
Securing Cyber Physical System Using Machine Learning: A Survey on Attack Resistant 

Algorithms 

Pramod S. Aswale1,3* , Dipak P. Patil2 , Omkar S. Vaidya1

1 Sandip Institute of Technology and Research Center, Nashik 422213, Maharashtra, India 
2 Department of E&TC, Sandip Institute of Engineering and Management, Nashik 422213, Maharashtra, India 
3 Department of Computer Science and Engineering (Cyber Security and Data Science), G.H. Raisoni College of Engineering 

and Management, Pune 411011, Maharashtra, India 

Corresponding Author Email: psaswale@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380129 ABSTRACT 

Received: 10 October 2023 

Revised: 29 November 2023 

Accepted: 29 December 2023 

Available online: 29 February 2024 

In order to protect Cyber-Physical Systems (CPS) against constantly changing cyberattacks, 

machine learning (ML) algorithms must be integrated. The goal of this survey is to 

investigate attack-resistant machine learning methods that improve CPS security. The limits 

of standard techniques are emphasized while discussing notable issues in CPS security. The 

survey thoroughly explores a range of machine learning methods, such as K-Nearest 

Neighbor (KNN), Support Vector Machines (SVM), and Deep Neural Networks (DNN), 

that are utilized in CPS for behavior analysis, anomaly identification, and intrusion 

detection. We discuss the importance of having solid training data and the difficulties in 

ML model adaptation to the dynamic nature of CPS situations. We examine the trade-offs 

between responsiveness and precision as well as the effects of false positives and false 

negatives on attack detection. This papers aims to provide a quick overview of the strengths, 

limitations, and future prospects of these algorithms, enabling stakeholders to formulate 

effective strategies for CPS security. 
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1. INTRODUCTION

Cyber-Physical Systems (CPS) are interconnected networks 

that smoothly merge the cyber and physical realms. These 

systems use cutting-edge technologies to monitor, evaluate, 

and regulate physical processes, allowing for more efficient 

interactions between the digital and physical worlds as 

depicted in Figure 1. In this paper we present a deep literature 

survey on machine learning algorithms to secure CPS. CPSs 

are distinguished by the incorporation of physical systems into 

the tangible world and control software within the virtual 

domain. The connection between these two domains is 

facilitated by networks responsible for seamless information 

exchange [1, 2]. Recent advances in communication 

technology have enabled real-time, low-latency interactions, 

allowing remote control of numerous physical systems and 

providing CPS users with a variety of intelligent services [3-

5]. The incorporation of both wired and wireless networks 

within CPSs permits the monitoring of extensive industrial 

equipment states, thereby enabling the efficient organization 

and adaptable management of complex industrial systems [5-

8]. As a result, CPS develops as a critical technology in a 

variety of industrial areas, including intelligent transportation 

systems [9-11], medical applications [12, 13], and smart grids 

[14, 15]. The communication-based train control (CBTC) 

system [6, 9], which uses communication technologies to 

connect trains and ground stops, is a famous example of CPS. 

In comparison to conventional railway control systems, this 

exchange involves transmitting train statuses and control 

signals through a real-time wireless network, which results in 

shorter dispatch intervals and increased safety [16]. 

The complexity and interconnectivity of Cyber-Physical 

Systems (CPS) are on the rise, leading to an expansion of 

potential attack vectors within these systems [17-19]. Among 

the vulnerable areas, the networks linking physical 

components and control software are particularly susceptible, 

making them attractive targets for external attackers seeking 

to disrupt CPS operations [20, 21]. Figure 2 shows the 

categorization of CPS attacks and Figure 3 represents attacks 

and threats on CPS. 

When an attacker gains access to these networks, they can 

manipulate physical states to deceive attack detection systems 

[14, 15]. This access also enables them to assume control over 

physical system operations within the network, potentially 

causing shutdowns and interfering with the execution of 

critical control software in the cyberspace. These cyber-

physical attacks carry substantial risks, including damage to 

industrial equipment, economic losses, and even human 

casualties. Because of their common integration into key 

infrastructure and daily life, Cyber-Physical Systems (CPS) 

security is critical. CPS seamlessly connects the physical and 

digital worlds, affecting industries such as energy, healthcare, 

transportation, and manufacturing. It is critical to ensure the 

security of these systems in order to protect against malicious 

cyber attacks that can disrupt critical services, risk data 

integrity, and pose substantial threats to public safety. 
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Notable incidents, such as the 2015 BlackEnergy malware 

incident that triggered a significant power plant malfunction in 

Ukraine, leading to a widespread power outage [20], and the 

2014 cyber attack on a German steel mill, resulting in a loss of 

control over plant equipment and substantial damage to blast 

furnaces [20], underscore the growing urgency of cyber-

physical security research. Such research is crucial to 

safeguarding the reliability of Cyber-Physical Systems (CPS) 

in the face of evolving adversarial threats [17, 21]. 

