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This article explores a practical applications of chemical graph theory in the field of 

physical chemistry. Chemical graph theory is a branch of mathematics that uses 

mathematical techniques to correlate the structural characteristics of molecules. By 

applying these methods, scientists can better understand how different molecules 

behave and interact in the world of chemistry. Topological indices, which are two/three-

dimensional descriptors of the internal atomic organization of compounds, provide 

valuable information about the size, shape, branching, presence of heteroatoms, and 

number of bonds in a given molecular structure. This article highlights the importance 

of topological indices in understanding the physical properties and behavior of 

molecules, and how they can be used in various applications such as drug design, 

material science, and catalysis. In this article, we computed irregularity topological 

indices for the Oxide network (𝑂𝑋𝑛), Silicate network (𝑆𝐿𝑛), Chain silicate (𝐶𝑆𝑛), and

honeycomb network (𝐻𝐶𝑛 ). The 3D comparison graphs are also investigated. The

article concludes with a discussion of the challenges and future directions in the field 

of chemical graph theory. 
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1. INTRODUCTION

A chemical graph is a representation of a molecule's 

structure using vertices and edges, where atoms are 

represented by vertices, and the bonds between atoms are 

represented by edges. In this graph representation, each atom 

is a vertex, and the edges connect pairs of atoms that are 

bonded together. A molecular graph [1, 2] is a straightforward, 

connected, and undirected finite graph in the context of 

chemical graph theory and mathematical chemistry [3]. Atoms 

serve as the nodes' representations, while chemical bonds 

serve as the edges' descriptions of molecules. Todeschini and 

Consonni [4] investigated that whether a mathematical 

formula could be applied to any graph that represents a 

chemical structure. It is employed for correlation analysis in 

the fields of toxicology, environmental chemistry, theoretical 

chemistry, and pharmacology. To determine the degree to 

which these indicators are connected with one another, 

however, no systematic investigation has been conducted. 

Chemical graph theory, with its focus on topological indices, 

finds valuable applications in multiple fields. One significant 

application lies in drug design, where understanding the 

topology of molecules helps researchers predict their 

biological activity and interactions, aiding in the development 

of new pharmaceuticals. In the realm of material science, 

topological indices provide insights into the properties of 

materials, helping engineers and scientists tailor materials for 

specific purposes. Additionally, in the field of catalysis, these 

indices contribute to unraveling the mechanisms by which 

catalysts accelerate chemical reactions, leading to 

advancements in industrial processes and environmental 

sustainability. In the specific context of the mentioned article, 

the computation of irregularity topological indices for various 

network structures, such as Oxide, Silicate, Chain silicate, and 

honeycomb networks, showcases the versatility of chemical 

graph theory in studying diverse molecular arrangements and 

their potential impacts across these applications. In quantum 

chemistry, understanding the connectivity of atoms in a 

molecule is crucial for accurate simulations and predictions. 

Chemical graph theory assists in generating molecular graphs 

that guide quantum mechanical calculations. 

The topological index has gained recognition as a key tool 

in chemical graph theory for describing the architectures of 

chemical compounds as time has gone on, according to 

academics [5]. Ullah et al. [6] demonstrated the relationship 

between entropy and eccentricity factor made it possible to 

forecast a number of physicochemical characteristics, 

including boiling temperature, instance entropy, vaporization 

enthalpy, and others. Chemical graphs are essentially a branch 

of mathematical chemistry that employs graph theory to 

quantitatively represent chemical events [7]. An irregular 

index is a statistical number associated with a graph that both 
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specify the irregularity of the graph and quantifies how 

extreme it is [8, 9], according to researches [10, 11]. It is also 

used for topologically composed non-regular graph numerical 

analysis. As a result, these indices are highly statistically 

accurate and useful for QSPR/QSAR research [12-15]. 

Topological indices play a vital role in the relationships 

between quantitative structure property and activity, or (QSPR) 

and (QSAR), respectively. QSAR is a closely related field that 

focuses on establishing relationships between the chemical 

structure of molecules and their biological or pharmacological 

activities. In drug discovery, for instance, QSAR models can 

help predict how a new compound might interact with a target 

receptor or enzyme. Chemical graph theory assists in deriving 

molecular descriptors that capture the relevant structural 

information, which is then used to build QSAR models. By 

analyzing the connectivity, branching patterns, and functional 

groups of molecules, QSAR models can provide insights into 

the factors that influence a compound's activity, selectivity, 

toxicity, and other pharmacological properties. 

In both QSPR and QSAR, chemical graph theory serves as 

the foundation for generating meaningful molecular 

descriptors, which in turn enable the development of 

predictive models. These models are invaluable tools in drug 

discovery, materials design, toxicology assessments, and more, 

as they accelerate research and decision-making processes 

while reducing costs associated with experimental testing. 

