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The behaviour of human is termed to be an imperative aspect in social communiqué. The 

detection of human activities represents a type of clues that provide assessment of human 

behaviour. The recognition of human activities is complex because of the large alterations 

of human activities in day-to-day life. Also, the accurate action recognition is a complicated 

procedure due to cluttered backgrounds and changes in viewpoint variations. This paper 

designs a technique to identify the actions of humans using optimized Deep Long Short 

Term Memory (Deep LSTM). The aim is to devise an optimization driven deep model for 

determining the actions of human considering a set of videos. The extraction of video frame 

is performed. Then, the features, like spider local image feature, shape local binary texture 

(SLBT), local Texton XOR pattern, Local Gabor Binary Pattern (LGBP), Shape Index 

histogram, Local Gabor XOR patterns (LGXP) and statistical features are mined. After that, 

the detection of human action is done using Deep LSTM wherein training is implemented 

with proposed improved invasive weed based Poor rich (IIWBPR) algorithm. The proposed 

IIWBPR-based Deep LSTM outperformed and provided supreme accuracy of 92.3%, 

sensitivity of 92% specificity of 92.6% and F1 Score of 91.9%. The accuracy of the 

IIWBPR-based Deep LSTM is 17.77%, 15.06%, 8.02%, and 7.80% improved than the 

existing comparative methods. 
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1. INTRODUCTION

Detection of actions from the human considering the video 

data poses several applications that include user interfaces, 

entertainment and video annotation. Provided different actions, 

the issue can be modelled by categorizing actions. In general, 

the group of actions poses certain meaning in a domain. 

Automated comprehending of the behaviour of human and its 

communiqué with the platform poses active research domain 

in previous years, because of its impending application in 

several areas. To attain these kind of complex process, various 

kinds of research domains are being focused that includes 

human behaviour modelling under different facets, such as 

relational attitudes, emotions, and actions and so on. Thus, the 

detection of person’s behaviour is imperative whenever 

analyzing complicated actions. 

Hence, more interest is provided for recognizing the human 

actions particularly in real-world platforms [1]. The 

recognition of human actions considering the set of videos is 

of huge significance that includes indexing of videos, visual 

surveillance and various other computer-vision areas. In spite 

of widespread research, the advancements are done in areas, 

like recognition of objects and filling the gap amidst the 

present abilities and the need of applications became large. 

Moreover, the recognition of actions is complex, because of 

considerable alterations in the video that are occurred, because 

of altering aspects that includes scale and viewpoints [2]. The 

recognition of actions and prediction techniques authorize 

several real-world applications. The existing techniques 

minimize the human interference in evaluating huge-scale 

video data and offers better understanding on future and 

current states of video data [3]. 

The recognition of human actions poses several applications, 

like human computer interfaces, video surveillance and 

retrieval of videos. In spite outstanding research efforts and 

several cheering advancements in the past decade, the precise 

detection of human action is termed to be complex process. 

There exist two main problems in recognizing the human 

actions. First is sensory input and the next one is detecting 

human actions, which are vibrant, unclear and communicative 

amidst objects. The movement of human is modelled in nature. 

This complexity hugely limited the efficiency of video-

assisted human actions [4]. In previous years, the majority of 

techniques are devised to recognize the human actions 

considering the monocular Red Green and Blue (RGB) video 

series. Unluckily, the monocular RGB data is extremely 

responsive to several aspects, such as changes in illumination, 

changes in stands-points and occlusions. In addition, the 

monocular video sensors are not able to fully observe the 

motions of human are in 3D space. Thus, in spite the 

imperative research domains over the few domains, the 

recognition of actions is a complex issue [5]. There exist 

several key issues in recognizing the human actions that tend 
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to be stay inexplicable [6]. 

Recently, several types of action modelling techniques are 

devised that includes global and local features on the basis of 

spatial and temporal changes [7], trajectory features on the 

basis of tracking key point [8], motion alterations on the basis 

of information of depths [9], and features related to actions on 

the basis of human pose alterations [10]. The newly devised 

depth sensors open several capabilities for addressing this 

issue by offering 3D depth data. This data not only provides a 

strong human motion capturing model, but also made it liable 

to effectively place human-object interactions and variations 

of intra-class [11]. Considering the triumphant tools of deep 

learning to classification of image and detection of objects, the 

majority of researchers has adapted deep model on 

recognizing the human actions. This facilitates action 

characteristics to be automatically learnt from video samples 

[12]. Even though, extensively utilized in several tools, precise 

and effective recognition of human action tends to be a 

complex research domain of computer vision. The majority of 

recent surveys have concentrated on narrow issues that include 

recognition of human motions, 3D-skeleton data and still 

image data. However, there exists no particular survey to 

recognize the human actions. There exist several temporal 

techniques for recognizing the human actions. One adapts 

generative models, like Conditional Random Field (CRF) and 

Hidden Markov model. 

The recognition of human action is the most imperative 

domain in the area of artificial intelligence. However, the huge 

alterations of human actions make the process more complex 

process. Moreover, accurate recognition of actions is a 

complex process because of changes in the variations of 

viewpoint and cluttered backgrounds. These challenges are 

considered as a motivation for developing a new model for 

human action recognition (HAR). The aim this research is to 

design a model for HAR with optimized Deep LSTM. The 

major contributions include: 

IIWBPR-based Deep LSTM for HAR: The IIWBPR-based 

Deep LSTM is employed for recognizing the human actions. 

