) 

and the lower limit for the variables 𝑥1&𝑥2 are (0,1 − κ, 1 −
κ). 

Step-4: Now considering non-linear 𝑓2(𝑥2) and g12(𝑥2) by 

converting breaking points at (k=4) into linear form: 

 

Table 1. Breaking point 

 

𝛋 𝐚𝟐𝐤 𝐟𝟐(𝐚𝟐𝐤) = (𝟏, 𝟏 − 𝛋, 𝟐 − 𝟐𝛋)�̃�𝟐
𝟒 𝐠𝟏𝟐(𝐚𝟐𝐤) = (𝟐, 𝟏 − 𝛋, 𝟏 − 𝛋)�̃�𝟐

𝟐 

1 0 0 0 

2 1 (1,1 − κ, −2κ) (2,1 − κ, 1 − κ)  

3 2 (16,1 − κ, 2 − 2κ) (8,1 − κ, 1 − κ)  

4 3 (81,1 − κ, 2 − 2κ) (18,1 − κ, 1 − κ)  

From the Table 1 breaking point given as, 

 

𝑓2(𝑥2) ≅ 𝑤21𝑓2(𝑎21) + 𝑤22𝑓2(𝑎22) + 𝑤23𝑓2(𝑎23)
+ 𝑤24𝑓2(𝑎24) 

≅ 𝑤21 0 + 𝑤22(1,1 − κ, 2 − 2κ) + 𝑤23(16,1 − κ, 2 − 2κ) 
+𝑤24( 81,1 − κ, 2 − 2κ) 

=𝑤22(1,1 − κ, 2 − 2κ) + 𝑤23(16,1 − κ, 2 − 2κ) 
+𝑤24( 81,1 − 𝑟, 2 − 2𝑟) 

 

 𝑔12(𝑥2) ≅ 𝑤21𝑔12(𝑎21) + 𝑤22𝑔12(𝑎22) + 𝑤23𝑔12(𝑎23)
+ 𝑤24𝑔12(𝑎24) 

≅ 𝑤210 + 𝑤22(2,1 − κ, 1 − κ) + 𝑤23(8,1 − κ, 1 − κ) 
+𝑤24(18,1 − κ, 1 − κ) 

=𝑤22(2,1 − κ, 1 − κ) + 𝑤23(8,1 − κ, 1 − κ) + 𝑤24(18,1 −
κ, 1 − κ) 

Step-5: Thus, the reduced LPP is: 

 

Max Z = (1,1 − κ, 1 − κ)�̃�1 + 𝑤22(1,1 − κ, 2 − 2κ) + 𝑤23(16,1 − κ, 2 − 2κ) + 𝑤24( 81,1 − κ, 2 −
2κ)(3,1 − κ, 1 − κ)�̃�1 + 𝑤22(2,1 − κ, 1 − κ) + 𝑤23(8,1 − κ, 1 − κ) + 𝑤24(18,1 − κ, 1 − κ) ≤ (9,1 − κ, 1 −

κ)(1,1 − κ, 1 − κ)𝑤21 + (1,1 − κ, 1 − κ)𝑤22 + (1,1 − κ, 1 − κ)𝑤23 + (1,1 − κ, 1 − κ)𝑤24 = (1,1 − κ, 1 − κ) 

 

𝑤21, 𝑤22, 𝑤23, 𝑤24 ≥ 0 

(13) 
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With the additional restrictions that: 

(i) There are more than two positive wjk for each j=1, 2 and 

(ii) A pair of positive wjk must be neighbouring points if 

there are two of them. 

Modified Gauss elimination techniques will be applied to 

solve the given approximate LPP. 