The QSAR/QSPR approaches are predicated on the idea 

that a particular chemical compound's activity such as a 

medicine binding to DNA or poisonous effect relates to its 

structure through a specific mathematical formula. A chemical 

compound's molecular structure will be related to its properties 

or biological activity. The prediction, interpretation, and 

evaluation of novel compounds with desired activities or 

qualities can therefore be done using this connection, lowering 

and rationalizing the time, effort, and expense of synthesis as 

well as the cost of developing new products. We recommend 

references [16-18] for more research on the physico-chemical 

characteristics. Vallet-Regí et al. [19-24] give some literature 

review about the degree based topological indices. 

The first and most extensively researched topological index 

in chemical graph theory from a theoretical and practical 

standpoint is the Wiener index. First introduced as the route 

index, the Wiener index became named as such in 1947 [25]. 

To accurately assess the structural characteristics and 

bioactivity of chemical substances, it is necessary to 

summarize the structure activity of topological indices. The 

specifics of a few chemical structure families are addressed in 

references [26, 27]. As a vertex 𝑍 ∈ 𝑉(𝐺), We employ the 

symbol Q(Z) for the accumulation of vertices close to Z. The 

degree of a vertex Z is the cardinality of the set Q(Z) and is 

denoted by d(Z). Let ε(z) denote the sum of degrees of the 

vertices adjacent to Z. In other words, 𝜀(𝑧) = ∑ duuv∈𝐸(𝐺)  and 

𝑄(𝑚) = {𝑣 ∈ 𝑉(𝐺)|mv ∈ 𝐸(𝐺)} . For the undefined 

terminologies related to graph theory, one can read references 

[28-30]. Consider, the following general graph invariant: 

 

vz E(G)

I(G) ( ( ), ( ))f v z 


=   

 

Some special cases of the above invariants I(G) have 

already been appeared in mathematical chemistry. For 

example, if we take f(ε(v), ε(z))= ε(v)ε(z) or 1 √𝜀(𝑣)𝜀(𝑧)⁄ . 

In this article, we presented the irregularity topological 

indices for oxide network (OXn), silicate network (SLn), chain 

silicate (CSn), and honeycomb network (HSn). For other 

topological indices of OXn, SLn, CSn and HCn are calculated 

in references [31, 32]. 

Albertson [7] introduced: 
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Vukicevic [33] introduced: 
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Vukicevic [33] introduced: 
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Abdoo et al. [9] introduced: 
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Li et al. [34] introduced: 
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Furthermore, Reti et al. [35] introduced the following 

indices. 
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2. STRUCTURAL CHARACTERIZATION 

 

For the purpose of planning and forecasting diverse 

networks, graph theory is a discipline of mathematics. The 

mathematical tools known as topological invariants are used 

to examine the connectivity characteristics of a certain 

network. To explore the characteristics of any chemical 

network, a wide range of graph in terms of vertex degrees. In 

chemistry, graph invariants are used as structural descriptors, 

are with the key reasons to research them [36, 37]. 
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2.1 Oxide network 

 

In the investigation of silicate networks, the oxide network 

is crucial. After removing the silicon vertices from a silicate 

network, an oxide network can be developed O𝑋𝑛 (See Figure 

1). The n-dimensional oxide network is denoted as O𝑋𝑛. In the 

oxide network, the number of vertices is 9 𝑛2 + 3𝑛, and 

number of edges are 18𝑛2 correspondingly. 

According to the degree summing of the peers of the end 

vertices, the edge set in 𝑂𝑋𝑛  may be split up into six sets, as 

shown in Table 1. 

 

 
 

Figure 1. An oxide network O𝑋2 

 

2.2 Honeycomb network 

 

A hexagon forms the honeycomb network. By attaching six 

hexagons to the boundary edges of an experimentally 

synthesized network, the honeycomb network is constructed 

(see Figure 2). It is accessible through HCn-1 by encircling the 

edge of the field with a layer of hexagons HCn-1. 

We use n hexagons to illustrate an n-dimensional 

honeycomb structure HCn. By placing a layer of hexagons 

around it, the honeycomb network is preserved HCn-1. The 

order and size of HCn is 6n2 and 9n2-3n, respectively. 