Deep LSTM is trained with IIWBPR in order to produce 

optimum weights for recognizing the actions of humans.  

The proposed IIWBPR algorithm is devised by combining 

improved invasive weed optimization (IIWO) and Poor rich 

optimization (PRO) algorithm. 

Paper is orchestrated as: Section 2 exemplifies techniques 

employed for HAR. Section 3 illustrates proposed model to 

recognize the human actions using IIWBPR-based Deep 

LSTM. Section 4 illustrates outcomes analysis and section 5 

provides conclusion with IIWBPR-based Deep LSTM. 

 

 

2. LITERATURE REVIEW 
 

Khan et al. [13] designed HAR technique by fusing hand-

crafted features with deep features. Khan et al. [14] developed 

fully automated scheme for recognizing the human actions by 

fusing different features and deep neural network (DNN). Dai 

et al. [15] utilized visual attention method to identify human 

actions. Jaouedi et al. [16] designed a model to discover 

human actions. Abdelbaky and Aly [17] developed a principal 

component analysis network (PCANet) for recognizing the 

human actions. The method used PCANet for solving the 

issues of 2D image classification. Ozcan and Basturk [18] 

developed sensor data-based activity recognition considering 

the stacked autoencoders (SAE). Majd and Safabakhsh [19] 

devised an expanded edition of LSTM units wherein the data 

related to motions were acquired and spatial and temporal 

features were mined. He et al. [20] devised a Densely-

connected Bi-directional LSTM (DB-LSTM) network for 

recognizing human actions.  

 

 
 

Figure 1. Human action recognition model with IIWBPR-based Deep LSTM 
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Some flaws faced by priorly developed HAR models are 

enlisted below: 

The hand-crafted image features covered less factors of 

issues showed degradation of performance while dealing with 

complicated database. The accurate detection of human action 

is complex process in videos due to several inter and intra-

class alterations, variations in angle and environmental aspects 

and lightning. The complicated deep structures made the HAR 

a complex process. The human action tends to be a 

complicated process because of cluttered backgrounds, varied 

scenes, perspective alterations, motions of cameras and 

occlusions. 

In this research, the IIWBPR-based Deep LSTM is devised 

for HAR. Here, the important features, like SLIF, SLBT, Local 

Texton XOR patterns, LGBP, shape index histogram, LGXP 

and statistical features are extracted for improving the 

accuracy of the model. Also, the incorporation of PRO in IWO 

is done to improve whole performance of the devised HAR. 

The deep LSTM has the capability for learning the features 

automatically from the raw sensor data. Thus, the challenges 

of the exiting methods are overcome by the devised approach. 

 

 

3. PROPOSED IIWBPR-BASED DEEP LSTM FOR 

RECOGNITION OF HUMAN ACTION 

 

Aim is to provide a model for human action recognition 

with optimized Deep LSTM. The objective relies in devising 

an optimization driven technique for determining the actions 

of human considering a set of videos. At first, videos are 

collected, and subjected to video frame mining in which 

frames are mined using inputted video. Thereafter, the feature 

mining is executed to extract significant features from input 

video. Feature extraction helps to reduce dimensionality. Here, 

the features, like SLIF, SLBT, local Texton XOR pattern, 

LGBP [21], Shape Index histogram, LGXP [21] are extracted. 

Finally, the human action recognition is done using Deep 

LSTM [22] and its training is done using IIWBPR algorithm. 

The IIWBPR algorithm is devised by combining improved 

IWO [23] and PRO algorithm [24]. The configuration of 

human action recognition model with IIWBPR-based Deep 

LSTM is exemplified in Figure 1. 

 

3.1 Acquire the input images 

 

The first step in recognizing the actions of human from the 

videos is determining the actions from each frame of video. 

The actions in the videos represents that the person in videos 

are performing some kind of activity. Assume a video database 

M that contains r videos wherein persons are doing various 

activities and it can be modelled as: 

 

 rt FFFFM ,,,,, 21 =  (1) 

 

where, Ft is tih video, and r refers total video count. 

 

3.2 Obtain the video frames 

 

Video comprises several frames and hence it is crucial to 

mine frames considering the videos for enhanced processing. 

Frames are extracted as one can discover the activity that 

occurs in the video just by observing few frames. Inputted 

video Ft is fed to video frame mining for extracting frames and 

each frame is employed by C and can be expressed by: 

 
tpqp FCCCCCC = ;,...,...., 21  (2) 

 

where, Cp is mined frame from video Ft and q express total 

video frames count such that p= {1, 2, ..., q}. 

 

3.3 Acquire vital features 

 

Vital features are obtained from the video frames C wherein 

the apt features, namely SLIF, SLBT, Local Texton XOR 

patterns, LGBP, shape index histogram, LGXP and statistical 

features are obtained, and each feature are briefly exemplified 

below. 

(i) SLIF 

SLIF [25] represents feature descriptor, which considers an 

elite depiction sampling template using spider’s orb-web 

model. A group of vectors D={D1, D2, ..., Dλ} linked to a group 

of targeted points {E1, E2, .., Eλ} from image. Each point Ef is 

modelled through feature scale αf and coordinate point (lf, mf). 

At first, the orientation ϕf is allocated to each point 𝐸𝑓 ∈ 𝐸. 