Figure 1. CPS layer structure 

Figure 2. CPS attack categorization 

In the study [22], various machine learning algorithms, 

including K-Nearest Neighbour (KNN), Support Vector 

Machines (SVM), and Deep Neural Networks (DNN), are 

explored for their application in enhancing artificial 

intelligence (AI) and safeguarding Cyber-Physical Systems 

(CPS) against Denial-of-Service (DoS) attacks. The work by 

Chen et al. [23] delves into code mutation techniques, aiming 

to understand and adapt to diverse CPS variants. The research 

conducted by Settanni et al. [24] suggests the potential for 

automated Machine Learning (ML) approaches within CPS, 

enabling the implementation of self-adaptive mechanisms to 

effectively handle anomalies. 

The investigations outlined in the studies [25-28] have 

extensively addressed various aspects of Cyber-Physical 

Systems (CPS), with a specific emphasis on harnessing 

machine learning techniques to bolster the system's capacity 

for cyberattack intelligence and mitigation.  

Given the intricate nature of contemporary Cyber-Physical 

Systems (CPS), the imperative to ensure both security and 

safety within these systems remains paramount. The potential 

threats manifest in the cyber, physical, or hybrid dimensions 

of CPS, necessitating a multifaceted method for the 

identification and mitigation of vulnerabilities in terms of 

security and safety. In the current study, our objective was to 

provide a comprehensive understanding of vulnerabilities, 

attack typologies, and mitigation strategies, considering the 

intricate attributes of CPS including scalability, distribution, 

component diversity, and the nuanced differentiation between 

security and safety challenges. A particular emphasis was 

placed on Intrusion Detection Systems that leverage Machine 

Learning algorithms for the purpose of detecting and 

mitigating threats. Extensive literature review was conducted 

to explore the range of algorithms employed, the specific 

threats they were applied to, the datasets used, and the targeted 

objects of investigation. Furthermore, recognizing that the 

majority of CPS function as open-loop systems, engaging in 

continuous collaboration with other systems, we also address 

the associated problems, challenges, and issues that emerge 

within this context. 

Figure 3. A tree diagram representing attacks and threats on 

cyber-physical systems (CPS) [29] 

Section II of the study examines state-of-the-art systems and 

provides a complete literature survey. We also give a 

comparative analysis of the system in terms of several metrics. 

Section III discusses research gaps, and Section IV concludes 

the work by discussing future directions. 

2. LITERATURE SURVEY

In spite of their advantageous attributes, Cyber-Physical 

Systems (CPSs) exhibit heightened susceptibility to cyber 

intrusions owing to their reliance on digital resources, 

particularly within the realm of networking protocols. 

Consequently, CPSs face an elevated spectrum of potential 

attack vectors targeting their physical and cyber domains, as 

well as the interconnections bridging these domains. 

Consequently, assaults directed at these systems are classified 

as cyber-physical (cp) attacks [30]. 
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The comprehensive exploration of the repercussions 

stemming from attacks on CPSs is exhaustively addressed in 

references [30-34]. Within this segment, a thorough 

examination of current methodologies pertinent to our specific 

case study is presented.  

2.1 Machine learning applications in CPS security 

Lv et al. [35] explored the application of Artificial 

Intelligence (AI) to enhance the security of Cyber-Physical 

Systems (CPS). They chose a "CPS-based indoor environment 

measurement and control system for intelligent buildings" as 

their case study. Their objective involved creating a multi-

agent system composed of various components including 

detection, control, execution, and communication. Back-

Propagation Neural Network (BPNN) was employed for tasks 

related to classification and regression. 

The system's performance was evaluated using several key 

performance metrics, including Mean Absolute Error (MAE), 

Normalized Root Mean Square Error (NRMSE), and Peak 

Signal-to-Noise Ratio (PSNR). The results illustrated superior 

performance with minimal false positives.  