 

 
 

Figure 2. A honeycomb network HCn 

 

2.3 Silicate network 

 

The bulk of the minerals that build up the rocks that form 

the crust of the Earth is silicates. These include a wide range 

of clay minerals as well as minerals including quartz, feldspar, 

mica, amphibole, pyroxene, and olivine. A silicate sheet is a 

ring of tetrahedrons connected to other rings in a two-

dimensional plane by nodes that share oxygen to form a 

structure that resembles a sheet. On a graphic, we designate 

the central atom as silicon, the corner atoms as oxygen, and 

the edges as the connections between them. A silicate array 

with n hexagons between the center and edge of the silicate 

sheet is represented by the symbol 𝑆𝐿𝑛 . In Figure 3, we 

presented a three-dimensional 𝑆𝐿𝑛 with order and size is 

15𝑛2 + 3𝑛 and 36𝑛2, respectively. 

 

 
 

Figure 3. A Silicate network S𝐿𝑛 

 

2.4 Chain silicate network 

 

Tetrahedral n-dimensional linear configuration yields chain 

silicate, which has the essential specifications. A network of 

n-dimensional chain silicate, designated by the symbol 𝐶𝑆𝑛, is 

created by stacking n tetrahedrons in a linear configuration 

with order and size of the parameters is 3n+1 and 6n, 

respectively. It has shown in Figure 4. 

 

 
 

Figure 4. A chain silicate network CSn 

 

Table 1. Edge partition of OX2 

 
(ε(v), ε(z)) Cardinality 

(8, 12) 12 

(12, 14) 12 

(16, 16) 18n2-36n+18  

(8, 14) 12(n-1) 

(14, 16) 12(n-1) 

(14, 14) 6(2n-3) 

 

Table 2. Edge partition of H𝐶𝑛 

 
(ε(v), ε(z)) Cardinality 

(5, 5) 6 

(5, 7) 12(n-1)  

(7, 9) 6(n-1) 

(9, 9) 9n2-21n+12  

 

Table 3. Edge partition of S𝐿𝑛 

 
(ε(v), ε(z)) Cardinality 

(15, 15) 6n 

(18, 27) 12(n-1) 

(27, 30) 12(n-1) 

(18, 30) 18n2-30n+12 

(15, 27) 24(n-1) 

(24, 27) 12 

(15, 24) 24 

(27, 27) 6(2n-3) 

(30, 30) 18n2-36n+18 
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Table 4. Edge partition of 𝐶𝑆𝑛 

 
(ε(v), ε(z)) Cardinality 

(12, 12) 6 

(12, 21) 6 

(15, 15) n-2 

(15, 21) 4 

(15, 24) 4n-12 

(21, 24) 2 

(24, 24) n-4 

 

 

3. MAIN RESULTS 

 

Theorem 3.1: Let O𝑋2 be an oxide network as depicted in 

Figure 1, then based on Table 1 we have the following results. 

 
a) 𝐴𝐿(𝑂𝑋2) = 96n − 24 
b) 𝐼𝑅𝐿(𝑂𝑋2) = 8.3106n-1.5948 
c) 𝐼𝑅𝐿𝑈(𝑂𝑋2) = 10.714n − 2.7142, 
d) 𝐼𝑅𝑅𝑇(𝑂𝑋2) = 48n-12, 
e) 𝐼𝑅𝐹(𝑂𝑋2) = 480n − 360, 
f) 𝐼𝑅𝐴(𝑂𝑋2) = 0.0918n-0.003591  
g) 𝐼𝑅𝐷𝐼𝐹(𝑂𝑋2) = 17.3472n-3.6332 
h) 𝐼𝑅𝐿𝐹(𝑂𝑋2) = 8.4069n − 1.6562 
i) 𝐿𝐴(𝑂𝑋2) = 8.144n-1.484 
j) 𝐼𝑅𝐷𝐼(𝑂𝑋2) = 36.53332n - 4.038 
k) 𝐼𝑅𝐺𝐴(𝑂𝑋2) = 0.4884n-0.20784 
l) 𝐼𝑅𝐵(𝑂𝑋2) = 10.80768n-5.0353 
 

Proof: Based on Table 1 and from definition of AL(G) we have: 
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Theorem 3.2: Let HCn be a honeycomb network as depicted 

in Figure 2, then based on Table 2, we have the following 

results. 