Then, an orb web model Qf is described for each point Ea. Web 

weights 𝐾𝑓
𝑛,𝑜

 considers all web nodes (n, o)f. SLIF feature D is 

obtained by combining 8-bit binary string series linked to its 

key point Ea and can be expressed as: 

 

1,1 2,1 ,1 1,2 2,2
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, ,..., , , ,

..., , , ,...,
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n
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n n o
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D
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 
=  
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 (3) 

 

where, 𝐺𝑛,𝑜
𝑓

 expresses 8-bit binary array. The SLIF feature is 

designated as Q1. 

(ii) SLBT 

SLBT features [26] unifies both texture and shape 

information. Assume I=[I1, I2, .., Iu] be set of image provided 

u indicating total sets of training, and R=[R1, R2, .., Ru] 

represents shape landmark points. Thus, landmark points are 

assigned and alterations of shape are acquired wherein the 

shape vector R in training set is modelled by: 

 

xxTSRR +
 

(4) 

 

)( RRST N

xx −=  (5) 

 

where, �̄� represents mean shape, Tx symbolize shape or weight 

attributes, x depicts shape in Tx, Sx represents eigen vector of 

highest eigen values. In addition, SLBT adapts LBP to acquire 

illumination and noise characteristics. The mining of LBP is 

quicker and simpler compared to Gabor wavelet. By 

considering the center pixel by (ℓ𝑗 , 𝜛𝑗) and intensity by Lj, 

function A(b) is expressed as: 

 








=

0,0

0,1
)(

b

b
bA  (6) 

 

In center pixel, LBP is acquired as: 

 



 2
7

0

)(),( j

x

xjj HLBP −=
=

  (7) 

 

where, ℓ𝑥  represents grey values of eight adjoining pixels 
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having ℓ𝑥(𝑥 = 0,1,2,3,4,5,6,7). Assume B= [B1, B2, …, Bu] is 

employed as LBP feature histogram, which is trained. 

Modeling of Texture hence provided as: 

 

)( BBST N

yy −=  (8) 

 

where, Ty represents texture model, y signifies texture in Ty, 

eigen vector express Sy, and �̄� defines mean vector. In addition, 

the shape and texture are produced by employing Principal 

Component Analysis (PCA) on unified vector attribute, which 

is provided by: 

 














=

y

xx

xy
T

TH
T  (9) 

 

)( xyxy

N

xy TTSD −=  (10) 

 

where, Hx refers diagonal matrix, D stands for shape texture 

attribute, Sxy describes eigen vectors, and �̄�𝑥𝑦 elucidates mean 

vector. SLBT feature is expressed as Q2. 

(iii) Local XOR Texton pattern 

The aim of Local XOR Texton pattern [27] is to categorize 

image textures and it is feasible to apply on various areas, like 

image retrieval and so on. It relies on correlation amidst the 

corresponding pixel and intermediate pixel in an image. The 

Local XOR Texton pattern is manipulated as: 

 

( )( )
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X

x
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where, T(qj) exemplifies Texton shape for a neighbouring 

pixel qj and T(ql) stands for Texton shape for a neighbouring 

pixel ql and ⊗ symbolizes XOR operation amidst variables. 

The Local XOR Texton pattern feature is designated as Q3. 

(iv) LGBP 

LGBP [21] is acquired through encoding values of 

magnitude in LBP operator. Consider value of center by ℏ𝑐 

and adjoining pixel by ℏ𝑑 , then LGBP evaluation is 

manifested by: 

 

( )







=−

cd

cd

cd 
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

,0

,1
 (13) 

 

In addition, the pattern of LBP with value of pixel is 

evaluated by allocating binomial factor d of each ℑ(ℏ𝑑 − ℏ𝑐), 

and provided by: 

 

( )
=

−=
7

0

2
d

d

cdLBP   (14) 

 

Expression (14) depicts spatial pattern of local image 

texture. In addition, LGBP feature is expressed by Q4. 

(v) Shape index histogram 

It represents an image geometry that captured second-order 

phase in continues time and permits one to analyze the 

curvature histogram distribution. The shape index histogram 

[28] is produced by selecting the group of nb bin centers b1bn 

consistently dispersed along the shape index interval π/2π/2. 

Considering a bin B centered at b, one can compute its total 

contributions considering the weighted sum of both 

curvedness metric c and spatial donut weighting D and is 

provided as: 
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where, β symbolizes tonal scale parameter that helps to adjust 

smoothing, σ stands for scale, s represents shape, and x,r,γ 

exemplifies spatial pooling. The shape index histogram feature 

is designated as Q5. 

(vi) LGXP 

LGXP [29] stages are firstly quantized to huge variety and 

then LXP operator is used for quantizing stages of innermost 

pixel and each of its neighbours. At last, the result binary 

labels are combined equally and local structures of central 

pixel. In addition, the patterns of LGXP in decimal and binary 

structure are expressed as: 
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where, η expresses binary and μ is decimal, innermost pixel 

location in Gabor stage map with scale υ and orientation κ is 

expressed by ℵν while dimension of neighbourhood is 

expressed by β and 𝜏𝜐,𝜅
𝛼 (𝛼 = 1,2, . . . , 𝛽) indicates a structure 

evaluated amidst ℵν and neighbour ℵα, and represented as: 

 

( )( ) ( )( ), , , , 1, 2,...,

             =    =  (17) 

 

where, θυ,κ(•) expresses phase, LXP operator is denoted as ⊗
which is devised using XOR operator. ϑ(•) refers quantization 

operator which computes quantized code, which is modelled 

by: 
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where,   represents number of phase ranges. The LGXP 

feature is designated as Q6. 