Tantawy et al. [36] used a model-based approach to develop 

an integrated strategy for increasing CPS security. For their 

security analysis, they used a Continuous Stirred Tank Reactor 

(CSTR) in an industrial environment and integrated it with the 

cyber domain. Their CPS test bed included both corporate and 

control networks, as well as data sharing, for machine 

learning-based cyberattack monitoring. The proposed system 

encompassed the plant, control logic, monitoring system, 

corporate analysis, and safety logic. To enhance cyberattack 

detection, a hybrid automaton was designed, and an efficient 

tree-based approach was employed for optimal data 

management and attack detection.  

Salahdine and Kaabouch [37] investigated cybersecurity 

challenges, vulnerabilities, and countermeasures in Cognitive 

Radio Networks (CRN) physical layer. Their primary 

emphasis was directed towards addressing physical layer 

attacks that encompassed dynamic spectrum access, belief 

manipulation, eavesdropping, and malicious traffic injection. 

They explored an array of detection techniques, including 

compressive sensing, learning-based methods, Intrusion 

Detection System (IDS) models, feature-based methods, data-

assisted approaches, localization-based strategies, belief 

propagation, and spectrum sensing techniques.The focus was 

on PU (Primary User) emulation attacks, which were classified 

as cryptography-based, fingerprint-based, game theory-based, 

and hybrid approaches.  

Sargolzaei et al. [38] investigated the utility of machine 

learning for fault detection in the context of vehicular CPS. 

Their focus was on False Data Injection (FDI) assaults, which 

might cause accidents in vehicle networks. A approach for 

detecting FDI attacks and taking corrective actions to ensure 

accurate signal creation was proposed. This assists the driver 

or controller in keeping a safe distance from vehicles ahead. 

For fault identification, the proposed method used a neural 

network-based methodology. 

Goh et al. [39] employed deep learning and LSTM-RNN to 

create systems designed for the identification of abnormal 

behavior through an unsupervised learning method. Their 

research specifically targeted two categories of time 

synchronization attacks that exploit GPS to disrupt Cyber-

Physical Systems (CPS): Time Synchronization (TS) attacks 

and Stealth Time Synchronization (STS) attacks. 

A suggestion for a Machine Learning (ML)-dependent 

approach to detect threats in Cyber-Physical Systems (CPS) 

security was made in Yan et al. [40]. The effectiveness of this 

strategy was due to a thorough feature creation process that 

used statistical methods, physical domain knowledge, and 

Deep Learning (DL) techniques. These elements were created 

to more correctly portray the physical system's complicated 

non-linear and spatio-temporal interactions. Furthermore, 

combining these generated features with the new deployment 

of an Extreme Learning Machine (ELM) for the detection 

model resulted in excellent accuracy and early detection of 

hostile attacks within CPS.  

In the study [41], a behavior-based Machine Learning (ML) 

technique was developed to detect intrusions within Cyber-

Physical Systems (CPS), with a specific focus on intrusion 

detection within the SWaT (Secure Water Treatment) testbed. 

Macas and Chunming [42] emphasized the critical 

importance of automated attack detection and intelligent 

response within complex CPS environments. Given the 

heterogeneous nature of networked CPS and the time series 

data generated by diverse sensors, conventional statistical 

process control methods like Cumulative Sum (CUSUM) and 

Exponentially Weighted Moving Average (EWMA) were 

deemed insufficient. Supervised ML approaches faced 

challenges due to a scarcity of labeled data, while 

unsupervised techniques, including clustering and temporal 

prediction, struggled to capture temporal dependencies among 

disparate time series data—especially considering the noise 

inherent in multivariate time series data originating from 

operational CPS activities.  

As a solution, an approach based on statistical correlation 

analysis between multivariate time series data and 

unsupervised Deep Learning (DL) algorithms was proposed 

for the detection of adversarial actions in complex multi-

process CPS. This approach utilized Convolutional Neural 

Network autoencoders (CNN-AE) and Convolutional Long 

Short-Term Memory Encoder-Decoder (ConvLSTM-ED) 

models. The effectiveness of this method was demonstrated 

through simulations on the SWaT testbed, including 

comparisons with state-of-the-art baseline techniques.  

2.2 Deep learning for threat identification 

In contrast, Wang et al. [43] delved into the utilization of 

machine learning techniques for preempting such attacks. 

They introduced a detection model based on Artificial Neural 

Networks (ANN) that exhibited strong performance in 

detecting various attack types. 