 

a) 𝐴𝐿(𝐻𝐶𝑛) = 36n − 36 

b) 𝐼𝑅𝐿(𝐻𝐶𝑛) = 5.538n − 5.538 

c) 𝐼𝑅𝐿𝑈(𝐻𝐶𝑛) = 6.514n − 6.514 
d) 𝐼𝑅𝑅𝑇(𝐻𝐶𝑛) = 18n − 18 
e) 𝐼𝑅𝐹(𝐻𝐶𝑛) = 72n − 72 
f) 𝐼𝑅𝐴(𝐻𝐶𝑛) = 0.06960n − 0.06960 
g) 𝐼𝑅𝐷𝐼𝐹(𝐻𝐶𝑛) = 11.2758n − 11.2758 
h) 𝐼𝑅𝐿𝐹(𝐻𝐶𝑛) = 5.5678n − 5.5678 
i) 𝐿𝐴(𝐻𝐶𝑛) = 5.5n − 5.5 
j) 𝐼𝑅𝐷𝐼(𝐻𝐶𝑛) = 19.774n − 19.774 
k) 𝐼𝑅𝐺𝐴(𝐻𝐶𝑛) = 47.4135n − 47.4135 
l) 𝐼𝑅𝐵(𝐻𝐶𝑛) = 2.76654n − 2.76654 
 

Proof: Based on Table 2 and from definition of AL(G) we have 

 

(1) 

( )

(5,5) (5,7) (7,9)

(9,9)

2

( ) | |

| | (5 5) | | (5 7) | | (7 9)

| | (9 9)

6(0)+12(n-1)(2)+6(n-1)(2)+ (9n -21n+12)(0)

=36n-36

n

n u v

uv E HC

AL HC R R

p p p

p



= −

= − + − + −

+ −

=


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(2) 

( )

(5,5) (5,7)

(7,9) (9,9)

( ) | ln ln |

( ) | ln5 ln5 | ( ) | ln5 ln 7 |

( ) | ln 7 ln9 | ( ) | ln9 ln9 |

(6)(0)+12(n-1)(0.336)+6(n-1)(0.251)+0

=5.538n-5.538

n

n u v

uv E HC

IRL HC R R

p p

p p



= −

= − + −

+ − + −

=



 

 

(3) 

( )

2

| |
( )

min( , )

| 5 5 | | 5 7 |
(6) 12( 1)

min(5,5) min(5,7)

| 7 9 | | 9 9 |
6( 1) (9 21 12)

min(7,9) min(9,9)

6.514n-6.514

n

u v
n

uv E HC u v

R R
IRLU HC

R R

n

n n n



−
=

− −
= + −

− −
+ − + − +

=



 

 

(4) 

( )

(5,5) (5,7)

(7,9) (9,9)

2

1
( ) | |

2

1
[| | (5 5) | | (5 7)

2

| | (7 9) | | (9 9)]

1
[6(0)+12(n-1)(2)+6(n-1)(2)+ (9n -21n+12)(0)]

2

18n-18

n

n u v

uv E HC

IRRT HC R R

p p

p p



= −

= − + −

+ − + −

=

=



 

 

(5) 
2

( )

2 2 2

(5,5) (5,7) (7,9)

2

(9,9)

2

( ) ( )

| | (5 5) | | (5 7) | | (7 9)

| | (9 9)

6(0)+12(n-1)(-4)+6(n-1)(-4)+ (9n -21n+12)(0)

=72n-72

n

n u v
uv E HC

IRF HC

p p p

p

R R


= −

= − + − + −

+ −

=



 

 

(6) 
21 1

2 2

( )

1 1 1 1
2 22 2 2 2

(5,5) (5,7)

1 1 1 1
2 22 2 2 2

(7,9) (9,9)

2

2

( ) ( )

| | (5 5 ) | | (5 7 )

| | (7 9 ) | | (9 9 )

 6(0)+12(n-1)(0.4472-0.37796)

+6(n-1)(0.37796-0.333) +0

= 0.06960n-0.06960

n

n u v
uv E HC

IRA HC

p p

p p

R R
− −



− − − −

− − − −

= −

= − + −

+ − + −

=



 

 

 

(7) 

( )

2

( ) | |

5 5 5 7
(6) | | 12( 1) | |

5 5 7 5

7 9 9 9
6( 1) | | (9 21 12) | |

9 7 9 9

=11.2758n-11.2758

n

u v
n

uv E HC v u

R R
IRDIF HC

R R

n

n n n



= −

= − + − −

+ − − + − + −



 

 

(8) 

( )

2

| |
( )

| 5 5 | | 5 7 |
(6) 12( 1)

(5 5) (5 7)

| 7 9 | | 9 9 |
6( 1) (9 21 12)

(7 9) (9 9)

5.5678n-5.5678

n

u v
n

uv E HC u v

R R
IRLF HC

R R

n

n n n



−
=



− −
= + −

+ +

− −
+ − + − +

+ +

=



 

 

(9) 

( )

2

| |
( ) 2

| |

| 5 5 | | 5 7 |
2[(6) 12( 1)

(5 5) (5 7)

| 7 9 | | 9 9 |
6( 1) (9 21 12) ]

(7 9) (9 9)