(vii) Statistical features 

Some of the statistical features adapted as imperative 

feature are listed: 

(i) Mean 
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It exemplifies the complete values of images with respect to 

complete number of pixel values and it articulated as: 

 


=

=
o

o
Q

1

7

1



  (20) 

 

where, o exposes total images count and number of pixel 

values is obtained as ρψ. 

(ii) Variance 

It indicates squared standard deviations wherein values of 

inputted image depicts variance and uttered as: 
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−==
o

Q
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Q
1
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2
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where, Q7 specifies mean. 

(iii) Standard deviation 

It demonstrates variance square root, that can be modelled 

as: 

 

( )
=

−=
o

Q
o

Q
1
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1


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where, standard deviation is denoted by Q9.

 (iv) Kurtosis 

Statistical evaluated utilized for defining experimented 

distribution of image through a mean is termed as kurtosis and 

represented as: 

 

( )
9

4

77

10
oQ

QQ
Q

 −
=  (23) 

 

where, Q7 is mean and Q9 expresses standard deviation. 

(v) Skewness 

It describes the quantification of distorted images from 

definite images and is modelled as: 
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( ) 10

7

11
1 Qo

Q
Q

o

o

−

−
=
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where, o defines number of images, ξo reveals arbitrarily 

selected image. Hence, the obtained feature vector is 

manipulated as: 

 

},,,{ 1121 QQQQ =  (25) 

 

3.4 Recognition of human activity using IIWBPR-based 

Deep LSTM 

 

The human activity is recognized considering the IIWBPR-

Deep LSTM which is trained with IIWBPR with feature vector 

Q. The deep LSTM has the capability for learning the features 

automatically from the raw sensor data. Here, the IIWBPR is 

obtained by unifying the merits of both IWO and PRO 

algorithm. Deep LSTM and IIWBPR steps are defined 

herewith. 

a) Deep LSTM structure 

Deep LSTM [30] is employed for managing diminution and 

assortment of data by utilizing using feature vector Q and input 

parameter set U. The inputted node Ve adapts input U using 

deep input and through hidden states ae-1. Thus, the data 

forecast becomes non-linear, and hence technique employed 

to evaluate output is termed to be non-linear, that offers output 

with highest accuracy. The outcome of cluster-assisted 

topology routing U and ae-1 is fed to tanh function is 

represented as: 

 

( )saVeVe PgOgV ++= −  1.tanh  (26) 

 

where, gVδ depicts weight matrix, Oe-1 displays input of hidden 

state, and Psa signifies bias to inputted node.  

Input gate process is represented as: 

 

( )sVaeVe Pgag ++= −1.   (27) 

 

where, Te refers inputted gate at instance e, λ signifies 

sigmoidal activation function, and Ps denotes bias to inputted 

gate and is provided by: 

 

( )sVaeVe Pgag ++= −1.   (28) 

 

where, Ve is interior state at instance e, and ke-1 is internal state 

at instance e-1. The forget gate W is utilized to reinitiate 

memory cell internal state, and definedby: 

 

( )
fWseWe PgagW ++= −1.   (29) 

 

where, W refers forget state at instance e , Θ signifies linear 

operator, gWδ stands for weight among forget and input layer, 

gWs symbolizes weight among forget and hidden state, and Pf 

depicts forget gate bias. 

Output gate Oe is presented by: 

 

( )oOaeae PgageO ++= −1.   (30) 

 

where, gaδ exemplifies weight among output and input layers, 

gOa denotes weight amidst output and hidden states, and Po 

denotes output gate bias. 

Furthermore, the finalized output obtained through memory 

cell is manifested by: 

 

( ) eee Oka = tanh  (31) 

 

b) Training with IIWBPR 

Deep LSTM training is implemented with IIWBPR wherein 

is generated by combining IWO and PRO. IWO [23] 

represents population-assisted evolutionary technique 

motivated from weed colony features. It relies on chaos theory, 

which aids to attain a quick rate of convergence and elevated 

accuracy. It maximizes population diversity and is utilized to 

update location to weed. It uses sigma that helps to create 

quick variations over the iterations. On the other hand, the 

PRO [24] is obtained by two sets of poor and rich that tries to 

attain wealth and enhance its economic conditions. It had 

effective performance in solving the real-time problems and 

finds best parameter values. It discovers optimum parameters 

by controlling the conditions of each problem. Hence, the 

15



 

incorporation of PRO in IWO is done to improve whole 

performance. Hence, developed IIWBPR steps are described 

herewith. 

Step 1: Initialization 

Fundamental step includes initialization of solution and 

expressed as Y with total Ψ solution such that 1≤Φ≤Ψ. 

 

},,,,,{ 21 = YYYYY   (32) 

 

where, Ψ depicts total solution, and YΦ referred Φth solution. 

Step 2: Locate error 

The error is generated based on mean square error and the 

optimal results are obatined based on the minimum error value.  

 

 


=

−


=
1

21



 OErr  (33) 

 

where, Err is error function, E expresses total instances, ϖο 

defines predicted output, and O is Deep LSTM output.  