They have devised a Machine Learning classifier designed 

to identify temporal synchronization threats within Cyber-

Physical Systems (CPS). Employing the "first aware" 

methodology, this classifier demonstrated its capability to 

detect various types of time synchronization attempts, 

including both direct and stealthy ones. 

On a related note, Shin et al. [44] introduced a Deep 

Learning (DL)-based approach for detecting adversarial 

attacks on sensors integrated into autonomous vehicles. Their 

study delved into the performance of sensors like inertial 

measurement units and wheel encoders when exposed to 

uncertain and non-linear scenarios. Furthermore, Ghafouri et 

al. [45] used supervised regression to detect aberrant sensor 

data in CPS. An approach was introduced to determine an 

approximate optimal threshold for the defender. This was 

achieved by modeling the interaction between defenders and 
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attackers within Cyber-Physical Systems (CPS) as a 

Stackelberg game. In this game, defenders adapt their 

detection thresholds in response to adversarial attacks. The 

analysis demonstrated that it is possible to enhance robustness 

without compromising accuracy in CPS security.  

2.3 Advance techniques in CPS security 

Kholidy [46] introduced a security framework designed for 

autonomous mitigation of cyberattacks targeting Cyber-

Physical Systems (CPS). This framework amalgamates 

conventional Intrusion Detection Systems (IDS) like SNORT 

with machine learning-based methods to enhance overall 

security. It takes into account established security 

methodologies and risk assessment models to materialize the 

new concept of the Autonomous Response Controller (ARC) 

framework. The proposed model integrates a probabilistic risk 

assessment technique to evaluate potential risks and make 

well-considered decisions. 

Given the crucial nature of CPS, dependability and security 

are critical. Dependability includes availability, dependability, 

safety, integrity, and maintainability, whereas security 

includes the CIA triad of confidentiality, integrity, and 

availability. Because CPS is widespread, varied, and 

complicated, operating conditions may vary. As a result, the 

term "resilience" is used to define a system's ability to continue 

providing services even in the face of adverse conditions or 

failures. Resilience also refers to a system's ability to remain 

reliable in the face of changing circumstances [47]. Barbeau et 

al. [48] proposed a vision for next-generation CPS, 

emphasizing the need of resilience. Recognizing the potential 

for increased hostile activities to disrupt systems, the authors 

proposed utilizing fuzzy decisions and ML methods to assure 

operational efficiency in such scenarios. Nonetheless, in order 

to design robust systems, potential security-threatening flaws 

must be properly analyzed, and strategies for detecting and 

mitigating such threats must be thoroughly investigated. 

In the study [49], a novel probabilistically timed dynamic 

model is introduced to assess physical security attack 

scenarios on critical infrastructures (CIs). The model simulates 

attacks on vulnerabilities within the targeted CIs. Specifically, 

it models the time it would take for an attacker to successfully 

breach physical barriers, intrusion detection systems, and 

backup safety measures. This time is represented as a random 

variable, and its probability distribution is customizable by the 

user. The model operates under the assumption of a highly 

skilled attacker, evaluates the likelihood of mission success 

even in the presence of erroneous information, and documents 

the cumulative time taken by the attacker to compromise the 

targeted assets, comparing it to a predefined mission time. 

According to Martins et al. [50], an effective technique for 

reaching this goal is to detect potential hazards systematically 

during the design process of constructing such systems, which 

is commonly performed using threat modeling. A tool for 

doing systematic threat modeling analysis for CPS is presented 

in this context. A practical wireless train temperature 

monitoring system serves as a real-world case study to 

corroborate the suggested approach. Subsequently, the 

identified vulnerabilities within the system are addressed in 

alignment with the guidelines outlined in the National Institute 

of Standards and Technology (NIST) SP 800-82. 

Mavani and Asawa [51] proposed a model to assess the 

feasibility of executing an IPv6 spoofing attack within the 

6LoWPAN network. This investigation has revealed two 

novel attack avenues, both of which establish a false 

association between an incorrect IPv6 address and a node's 

MAC address. These pathways leverage spoofed RPL and 

6LoWPAN-ND packets to execute the IPv6 spoofing attack 

within an unsecured wireless environment. The likelihood of 

the attack's success is evaluated by considering environmental 

factors affecting signal reception in the radio propagation 

environment. 

Mitchell and Chen [52] constructed an analytical model for 

cyber physical systems based on stochastic Petri nets to depict 

the interaction between adversary behavior and protection. 