5.5 5.5

n

u v
n

uv E HC u v

R R
LA HC

R R

n

n n n

n



−
=

+

− −
= + −

+ +

− −
+ − + − +

+ +

= −



 

 

(10) 

( )

(5,5)

(5,7) (7,9)

(9,9)

2

( ) ln(1 | |)

| | ln(1 (5 5))

| | ln(1 (5 7)) | | ln(1 (7 9))

| | ln(1 (9 9))

(6)ln(1+|5-5|)+12(n-1) ln(1+|5-7|)+6(n-1)ln(1+|7-9|)

+(9n -21n+12)ln(1+|9-9|)

19.774n-1

n

n u v

uv E HC

IRDI HC R R

p

p p

p



= + −

= + −

+ + − + + −

+ + −

=

=



9.774

 

 

(11) 

( )

2

2

| |
( ) ln

2

(5 5) (5 7)
(6) ln 12( 1) ln

2 5 5 2 5 7

(7 9) (9 9)
6( 1) ln (9 21 12)ln

2 7 9 2 9 9

6(0)+12(n-1)(0.01408)+6(n-1)(7.8741)

+ (9n -21n+12)(0)=47.4135n-47.4135

n

u v
n

uv E HC u v

R R
IRGA HC

R R

n

n n n



+
=



+ +
= + −

 

+ +
+ − + − +

 

=


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(12) 
21 1

2 2

( )

1 1 1 1
2 22 2 2 2

(5,5) (5,7)

1 1 1 1
2 22 2 2 2

(7,9) (9,9)

1 1 1 1
2 22 2 2 2

1 1 1 1
2 2 22 2 2 2

( ) | |

( ) | 5 5 | ( ) | 5 7 |

( ) | 7 9 | ( ) | 9 9 |

(6)(5 5 ) 12( 1)(5 7 )

6( 1)(7 9 ) (9 21 12)(9 9 )

=2.76654n-2.76654

n

n u v
uv E HC

IRB HC

p p

p p

n

n n n

R R


= −

= − + −

+ − + −

= − + − −

+ − − + − + −



 

 

Theorem 3.3: Let SLn  be silicate network as depicted in 

Figure 3, then based on Table 3 we have the following results. 

 

a) 𝐴𝐿(𝑆𝐿𝑛) = 216𝑛2 + 72𝑛 − 36 
b) 𝐼𝑅𝐿(𝑆𝐿𝑛) = 9.1944 n2 + 4.9118n-14.1062 
c) 𝑅𝐿𝑈(𝑆𝐿𝑛) = 11.88 n2 + 6.73n-2.71 
d) 𝐼𝑅𝑅𝑇(𝑆𝐿𝑛) = 108𝑛2 + 36𝑛 − 28  
e) 𝐼𝑅𝐹(𝑆𝐿𝑛) = 2592n2+216n-756 
f) 𝐼𝑅𝐴(𝑆𝐿𝑛) = 0.05094n2+0.03858-0.02216 
g) 𝐼𝑅𝐷𝐼𝐹(𝑆𝐿𝑛) = 19.188n2 + 10.414n-3.369 
h) 𝐼𝑅𝐿𝐹(𝑆𝐿𝑛) = 9.2934n2 + 4.9857n-1.4808 
i) 𝐿𝐴(𝑆𝐿𝑛) = 9n2 + 4.777n-1.29 
j) 𝐼𝑅𝐷𝐼(𝑆𝐿𝑛) = 46.152n2 + 28.896𝑛 − 3.1505 
k) 𝐼𝑅𝐺𝐴(𝑆𝐿𝑛) = 0.5796n2+0.3164n-0.21861 
l) 𝐼𝑅𝐵(𝑆𝐿𝑛) = 27.432 n2+8.154n-9.3264 
 

Proof: Based on Table 3 and from definition of AL(G) we have 

 

(1) 

( )

2

2

2

( ) | |

6n|15-15|+12(n-1)|18-27|

+12(n-1)|27-30|+(18 n -30n+12)|18-30|

+24(n-1)|15- 27|+12|24-27| 

+24|15-24|+6(2n-3)|27-27|+ (18n -36n+18)|30-30|

=216n 72n-36

n

n u v

uv E SL

AL SL R R


= −

=

+



 

 

(2) 

( )

2

2

( ) | ln ln |

6n|ln15-ln15|+12(n-1)|ln18-ln27|

+12(n-1)|ln27-ln30|+(18 n -30n+12)|ln18-ln30|

+24(n-1)|ln15-ln 27|+12|ln24-ln27| 

+24|ln15-ln24|+6(2n-3)|ln27-ln27|

+ (18n -36n+18)|ln30-ln3

n

n u v

uv E SL

IRL SL R R


= −

=



2

0|

=9.1944 n 4.9118n-14.1062+

 