Step 3: Specify logistic chaotic map 

According to IWO [23], the admired chaotic maps indicates 

logistic chaotic map and is employed as a second order 

polynomial and this logistic chaotic map is represented by: 

 

)1(1 hhh YvYY −=+  (34) 

 

where, v is capricious number and Yh is arbitrary number 

amidst [0, 1]. Hence 0<v≤4, and h=0, 1, 2, … and Yh∈[0,1]. 

According to IWO, the optimum weed is utilized to finest 

solution and is represented by: 

 

)()(1 z

wbest

z

w

z

w YYYzY −+=+   (35) 

 

where, 𝑌𝑤
𝑧+1  depicts new weed location, 𝑌𝑤

𝑧  reveals current 

weed location, Ybest denotes best weed discovered, and χ(z) 

expose presents standard deviation. 

The standard deviation is provided by: 

 

( )( )

( )

v

initial final

final

Z z
z

Z

z

  

 

− 
= − 
 

+ 

 (36) 

 

where, γ(z) refers chaotic mapping in zth iteration, Z indicates 

highest iteration. 
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z

w

z
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For obtaining better efficiency, PRO is used. According to 

PRO [24], the update expression is manifested by: 

 

( )old

bestpoor
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zrich

old
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new

zrich YYiYY ,,,,


−+=  (38) 

 

where, i stands for class gap parameter, �⃗� 𝑝𝑜𝑜𝑟,𝑏𝑒𝑠𝑡
𝑜𝑙𝑑  is present 

position of best member of the poor population, �⃗� 𝑟𝑖𝑐ℎ,𝑧
𝑜𝑙𝑑  stands 

for present position of rich member and �⃗� 𝑟𝑖𝑐ℎ,𝑧
𝑛𝑒𝑤  is new position 

of rich member.
 

Assume �⃗� 𝑟𝑖𝑐ℎ,𝑧
𝑛𝑒𝑤 = 𝑌𝑧

𝑤+1  and �⃗� 𝑟𝑖𝑐ℎ,𝑧
𝑜𝑙𝑑 = 𝑌𝑧

𝑤 and �⃗� 𝑝𝑜𝑜𝑟,𝑏𝑒𝑠𝑡
𝑜𝑙𝑑 =

𝑌𝑝𝑏𝑒𝑠𝑡
𝑤  

Now equation becomes: 
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Substitute expression (42) in expression (37): 
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Thus, the update expression of IIWBPR is given as: 
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Step 4: Re-estimate error to generate optimum solution 

The most favourable solution is enumerated with error, and 

solution having least error is known as finest solution. 

Step 5: Termination 

Aforesaid steps are repeated until highest iteration is 

attained to expose finest solution. The pseudo-code of 

IIWBPR is elucidated in Table 1. 

 

Table 1. Pseudo code of IIWBPR 

 

Input: Y :Solution group, z : prior iteration, Z :elevated 

iteration 

Output: Finest solution 
bestY  

Begin 

Construct arbitrary populationY . 

Initiate other attributes, such )(z  

Find error with expression (33) 

      For Ztoz 1=  

          For each individual w  

Specify seed count for w with error 

Capriciously hand out seeds on search space 

Adjoin generated seeds to solution set w  

                  If 
max)|(|  =w  

                      Sort using expression (50) 

                      Trim population having less fitness value till

Z=  

                  End if 

          End for 

      End for 

     Return bestY  

1+= zz  

End 

 

 

4. RESULTS AND DISCUSSION 

 

Propensity of IIWBPR-Deep LSTM is examined by 

checking the quality of each method with certain metrics by 

altering K-set and training data. 

 

4.1. Setup of experiments 

 

Functioning of IIWBPR-Deep LSTM is implemented in 

PYTHON. 

 

 
a) Input images 

 
b) LGBP images 

 
c) LGXP images 

 
d) LTXORPs images 

 
e) SLBT images 

 

Figure 2. Experimental outcomes of proposed 

IIWBPR+Deep LSTM 
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4.2 Dataset description 

 

The dataset considered for analysis is UCF101 videos 

dataset [31]. This dataset contains original UCF101 videos. It 

is offered by Center for Research in Computer Vision. It 

represents an action recognition database that poses real action 

videos and has 101 action categories. It contains 13320 video 

clips and are splitted into 101 classes. 

 

4.3 Experimental outcomes 

 

Figure 2 exemplifies the experimental upshots of 

IIWBPR+Deep LSTM using set of images.  

 

4.4 Performance metrics 

 

Qualities of each approach are calculated with specific 

measures and are elucidated below. 

 

4.4.1 Accuracy 

It defined the degree of computed value to its real value in 

recognizing the human action and is manipulated as: 

 

npnp

np
cyA





+++

+
=  (51) 

 

where, ∂p stands for true positive, ∂n portray true negative, λp 

be false positive, and λn symbolize false negative.  

 

4.4.2 Sensitivity 

It depicts fraction of positives which is identified by action 

recognition model accurately, and can be manifested as: 

 

np

p
tyS

+


=  (52) 

 

4.4.3 Specificity 

It depicts fraction of negatives determined with designed 

model accurately, and can be manifested as: 

 

pn

n
pyS

+


=  (53) 

 

4.4.4 F1-Score 

The harmonic mean of recall and precision is the F1 score. 

It is a statistical metric used to evaluate performance. 