They investigate many sorts of failures that can occur in a 

cyber physical system, including attrition, pervasion, and 

exfiltration failure. They show the parameterization process 

using a modernized electrical grid as an example. Our findings 

lead to optimal design conditions, such as the intrusion 

detection interval and redundancy level, that increase the 

modernized electrical grid's mean time to failure. 

Genge et al. [53] propose communication and control logic 

implementation factors that impact the outcome of NICS 

attacks that could be used as successful strategies to increase 

industrial installation resilience in this study. The primary 

purpose of this project is to begin an investigation of cyber-

physical impacts in specific settings. This is the first study of 

its sort to look into cyber-physical systems, and it reveals how 

the cyber domain affects the physical sphere. 

Innovative countermeasures were devised to support the 

constancy of Kalman filtering against fake data injection 

assaults, as detailed in the study [54]. These countermeasures 

have been tested and implemented across IEEE 14-bus, 30-bus, 

and 118-bus systems. The (UKF) technique proved to be the 

most effective solution, particularly in minimizing the 

influence of random benign noise and guarding against attacks. 

It is worth mentioning that the suggested temporal-based 

recognition method identifies compromised meters with high 

accuracy and speed, which is consistent with the authors' 

findings. 

The growing integration of Internet of Things (IoT) and the 

imminent rise of Internet of Autonomous Vehicles have 

spurred continuous developments in Vehicular ad hoc 

networks (VANETs). In this evolving landscape, the potential 

for malicious actors to compromise vehicles and co-opt them 

into a network of zombie vehicles, awaiting commands from a 

central control server, has garnered substantial attention. 

Addressing this concern, Sakiz and Sen [55] presents a 

comprehensive examination of intrusion and misbehavior 

detection approaches. The discourse extends to proactive \& 

reactive solutions that can be deployed as countermeasures to 

thwart such attacks. 

2.4 Machine learning models and detection techniques 

The evolution of an attack occurs only when the network 

operator is mislead, leading in data compromise. In order to 

address this scenario, powerful countermeasures against 

arbitrary undetectable assaults are presented, which take 

advantage of the intrinsic security of Phasor Measurement 

Units (PMUs) with known integrity [56]. 

In the study [57], a comprehensive examination of replay 

attacks aiming Cyber-Physical Systems (CPS) was undertaken, 

accompanied by a rigorous analysis of their impact on control 

system functionality. The research explores the intricate 

interplay between performance degradation, detection rates, 

and the strength of authentication signals. Furthermore, the 
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paper introduces a methodology for optimizing noisy 

authentication signals, striking a delicate balance between 

achieving desired detection efficiency and tolerating 

permissible losses in control system performance. An 

intriguing proposal within the study suggests the sporadic 

introduction of authentication signals into the system at 

random intervals, thereby mitigating their impact on system 

performance over time. 

Yoo and Shon [58] engage in a comprehensive discourse 

centered on the vulnerabilities inherent in Cyber-Physical 

Systems (CPS), laying out stringent security requirements to 

safeguard these systems. The authors also delve into the 

intricacies of CPS architecture and present a suite of 

countermeasures designed to fortify the ecosystem. Notably, 

the research implements a security architecture proposed for 

the IEC 61850-to-DNP3 conversion environment model, as 

recommended by IEC 61850 80-2/IEEE 1815.1, and 

subsequently verifies its efficacy.  

Yampolskiy et al. [59] presents a novel descriptive language 

optimized for characterizing probable CPS assaults and their 

related repercussions in the quest of improving CPS 

cybersecurity. This language's capacity to specify and 

delineate elements that thoroughly incorporate attacks and 

defenses is a distinguishing feature. Despite the fact that these 

characteristics are not explicitly addressed in the security 

assessment process, the authors believe that the suggested 

attack description language can be an asset to analyze CPS's 

overall security posture. 

Abosuliman [60] apply a Machine Learning (ML) approach 

for detecting network anomalies and building data-driven 

models to detect DDoS assaults on Industry 4.0 CPSs. Existing 

approach flaws, such as artificial data and tiny datasets, are 

addressed by collecting network traffic data from a real-world 

semiconductor manufacturing company. Lydia et al. [61] 

provide an in-depth examination of the numerous security 

scenarios in CPS, the assaults, the various methodologies for 

simulating different attacks, and the necessity for CPS testbeds. 