 

 

(3) 

( )

2

| | |15 15 |
( ) (6 )

min( , ) min(15,15)

|18 27 |
12( 1)

min(18,27)

| 27 30 |
12( 1)

min(27,30)

|18 30 |
(18 30 12)

min(18,30)

|15 27 |
24( 1)

min(15,27)

| 24 27 | |15 24 |
(12) (24)

min(24,27) m

n

u v
n

uv E SL u v

R R
IRLU SL n

R R

n

n

n n

n



− −
= =

−
+ − +

−
−

−
+ − + +

−
−

− −
+ +



2

2

in(15,24)

| 27 27 |
6(2 3)

min(27,27)

| 30 30 |
(18 36 18)

min(30,30)

11.88 n 6.73n-2.71

n

n n

+

−
−

−
+ − + =

+  

 

(4) 

( )

2

2

2

1
( ) | |

2

1
[6n|15-15|+12(n-1)|18-27|

2

+12(n-1)|27-30|+(18 n -30n+12)|18-30|

+24(n-1)|15- 27|+12|24-27| 

+24|15-24|+6(2n-3)|27-27|

+ (18n -36n+18)|30-30|]

108n 36 28

n

n u v

uv E SL

IRRT SL R R

n



= −

=

= + −



 

 

(5) 
2

( )

2 2

2

2 2

2

2 2 2

2 2

2

( ) ( )

6n(15-15) +12(n-1)(18-27)

+12(n-1)(27-30)

+(18 n -30n+12)(18-30)

+24(n-1)(15- 27)

+12(24-27)  +24(15-24) +6(2n-3)(27-27)

+ (18n -36n+18)(30-30)

2592n +216n-756

n

n u v
uv E SL

IRF SL R R


= −

=

=


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(6) 

1 1 1
- - -
2 2 2

1 1 1 1
- - - -
2 2 2 2

1 1 1 1 1 1
- - - - - -
2 2 2 2 2 2

1 1
- -
2

21 1

2 2

( )

1
-

2 22

2 2 2

2 2 2

( ) ( )

6n(15 -15 ) +12(n-1)(18 -27 )

+12(n-1)(27 -30 ) +(18 n -30n+12)(18 -30 )

+24(n-1)(15 - 27 ) +12(24 -27 )  +24(15 -24 )

+6(2n-3)(27 -27

n

n u v
uv E SL

IRA SL R R
− −



= −

=



2

1 1
- -
2 2

2

2 2

2

)

+ (18n -36n+18)(30 -30 )

=0.05094n +0.03858-0.02216

 

 

(7) 

( )

2

2

( ) | |

15 15 18 27
6 | | 12( 1) | |

15 15 27 18

27 30
12( 1) | | (18 30 12)

30 27

18 30
| |
30 18

15 27 24 27
24( 1) | | 12 | |

27 15 27 24

15 24 27 27
24 | | 6(2 3) | |

24 15 27 27

30 30
(18 36 18) | |

30 30

n

u v
n

uv E SL v u

R R
IRDIF SL

R R

n n

n n n

n

n

n n



= −

= − + − −

+ − − + − +

−

+ − − + −

+ − + − −

+ − + −



219.188n 10.414n-3.369= +

 

 

(8) 

( )

2

| |
( )

|15 15 | |18 27 |
(6 ) 12( 1)

(15 15) (18 27)

| 27 30 | |18 30 |
12( 1) (18 30 12)

(27 30) (18 30)

|15 27 | | 24 27 |
24( 1) (12)

(15 27) (24 27)

|15 24 | | 27 27 |
(24) 6(2 3)

(15 24) (2

n

u v
n

uv E SL u v

R R
IRLF SL

R R

n n

n n n

n

n



−
=



− −
= + −

 

− −
+ − + − +

 

− −
+ − +

 

− −
+ + −





2

2

7 27)

| 30 30 |
(18 36 18)

(30 30)

9.2934n 4.9857n-1.4808

n n



−
+ − +



= +

 

 

(9) 

( )

2

| |
( ) 2

| |

|15 15 | |18 27 |
2[(6 ) 12( 1)

(15 15) (18 27)

| 27 30 |
12( 1)

(27 30)

|18 30 |
(18 30 12)

(18 30)

|15 27 |
24( 1)

(15 27)

| 24 27 | |15 24 | | 27 27
(12) (24) 6(2 3)

(24 27) (15 24)

n

u v
n

uv E SL u v

R R
LA SL

R R

n n

n

n n

n

n



−
=

+

− −
= + −

+ +

−
+ −

+

−
+ − +

+

−
+ −

+

− − −
+ + + −

+ +



2

2

|

(27 27)

| 30 30 |
(18 36 18) ]

