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Unconventional machining methods include electrochemical micromachining (EMM). 
EMM is suitable for hard and difficult-to-cut materials used in the manufacture of special 
forms of machine parts used in aeronautics and hydro pneumatic machinery. As a result 
of a set of electrical, mechanical and chemical parameters, the EMM process is a very 
complex process. The analytical modeling of the method is therefore difficult. The 
artificial neural network (ANN) significantly simplifies the relationship between input and 
output parameters due to the large number of measurements required. With a set of data 
containing very different machining parameter choices, the neural network was trained. 
This paper presents the results obtained for predicting certain output parameters. The 
ANN is used in this paper to determine the model for parameter optimization. To represent 
the relationship between machining rate (MR), overcut (OC) and input parameters, an 
ANN model has been established that adapts the Levenberg-Marquardt algorithm and 
Bayesian regularization (LMABR). The model is shown to be efficient, and optimized 
machining parameter improves the MR and OC. 
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1. INTRODUCTION

The need to develop new, multi-material, micro-
components and multi-functional has increased significantly 
and new challenges have been posed by improving 
manufacturing competence due to increased competition in the 
manufacturing industry preferrred by Qin et al. [1]. 
Bhattacharyya et al. utilized micromachining for material 
removal in the form of micron-sized chips. EMM is considered 
among the different processes for its following merits, such as 
no heat-affected zone problem, to machine any type 
of material, no residual stress , no wear of the tool, lesser 
machining time, high precision can be achieved, cost-effective 
and the quality of surface finish makes this machining process 
more attractive for drilling holes on products [2]. 

By observed the current situation Tsai and Wang 
investigated the EMM parameter selection in the industrial 
sector is conservative and far from optimal and requires 
expensive and more time-consumption experiments to choose 
optimization parameters. By adjusting various optimization 
techniques, some of the researchers tried to increase the 
performance of machining. An efficient method for solving 
non-linear problems is the ANN. Surface finish predictions for 
different work materials were compared based on varoius 
ANN models with the change of electrode polarity [3]. By 
Gao et al. established the parameter optimization model for 
EDM, used the ANN and the genetic algorithm (GA) together 
[5]. Cao and Yang, presented a method of optimizing the 

parameters in EDM sinking process with the application of 
ANN [4]. The ECM process was modeled and simulated by 
Catalin Sorin Ungureanu using the ANN [6]. To model the 
experimental data, Senthil kumar et al. employed a multilayer 
ANN with back-propagation technique [7]. A comparison 
made between predicted and experimental values shows a 
close match with an average 6.48 percent prediction error. 
Sangwan et al. investigated the capability of GA-ANN for 
optimization and prediction of surface roughness (Ra). Good 
relationship between the experimental and predicted values is 
shown by the predicted results using ANN. In addition, to 
determine the optimal machining parameters that lead to 
minimum Ra, GA is integrated with the neural network model. 
The analysis of this study shows that the optimum machining 
parameters can be predicted by the ANN-GA approach[8]. 
Zou et al. used an ANN to map the input parameters to the 
performance indicators for the EMM process. The 3.57 
percent mean absolute percentage error (MAPE) for the testing 
set showed that the trained ANN was able to predict outputs 
with a very high degree of accuracy for unseen data points [9]. 
Kasdekar et al. utilized the ANN model for the response 
parameters by using MATLAB software. The result shows the 
good relationship between the experimental values  and 
predicted values [10]. Maniraj et al. investigated the impact of 
parameters in EMM process and also optimize the parameters 
by using Taguchi and TOPSIS for improving the performance 
of EMM process [11]. Kalaimathi et al. investigated the 
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parameters effects of EMM process for machining of Monel 
400 alloy material based on response surface methodology 
(RSM). Additionally, ANN was implemented to optimize the 
parameters[12]. 

In the present study, ANN is used to define the model of 
parameter optimization. The relationship between 
MR, OC and input variables (tool tip shape, electrolyte 
concentration, pulse on time and machining voltage) was 
established to represent an ANN model, which adapts the 
LMABR.  