 

4.5 Performance assessment 

 

Figure 3 portrays the analysis of IIWBPR+Deep LSTM 

performance using distinct measures. The accuracy related 

study is exhibited in figure 3a). For 50% training data, the 

accuracy observed by IIWBPR+Deep LSTM using iteration 

20 to 100 are 0.818, 0.843, 0.858, 0.880, and 0.892. Moreover 

for 90% training data, the accuracy observed by proposed 

IIWBPR+Deep LSTM using iteration 20 to 100 are 0.824, 

0.839, 0.864, 0.877, and 0.899. The sensitivity related analysis 

is exhibited in figure 3b). For 50% training data, the sensitivity 

observed by IIWBPR+Deep LSTM using iteration 20 to 100 

are 0.818, 0.835, 0.859, 0.879, and 0.899. Moreover for 90% 

training data, the sensitivity observed by IIWBPR+Deep 

LSTM using iteration 20 to 100 are 0.824, 0.841, 0.876, 0.891, 

and 0.897. The specificity related analysis is exhibited in 

figure 3c). For 50% training data, the specificity observed by 

proposed IIWBPR+Deep LSTM using iteration 20 to 100 are 

0.803, 0.825, 0.831, 0.862, and 0.898. Moreover for 90% 

training data, the specificity observed by IIWBPR+Deep 

LSTM using iteration 20 to 100 are 0.809, 0.832, 0.838, 0.859, 

and 0.896. The F1-score related analysis is exhibited in figure 

3d). For 50% training data, the F1-score observed by proposed 

IIWBPR+Deep LSTM using iteration 20 to 100 are 0.685, 

0.712, 0.734, 0.760, and 0.795. Moreover for 90% training 

data, the F1-score observed by IIWBPR+Deep LSTM using 

iteration 20 to 100 are 0.799, 0.830, 0.870, 0.888, and 0.911. 

 

 
a) Accuracy of IIWBPR+Deep LSTM 

 
b) Sensitivity of IIWBPR+Deep LSTM 

 
c) Specificity of IIWBPR+Deep LSTM 
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d) F1-Score 

 

Figure 3. Analysis of performance assessment 

 

4.6 Algorithm techniques 

 

Algorithms engaged for analysis includes WOA+Deep 

LSTM [32], NBO+Deep LSTM [33], IIWA+Deep LSTM [22, 

23], PRO+Deep LSTM [22, 24], and IIWBPR+Deep LSTM. 

 

4.7 Algorithm analysis 

 

Algorithmic analysis is executed by adapting distinct 

measures and by changing iterations. 

 

 
a) Accuracy  

 
b) Sensitivity  

 
c) Specificity  

 
d) F1-Score 

 

Figure 4. Various algorithms of analysis 

 

The illustration regarding the algorithmic analysis 

considering distinct metrics is explained in figure 4. The 

accuracy analysis is exemplified in figure 4a). Allowing 20 

iterations, the accuracy observed by WOA+Deep LSTM, 

NBO+Deep LSTM, IIWA+Deep LSTM, PRO+Deep LSTM 

are 0.782, 0.826, 0.840, 0.862, whereas accuracy of 

IIWBPR+Deep LSTM is 0.894. Also considering 100 

iterations, the accuracy observed by WOA+Deep LSTM, 

NBO+Deep LSTM, IIWA+Deep LSTM, PRO+Deep LSTM 

are 0.787, 0.822, 0.847, 0.859, whereas accuracy of 

IIWBPR+Deep LSTM is 0.891. The enhancement in 

performance in view of existing with proposed using accuracy 

is 11.672%, 7.744%, 4.938%, 3.591%. The sensitivity analysis 

is exhibited in figure 4b). Allowing 20 iterations, the 

sensitivity observed by WOA+Deep LSTM, NBO+Deep 

LSTM, IIWA+Deep LSTM, PRO+Deep LSTM are 0.761, 

0.848, 0.862, 0.881, whereas sensitivity of IIWBPR+Deep 

LSTM is 0.891. The specificity related analysis is exhibited in 

figure 4c). Allowing 20 iterations, the specificity observed by 

WOA+Deep LSTM, NBO+Deep LSTM, IIWA+Deep LSTM, 

PRO+Deep LSTM are 0.781, 0.824, 0.830, 0.861, whereas 

specificity of IIWBPR+Deep LSTM is 0.897. Also 

considering 100 iterations, the specificity observed by 

WOA+Deep LSTM, NBO+Deep LSTM, IIWA+Deep LSTM, 

PRO+Deep LSTM are 0.787, 0.830, 0.836, 0.857, whereas 

specificity of IIWBPR+Deep LSTM is 0.894. The 

enhancement in performance in view of existing with 

proposed using specificity is 11.968%, 7.158%, 6.487%, 

4.138%. The F1-score related analysis is exhibited in figure 
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5d). Allowing 20 iterations, the F1-score observed by 

WOA+Deep LSTM, NBO+Deep LSTM, IIWA+Deep LSTM, 

PRO+Deep LSTM are 0.688, 0.729, 0.740, 0.768, whereas F1-

score of IIWBPR+Deep LSTM is 0.817. Also considering 100 

iterations, the F1-score observed by WOA+Deep LSTM, 

NBO+Deep LSTM, IIWA+Deep LSTM, PRO+Deep LSTM 

are 0.772, 0.790, 0.891, 0.896, whereas specificity of 

IIWBPR+Deep LSTM is 0.916. The enhancement in 

performance in view of existing with proposed using F1-score 

is 15.72%, 13.75%, 2.72%, 2.18%.  