(30 30)

9n 4.777n-1.29

n n

+

−
+ − +

+

= +

 

 

(10) 

( )

2

( ) ln(1 | |)

(6n)ln(1 (15-15))

+12(n-1)ln(1 (18-27))

+12(n-1)ln(1 (27-30))+(18 n -30n+12)ln(1 (18-30))

+24(n-1)ln(1 (15- 27))

+(12)ln(1 (24-27)) 

+(24)ln(1 (15-24))

+6(2n-3)ln(1 (27-27)

n

n u v

uv E SL

IRDI SL R R


= + −

= +

+

+ +

+

+

+

+



2

2

)

+ (18n -36n+18)ln(1 (30-30))

46.152n 28.896 3.1505n

+

= + −

 

 

(11) 

( )

2

| |
( ) ln

2

|15 15 | |18 27 |
(6 ) ln 12( 1) ln

2 (15 15) 2 (18 27)

| 27 30 | |18 30 |
12( 1) ln (18 30 12) ln

2 (27 30) 2 (18 30)

|15 27 |
24( 1) ln

2 (15 27)

| 24 27 | |15 24 |
(12) ln (24) ln

2 (24 27) 2

n

u v
n

uv E SL u v

R R
IRGA SL

R R

n n

n n n

n



+
=



+ +
= + −

 

+ +
+ − + − +

 

+
+ −



+ +
+ +





2

2

(15 24)

| 27 27 |
6(2 3) ln

2 (27 27)

| 30 30 |
(18 36 18) ln

(30 30)

0.5796n +0.3164n-0.21861

n

n n



+
+ −



+
+ − +



=  
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(12)  

1 1 1

2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

21 1

2 2

( )

1
2 22

2 2 2

2 2

2 2

2

( ) ( )

6n(15 -15 ) +12(n-1)(18 -27 )

+12(n-1)(27 -30 ) +(18 n -30n+12)(18 -30 )

+24(n-1)(15 - 27 ) +12(24 -27 )  

+24(15 -24 ) +6(2n-3)(27 -27 )

+ (18n -36n+18)

n

n u v
uv E SL

IRB SL R R


= −

=



1 1

2 2 2

2

(30 -30 )

27.432 n +8.154n-9.3264=

 

 

Theorem 3.4: Let CSn be a chain silicate network as depicted 

in Figure 4, then based on Table 4 we have the following 

results. 

 

a) 𝐴𝐿(𝐶𝑆𝑛) = 36n-36 
b) 𝐼𝑅𝐿(𝐶𝑆𝑛) = 1.88n-0.6702 
c) 𝐼𝑅𝐿𝑈(𝐶𝑆𝑛) = 2.4n-0.8143 
d) 𝐼𝑅𝑅𝑇(𝐶𝑆𝑛) = 18n − 18 
e) 𝐼𝑅𝐹(𝐶𝑆𝑛) = 324n-324 
f) 𝐼𝑅𝐴(𝐶𝑆𝑛) = 11.696n + 35.1244 
g) 𝐼𝑅𝐷𝐼𝐹(𝐶𝑆𝑛) = 3.9n-1.3509 
h) 𝐼𝑅𝐿𝐹(𝐶𝑆𝑛) = 1.8972n-0.6708 
i) 𝐿𝐴(𝐶𝑆𝑛) = 1.846n-0.6664 
j) 𝐼𝑅𝐷𝐼(𝐶𝑆𝑛) = 9.21n-3.25836 
k) 𝐼𝑅𝐺𝐴(𝐶𝑆𝑛) = 0.10944n-0.03573 
l) 𝐼𝑅𝐵(𝐶𝑆𝑛) = 4.2104n-2.91158 
 

Proof: Based on Table 4 and from definition of AL(G) we have 

 

(1) 

( )

( ) | | (6)|12-12|+(6)|12-21|

+(n-2)|15-15|+(4)|15-21|+(4n-12)|15-24|

+(2)|21-24|+(n-4)|24-24|=36n-36

n

n u v

uv E CS

AL CS R R


= − =

 

 

(2) 

( )

( ) | ln ln | (6)|ln 12-ln12|

+(6)|ln12-ln21|+(n-2)|ln15-ln15|

+(4)|ln15-ln21|+(4n-12)|ln15-ln24|

+(2)|ln 21-ln 24|+(n-4)|ln 24-ln 24|

1.88n-0.6702

n

n u v

uv E CS

IRL CS R R


= − =

=



 

 

(3) 