Making use of the modified Gauss elimination approach and 

using all inequalities of the same sign as constraints, we have: 

 

Max 𝑍 

Z − (1,1 − κ, 1 − κ)�̃�1 − 𝑤22(1,1 − κ, 2 − 2κ)
− 𝑤23(16,1 − κ, 2 − 2κ)
− 𝑤24( 81,1 − κ, 2 − 2κ) ≤ 0 

(3,1 − κ, 1 − κ)�̃�1 + 𝑤22(2,1 − κ, 1 − κ) +
𝑤23(8,1 − κ, 1 − κ) + 𝑤24(18,1 − κ, 1 − κ) ≤

(9,1 − κ, 1 − κ) 

(1,1 − κ, 1 − κ)𝑤21 + (1,1 − κ, 1 − κ)𝑤22

+ (1,1 − κ, 1 − κ)𝑤23

+ (1,1 − κ, 1 − κ)𝑤24

≤ (1,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤21 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤22 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤23 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

−(1,1 − κ, 1 − κ)�̃�1 ≤ 0 

(14) 

 

Using modified Gauss elimination in the first step to remove 

w21, we have: 

 

Max 𝑍 

Z − (1,1 − κ, 1 − κ)�̃�1 − 𝑤22(1,1 − κ, 2 − 2κ)
− 𝑤23(16,1 − κ, 2 − 2κ) 

−𝑤24( 81,1 − κ, 2 − 2κ) ≤ 0 
(3,1 − κ, 1 − κ)�̃�1 + 𝑤22(2,1 − κ, 1 − κ)

+ 𝑤23(8,1 − κ, 1 − κ) 

+𝑤24(18,1 − κ, 1 − κ) ≤ (9,1 − κ, 1 − κ) 

(1,1 − κ, 1 − κ)𝑤22 + (1,1 − κ, 1 − κ)𝑤23

+ (1,1 − κ, 1 − κ)𝑤24

≤ (1,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤22 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤23 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

−(1,1 − κ, 1 − κ)�̃�1 ≤ 0 

(15) 

 

Using modified Gauss elimination in the first step to remove 

w22, we have: 

 

Max 𝑍 

Z − (1,1 − κ, 1 − κ)�̃�1 − 𝑤23(16,1 − κ, 2 − 2κ) 

−𝑤24( 81,1 − κ, 2 − 2κ) ≤ 0 

(3,1 − κ, 1 − κ)�̃�1 + 𝑤23(8,1 − κ, 1 − κ) 

+𝑤24(18,1 − κ, 1 − κ) ≤ (9,1 − κ, 1 − κ) 
(1,1 − κ, 1 − κ)𝑤23 + (1,1 − κ, 1 − κ)𝑤24

≤ (1,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤23 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

−(1,1 − κ, 1 − κ)�̃�1 ≤ 0 

(16) 

 

Using modified Gauss elimination in the first step to remove 

�̃�1, we have: 

 

 

 

Max 𝑍 

Z − 𝑤23(16,1 − κ, 2 − 2κ) − 𝑤24( 81,1 − κ, 2
− 2κ) ≤ 0 

𝑤23(8,1 − κ, 1 − κ) + 𝑤24(18,1 − κ, 1 − κ) ≤
(9,1 − κ, 1 − κ) 

(1,1 − κ, 1 − κ)𝑤23 + (1,1 − κ, 1 − κ)𝑤24

≤ (1,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤23 ≤ 0 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

(17) 

 

Using modified Gauss elimination in the first step to remove 

w23, we have: 

 

Max 𝑍 

Z − 𝑤24( 65,1 − κ, 2 − 2κ) ≤ (16,1 − κ, 1 − κ) 

𝑤24(10,1 − κ, 1 − κ) ≤ (1,1 − κ, 1 − κ) 

-(1,1 − κ, 1 − κ)𝑤24 ≤ (1,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

(18) 

 

Rewritten as: 

 

Max 𝑍 

Z − 𝑤24( 65,1 − κ, 2 − 2κ) ≤ (16,1 − κ, 1 − κ) 

𝑤24 ≤ (1/10,1 − κ, 1 − κ) 

−(1,1 − κ, 1 − κ)𝑤24 ≤ 0 

(19) 

 

Using modified Gauss elimination in the first step to remove 

w24, we have: 

 

Max 𝑍 

𝑍 ≤ (
45

2
, 1 − κ, 2 − 2κ)  

𝑍 = (
45

2
, 1 − κ, 2 − 2κ)  

(20) 

 

Now, Max 𝑍 = 
45

2
 and using back substituting by putting 𝑍 

= 
45

2
 in the above Inequalities. We get 𝑤24 = (1/10,1 −

κ, 1 − κ) . Now putting 𝑍 =  
45

2
 and 𝑤24 = (1/10,1 − κ, 1 −

κ),we get 𝑤23 = (9/10,1 − κ, 1 − κ).  