 

4.8 Comparative methods 

 

Approaches employed for analysis involves M-SVM, DNN, 

LSTM, PCANET, Deep LSTM, and IIWBPR-Deep LSTM. 

 

4.9 Comparative assessment 

 

Approaches analysis is implemented by altering x-axis 

values with training data and K-set (Testing data). 

(a) Training data evaluation 

Figure 5 demonstrates approaches analysis by changing 

training data on x-axis. The accuracy-based study is 

demonstrated in Figure 5a). With 50% training data, the 

utmost accuracy of 0.916 is observed by IIWBPR-Deep LSTM 

while accuracy of M-SVM, DNN, LSTM, PCANET, and 

Deep LSTM are 0.753, 0.788, 0.842, 0.844, and 0.848. Besides 

with 90% training data, the utmost accuracy of 0.923 is 

observed by IIWBPR-Deep LSTM while accuracy of M-

SVM, DNN, LSTM, PCANET, and Deep LSTM are 0.759, 

0.784, 0.849, 0.851, and 0.862. The enhancement in 

performance considering existing with IIWBPR-Deep LSTM 

using accuracy is 17.768%, 15.059%, 8.017%, 7.800%, and 

6.609%. The sensitivity analysis is demonstrated in Figure 5b). 

With 50% training data, the utmost sensitivity of 0.913 is 

observed by IIWBPR-Deep LSTM while sensitivity of M-

SVM, DNN, LSTM, PCANET, and Deep LSTM are 0.753, 

0.780, 0.843, 0.882, and 0.886. Besides with 90% training 

data, the utmost sensitivity of 0.920 is observed by IIWBPR-

Deep LSTM while sensitivity of M-SVM, DNN, LSTM, 

PCANET, and Deep LSTM are 0.759, 0.775, 0.850, 0.889, and 

0.900. The enhancement in performance considering existing 

with IIWBPR-Deep LSTM using sensitivity is 17.5%, 

15.760%, 7.608%, 3.369%, and 2.174%. The specificity 

analysis is demonstrated in Figure 5c). With 50% training data, 

the utmost specificity of 0.918 is observed by IIWBPR-Deep 

LSTM while specificity of M-SVM, DNN, LSTM, PCANET, 

and Deep LSTM are 0.783, 0.835, 0.841, 0.852, and 0.857. 

Besides with 90% training data, the utmost specificity of 0.926 

is observed by IIWBPR-Deep LSTM while specificity of M-

SVM, DNN, LSTM, PCANET, and Deep LSTM are0.789, 

0.842, 0.848, 0.859, and 0.876. The enhancement in 

performance considering existing with IIWBPR-Deep LSTM 

using specificity is14.794%, 9.071%, 8.423%, 7.235%, and 

5.400%. The F1-score analysis is demonstrated in Figure 5d). 

With 50% training data, the utmost F1-score of 0.796 is 

observed by IIWBPR-Deep LSTM while F1-score of M-SVM, 

DNN, LSTM, PCANET, and Deep LSTM are 0.699, 0.726, 

0.747, 0.769, and 0.773. Besides with 90% training data, the 

utmost F1-score of 0.919 is observed by IIWBPR-Deep LSTM 

while F1-score of M-SVM, DNN, LSTM, PCANET, and Deep 

LSTM are 0.799, 0.835, 0.896, 0.907, and 0.909. The 

enhancement in performance considering existing with 

IIWBPR-Deep LSTM using F1-score is 13.05%, 9.14%, 

2.50%, 1.30%, and 1.088%. 

 

 
a) Accuracy 

 
b) Sensitivity  

 
c) Specificity 

 
d) F1-Score 

 

Figure 5. Analysis of approaches with training data 
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a) Accuracy 

 
b) Sensitivity 

 
c) Specificity 

 
d) F1-Score 

 