( )

| | (12-12)
( ) (6)

min( , ) min(12,12)

(12-21) (15-15) (15-21)
+(6) +(n-2) +(4)

min(12,21) min(15,15) min(15,21)

(15-24) (21-24)
+(4n-12) +(2)

min(15,24) min(21,24)

(24-24)
+(n-4) 2.4n-0.

min(24,24)

n

u v
n

uv E CS u v

R R
IRLU CS

R R

−
= =

=



8143

 

 

(4) 

( )

1
( ) | |

2

1
[(6)|12-12|+(6)|12-21|+(n-2)|15-15|+(4)|15-21|

2

+(4n-12)|15-24|+(2)|21-24|+(n-4)|24-24|]

18n-18

n

n u v

uv E CS

IRRT CS R R


= −

=

=



 

 

(5) 
2

( )

2 2 2

2 2 2

2

( ) ( )

(6)(12-12) +(6)(12-21) +(n-2)(15-15)

+(4)(15-21) +(4n-12)(15-24) +(2)(21-24)

+(n-4)(24-24) 324n-972+648=324n-324

n

n u v
uv E CS

IRF CS R R


= −

=

=



 

 

(6) 

1 1 1 1 1
- - - - -
2 2 2 2 2

1 1 1 1
- - - -
2 2 2 2

1 1 1 1
- - - -
2 2 2 2

21 1

2 2

( )

1
-

2 2 22

2 2

2 2

( ) ( )

(6)(12 -12 ) +(6)(12 -21 ) +(n-2)(15 -15 )

+(4)(15 -21 ) +(4n-12)(15 -24 )

+(2)(21 -24 ) +(n-4)(24 -24 )

11.696n+35.1244

n

n u v
uv E CS

IRA CS R R
− −



= −

=

=



 

 

(7) 

( )

( ) | |

12 12 12 21 15 15
(6)( - )+(6)( - )+(n-2)( - )

12 12 21 12 15 15

15 21
+(4)( - )

21 15

15 24 21 24 24 24
+(4n-12)( - )+(2)( - )+(n-4)( - )
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Figure 5. Graphical analysis for oxide network 
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Figure 6. Graphically analysis of honeycomb network 

 

 

 

58



 

 
 

Figure 7. Graphically analysis of silicate network 
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Figure 8. Graphically analysis of chain silicate network 

 

3.1 The numerical consequences and discussions  

 

In this article, we've provided a visual examination of a few 

irregularity indices for the chemical framework. Figures 5-8 

comparative analysis of AL(G), IRL(G), IRLU(G), IIRRT(G), 

IRF(G), IRA(G), IRDIF(G), IRLF(G), LA(G), IRDI(G), 

IRGA(G) and with different values of n for HCn, CSn, OXn and 

Sln. 

 

 
 

 

 
 

 
 

Figure 9. The comparison graphs of TI’s for the considered 

networks 
 

The comparison of these topological indices allows for the 

assessment of molecular similarity or dissimilarity. Molecules 

with similar topological indices often exhibit similar behaviors, 

such as biological activity or chemical reactivity. This is 
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particularly valuable in drug discovery and material design, 

where identifying structurally related compounds can guide 

research and development efforts. The preceding indices are 

extremely close at the commencement of the supplied domain 

eventually increasing rapidly. These include indices the index 

IRF(G) in oxide network, silicate network, and honeycomb In 

comparison to other indexes, the network has the greatest 

impact. As opposed to that, IRA(G) especially in comparison 

to other indexes, it rises steadily. The distance seen between 

indices in the oxide network IRA(G) and IRF(G) appeared at 

initial stage and it increase when the value of n increases. From 

Figure 9, it is easy to see that IRL(G), IRLF(G)and LA(G) are 

confide each other’s if oxide network, and the topological 

indices are close to each other. Similarly, for honeycomb 

network, silicate network, and for chain silicate network. 

 

 

4. CONCLUSION 

 

Throughout this research, we identified the degree-based 

topological indices of the relevant networks, such as the oxide 

network (𝑂𝑋𝑛), honeycomb network (𝐻𝐶𝑛), silicate network 

(𝑆𝐿𝑛 ), and chain silicate network (𝐶𝑆𝑛 ) and assessed their 

irregularity. The comparisons of 3D graphs are also depicted. 

Our results attract not only mathematician but also of 

theoretical chemists. The findings of this study can be used to 

analyze numerical quantities and further research to 

investigate a molecule's physical characteristics. As a result, it 

is a useful technique to eliminate costly and time-consuming 

laboratory studies. The distance-based topological indices, 

which are much more challenging and complex, can be used 

with the current methods. These types of studies will be the 

subject of future research. 
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