The enormous research challenges addressed in terms of 

ethical considerations, as well as the use of cutting-edge 

approaches such as big data and machine learning in CPS 

protection, have been suggested. 

Table 1. Comparative analysis of state of art systems 

Ref Technique Advantages Limitations Datasets 

[35] [1] (BPNN) in a (MAS)
high level of CPS security 

effectiveness and sturdiness 
Needs further research to improve the system. 

Data from 

construction  industry. 

[36] 
Hybrid automaton based 

approach. 

Security, effectiveness 

cost- 

There is a desire for further integration of a 

model-based approach into Machine Learning 

(ML). 

Data of CSTR 

testbed 

[37] 
Survey on countermeasures for 

physical layer attacks on CRNs 
Insights on many types of attacks. There is no empirical method. - 

[38] 
Neural network based fault 

detection system 

Improved reliability, safety and 

robustness of CPS 

The scope of the research is confined to the 

domain of fault detection. 
 Vehicular CPS dataset 

[39] (LSTM-RNN) Low false positives. The selection of features must be improved. SWAT Dataset 

[46] ARC framework.
Capable of mitigating attacks such 

as Aurora. 
Consideration is Given to limited data. 

Industrial cyber-attack 

dataset 

[62] 
Anomaly detection, KNN & 

random forest 

The selection of features must be 

improved. 

There is a growing need for a novel se curity 

framework in this context. 

Data of cyber  

manufacturing system 

[63] EPIC
EPIC testbed enables security   

research. 
Limited to domain specific attacks. 

Electric Power CPS 

dataset 

3. DISCUSSIONS

After conducting a thorough literature review, we examined 

cutting-edge technologies aimed at protecting Cyber-Physical 

technologies (CPS) against cyber attacks. The results of our 

review as per Table 1 highlighted significant research gaps that 

require further investigation. Notably, centralized frameworks 

are a prominent emphasis in the existing literature on attack 

detection techniques. However, given the increasing 

popularity of distributed control systems due to their lower 

computing complexity and efficient use of network resources, 

there is a clear research void in researching attack detection 

approaches specialized to distributed systems. Targeting many 

sensors or communication lines at once is a real hazard in real-

world circumstances, especially in installations with a large 

number of sensors. In spite of this fact, a large number of 

currently in use attack detection systems follow the single-

attack premise, which limits their usefulness. Given the 

significance of multiattack detection techniques in engineering, 

it is clear that there are obstacles facing this field's present 

development. The widespread emphasis on single-type attack 

detection techniques might not work against a variety of 

threats. Replay attacks, for example, may be too much for a 

well-engineered system meant to detect Denial of Service 

(DoS) attacks. As a result, it becomes necessary to solve this 

constraint, which calls for the creation of algorithms that can 

efficiently mitigate a variety of cyber risks. 

The research gaps that have been revealed emphasize how 

urgently an intelligent and robust algorithm utilizing machine 

learning must be developed in order to improve CPS's 

information security. The development of an algorithm aimed 

at improving the precision of cyber attack identification would 

constitute a noteworthy advancement in strengthening Cyber-

Physical Systems' defenses against a constantly changing 

array of cyber threats. 

4. CONCLUSIONS

In summary, by undertaking a detailed evaluation of 

vulnerabilities, attack typologies, and mitigation measures, 

our research profoundly alters the landscape of Cyber-Physical 

Systems (CPS) security. This contribution goes beyond 

theoretical frameworks, providing practical insights into the 

complex interplay between the cyber and physical elements 

inside CPSs. Our work adds significant practical significance 
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to the field of CPS security by empirically exploring 

weaknesses and analyzing various attack scenarios, 

uncovering critical details. 

A significant part of our contribution is the emphasis on 

Intrusion Detection Systems (IDS) that use Machine Learning 

methods. Our findings highlight the efficiency of IDS in both 

detecting and mitigating threats as we navigate the 

complexities of open-loop CPSs and their ongoing 

collaboration with other systems. This emphasis strengthens 

the defense mechanisms built into CPSs. Furthermore, the 

comparative analysis offered in Section II serves as a baseline 

for future developments, while the study of research gaps in 

Section III provides options for enhancing CPS security 

techniques. Overall, our research represents a watershed 

moment in the understanding of CPS security, providing 

useful insights for researchers, practitioners, and policymakers. 

Its influence resonates in driving the development of robust 

security measures, bolstering the resilience of Cyber-Physical 

Systems against ever-evolving adversarial threats. 
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