Using back substituting by putting 𝑍  = 
45

2
,  𝑤24 = (1/

10,1 − 𝑟, 1 − 𝑟)  and 𝑤23 = (9/10,1 − κ, 1 − κ)  in the 

inequalities, we have 𝑤21 = �̃�1 = 𝑤22 = 0. 

Now, the solution of original SFNPP in terms of original 

variables �̃�1 and �̃�2 , we consider 𝑤24 = (1/10,1 − κ, 1 −
κ), 𝑤23 = (9/10,1 − κ, 1 − κ, and 𝑤21 = �̃�1 = 𝑤22 = 0.  

Therefore, �̃�2 = 2𝑤23 + 3𝑤24 = 2(9/10,1 − κ, 1 − κ) +
3 (1/10,1 − κ, 1 − κ) = 2.1, �̃�1 = 0. 

 

Hence the optimal solution of SFNPP is: 

 

�̃�1 = 0, �̃�2 = (2.1,1 − κ, 1 − κ) 

Max 𝑍=�̃�1 + �̃�2
4 

=0 + (2.1,1 − κ, 1 − κ)4 

Max 𝑍 = (19.45,1-κ,1-κ).” 

 

5.1 Comparison chart 

 

The proposed parametric form in the fuzzy separable 

programming issue yields equivalent results without 

converting into a crisp form, assisting in obtaining the fuzzy 

optimum solution. 
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Figure 1. Graphical representation for comparison of 

proposed method 

 

 

6. CONCLUSION 
 

The current research introduces an innovative methodology 

for tackling the challenges posed by fuzzy non-linear 

programming problems (FNLPP). This approach is rooted in a 

combination of separable fuzzy programming problem (SFPP) 

and fuzzy set (FS) theory. The traditional technique for 

addressing separable fuzzy programming problems has been 

enhanced through the application of the Modified Gauss 

Elimination Technique. This modification involves 

scalarization and has proven to yield outcomes that are 

satisfactory to decision-makers. In situations where 

interconnected decisions come into play, the manipulation of 

these variables can become intricate. To overcome such 

complexities, this study proposes an integrated strategy built 

upon the foundations of separable fuzzy programming (SFP). 

The strategy involves the creation of parameterized models 

for non-linear programming. This is achieved through the 

adaptation of modified Gauss elimination, utilizing trigonal 

fuzzy numbers. These models are specifically designed to 

address the challenges associated with fuzzy separable 

programming. The overarching aim of the Separable Fuzzy 

Programming approach is to provide an effective means of 

resolving the complexities associated with fuzzy nonlinear 

programming problems. To provide a tangible illustration of 

the approach, a practical example is presented towards the 

conclusion of the paper. The optimal solution obtained from 

this example grants decision-makers the flexibility to select a 

value for κ ∈ [0,1] .This selection process is adaptable to 

specific circumstances and personal preferences, and can be 

executed by employing the proposed methodology outlined in 

Table 2. 
 

Table 2. For various values of r we get the solution table 

 
𝛋 �̃�𝟏 �̃�𝟐 �̃� 

0 0 (2.1,1,1) (19.45,1,1) 

0.25 0 (2.1,0.75,0.75) (19.45,0.75,0.75) 

0.5 0 (2.1,0.5,0.5) (19.45,0.5,0.5) 

1 0 (2.1) (19.45) 

 

In the prospective trajectory, the horizon of fuzzy sets may 

witness the integration of diverse extensions, such as picture 

fuzzy sets and their subsequent variations, into the landscape 

of fuzzy non-linear programming. This harmonization has the 

potential to significantly augment the proficiency of resolving 

intricate challenges within this domain. Additionally, 

numerical methodologies, exemplified by the bisection 

technique and similar approaches, hold promise for effectively 

tackling the intricacies presented by fuzzy non-linear 

programming problems. Incorporating such techniques has the 

capacity to yield refined solutions and further elevate the 

advancements in this field. 
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NOMENCLATURE 

 

R Real number 

F(R) Set of all real number 

r Parametric 
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