Figure 6. Analysis of approaches with K-set 

(b) K-set evaluation 

Figure 6 renders the analysis of approaches by changing K-

set values on x-axis. The accuracy assessment graph is 

rendered in Figure 6a). Allowing K-set=5, the accuracy 

observed by M-SVM is 0.754, DNN is 0.797, LSTM is 0.841, 

PCANET is 0.843, Deep LSTM is 0.852, and IIWBPR-Deep 

LSTM is 0.915. Furthermore, allowing K-set=9, the accuracy 

noted by M-SVM is 0.758, DNN is 0.793, LSTM is 0.848, 

PCANET is 0.861, Deep LSTM is 0.875 and IIWBPR-Deep 

LSTM is 0.913. The enhancement in performance in view of 

existing with proposed using accuracy is 16.976%, 13.143%, 

7.119%, 5.695%, and 4.162%. The sensitivity related analysis 

is exhibited in Figure 6b). Allowing K-set=5, the sensitivity 

observed by M-SVM is 0.752, DNN is 0.799, LSTM is 0.843, 

PCANET is 0.882, Deep LSTM is 0.886, and IIWBPR-Deep 

LSTM is 0.912. Furthermore, considering K-set=9, the 

sensitivity observed by M-SVM is 0.758, DNN is 0.795, 

LSTM is 0.840, PCANET is 0.889, Deep LSTM is 0.900, and 

IIWBPR-Deep LSTM is 0.911. The enhancement in 

performance in view of existing with proposed using 

sensitivity is 16.794%, 12.733%, 7.793%, 2.414%, and 

1.207%. The specificity related analysis is exhibited in Figure 

6c). Allowing K-set=5, the specificity observed by M-SVM 

is0.773, DNN is 0.834, LSTM is 0.831, PCANET is 0.842, 

Deep LSTM is 0.851 and proposed IIWBPR-Deep LSTM is 

0.917. Furthermore, considering K-set=9, the specificity 

observed by M-SVM is 0.779, DNN is 0.832, LSTM is 0.838, 

PCANET is 0.849, Deep LSTM is 0.870 and IIWBPR-Deep 

LSTM is 0.925. The enhancement in performance in view of 

existing with proposed using specificity is 15.783%, 10.054%, 

9.405%, 8.216%, and 5.946%. The F1-Score related analysis 

is exhibited in Figure 6d). Allowing K-set=5, the F1-Score 

observed by M-SVM is0.682, DNN is 0.714, LSTM is 0.743, 

PCANET is 0.768, Deep LSTM is 0.772, and proposed 

IIWBPR-Deep LSTM is 0.795. Furthermore, considering K-

set=9, the F1-Score observed by M-SVM is 0.797, DNN is 

0.829, LSTM is 0.899, PCANET is 0.902, Deep LSTM is 

0.905, and IIWBPR-Deep LSTM is 0.913. The enhancement 

in performance in view of existing with proposed using F1-

Score is 12.70%, 9.20%, 1.53%, 1.20%, and 0.985%. 

 

4.10 Comparative discussion 

 

The assessment is executed with algorithms and techniques 

using distinct metrics.  

a) Algorithm analysis 

Table 2 represents algorithmic analysis considering several 

algorithms with Deep KSTM. Supreme accuracy of 89.1% is 

produced by IIWBPR+ Deep LSTM whereas accuracy of 

existing is 78.7%, 82.2%, 84.7% and 85.9%. The highest 

sensitivity of 89.9% is noted by IIWBPR+ Deep LSTM 

whereas accuracy of existing is 76.7%, 84.4%, 85.8% and 

88.1%. The highest specificity of 89.4% is obtained by 

IIWBPR+ Deep LSTM whereas accuracy of existing is 78.7%, 

83%, 83.6% and 85.7%. 

b) Approach analysis 

Table 3 demonstrates approach analysis by changing 

training data and K-set in x-axis. With training data, the 

supreme accuracy of 92.3%, sensitivity of 92% and specificity 

of 92.6% is noted by IIWBPR+ Deep LSTM. With K-set, the 

supreme accuracy of 91.3%, sensitivity of 91.1% and 

specificity of 92.5% is noted by IIWBPR+ Deep LSTM. 
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Table 2. Comparing with Various approaches of Algorithms analysis with our proposed IIWBPR+Deep LSTM 

 

Metrics 
WOA+ Deep 

LSTM 

NBO+ Deep 

LSTM 

IIWA+ Deep 

LSTM 

PRO+ Deep 

LSTM 

Proposed IIWBPR+Deep 

LSTM 

Accuracy (%) 78.7 82.2 84.7 85.9 89.1 

Sensitivity 

(%) 
76.7 84.4 85.8 88.1 89.9 

Specificity 

(%) 
78.7 83 83.6 85.7 89.4 

F1-Score 77.2 79 89.1 89.6 91.6 

 

Table 3. Approach analysis 

 

Metrics M-SVM DNN LSTM PCA NET Deep LSTM Proposed IIWBPR-Deep LSTM 
 Training data (%) 

Accuracy (%) 75.9 78.4 84.9 85.1 86.2 92.3 

Sensitivity (%) 75.9 77.5 85 88.9 90.0 92 

Specificity (%) 78.9 84.2 84.8 85.9 87.6 92.6 

F1-Score 79.9 83.5 89.6 90.7 90.9 91.9 
 K-set 

Accuracy (%) 75.8 79.3 84.8 86.1 87.5 91.3 

Sensitivity (%) 75.8 79.5 84 88.9 90.0 91.1 

Specificity (%) 77.9 83.2 83.8 84.9 87.0 92.5 

F1-Score 79.7 82.9 89.9 90.2 90.5 91.3 

 

 

5. CONCLUSIONS 

 

The detection of actions amidst the set of humans is 

essential and tends to be a necessary domain in the vicinity of 

artificial intelligence. An optimized deep model is presented 

for HAR. The main contribution is to provide optimization 

assisted model for determining actions of human considering 

a set of videos. Input video are accumulated, and it undergoes 

video frame extraction wherein frames are obtained through 

inputted video. Thereafter, the feature mining is done to attain 

significant features using inputted video. Here, the features, 

like SLBT, local Texton XOR pattern, LGBP, Shape Index 

histogram, LGXP and statistical features are produced. The 

learned features are further used to train Deep LSTM classifier 

for recognizing the actions. HAR is implemented with Deep 

LSTM, which is further trained with IIWBPR algorithm. The 

IIWBPR algorithm is produced by blending IIWO and PRO. 

The IIWBPR-assisted Deep LSTM outperformed with 

supreme accuracy of 92.3%, sensitivity of 92%, specificity of 

92.6% and F1 Score of 91.9%. Thus, the proposed IIWBPR- 

Deep LSTM offered superior efficiency in detecting the 

human actions. The devised IIWBPR+Deep LSTM is used in 

various sectors, like sports performance analysis, healthcare, 

intelligent monitoring, gaming, etc. However, large dataset is 

not considered for validating the performance of the proposed 

model. Future works covers implementation with other 

datasets to validate feasibility of designed model. 
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