2. EXPERIMENTAL SETUP 

Figure 1 shows the developed EMM set-up. Essentially, the 
set-up incorporate different sub-systems and elements. The 
machining unit consists of the feeding attachment to the tool 
electrode, the main machining body, the machining chamber, 
and the work holding fixture. The body of the machine consists 
of MS and is plated with chromium for  corrosion 
resistance. The 2 μm resolution tool electrode feed mechanism 
along the Z axis is designed with a stepper motor and an 8051 
micro-controller. The experiments were conducted with a 
conical electrode diameter of 464 μm with rounded and 
truncated cone stainless steel, as shown in Figure 2.  

Sodium nitrate (NaNO3) of different  concentrations is used 
as an electrolyte, and low throwing power is preferred. The 
workpiece used was 304 stainless steel with a thickness of 
200 μm. The tool is made as a cathode and workpiece is made 
as anode. L36 orthogonal array (OA) was chosen for 
experimentation for developing the ANN model. 
Experimental combination for L36 OA is shown in Table 1 [13] 
[14] [15 

 

Figure 1. EMM setup 

 

Figure 2 Tool electrode tip shape 
 
 
 

].

 
Table 1. Experimental Combination for L36 Orthogonal Array 

 

Tool Tip Shape 
Voltage 

(V) 

Pulse  
On-Time 

(ms) 

Electrolyte 
Concentration 

(mole/l) 

Diameter 
(µm) 

OC 
(µm) 

Machining 
time (sec) 

MR 
(µm/s) 

Conical with 
rounded 

8 7.5 20 472.5 11.25 57 3.51 

Conical with 
rounded 

9 10 25 516.6 33.3 32 6.25 

Conical with 
rounded 

10 15 30 627.9 88.95 17 11.76 

Conical with 
rounded 

8 7.5 20 472.5 11.25 57 3.51 

Conical with 
rounded 

9 10 25 516.6 33.3 32 6.25 

Conical with 
rounded 

10 15 30 627.9 88.95 17 11.76 

Conical with 
rounded 

8 7.5 25 506.7 28.35 52 3.85 

Conical with 
rounded 

9 10 30 570.1 60.05 25 8 

Conical with 
rounded 

10 15 20 556.3 53.15 23.5 8.51 

Conical with 
rounded 

8 7.5 30 527.1 38.55 44 4.55 

Conical with 
rounded 

9 10 20 516.6 33.05 41 4.88 

Conical with 
rounded 

10 15 25 594.3 72.15 20 10 
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Conical with 
rounded 

8 10 30 546 48 28 7.14 

Conical with 
rounded 

9 15 20 541.8 45.9 29 6.9 

Conical with 
rounded 

10 7.5 25 502 26 29 6.9 

Conical with 
rounded 

8 10 30 546 48 28 7.14 

Conical with 
rounded 

9 15 20 541 45.9 29 6.9 

Conical with 
rounded 

10 7.5 25 502 26 29 6.9 

Truncated cone 8 10 20 501.9 25.95 37 5.4 
Truncated cone 9 15 25 632.1 91.05 22 9.1 
Truncated cone 10 7.5 30 590.1 70.05 25 8 
Truncated cone 8 10 25 546 48 32 6.25 
Truncated cone 9 15 30 663.6 106.8 14 14.29 
Truncated cone 10 7.5 20 556.5 53.25 32 6.25 
Truncated cone 8 15 25 594.3 72.15 25 8 
Truncated cone 9 7.5 30 537.6 43.8 26 7.7 
Truncated cone 10 10 20 627.9 88.95 24 8.33 
Truncated cone 8 15 25 594.3 72.15 25 8 
Truncated cone 9 7.5 30 537.6 43.8 26 7.41 
Truncated cone 10 10 20 627.9 88.95 24 8.33 
Truncated cone 8 15 30 634.2 92.1 19 10.53 
Truncated cone 9 7.5 20 606.1 28.05 38 5.26 
Truncated cone 10 10 25 667.8 108.9 23 8.7 
Truncated cone 8 15 20 516.6 100.5 29 6.9 
Truncated cone 9 7.5 25 683 33.3 29 6.9 
Truncated cone 10 10 30 716.1 116.25 15 13.33 

3. RESULTS AND DISCUSSION 

3.1 Configuration of ANN 

The architecture of the network such as the number of 
layers and neurons are very significant factors that determine 
the network's generalization capacity and functionality. 
Standard multilayer feed forward neural networks employed 
with the MATLAB R2008 for this modeling.  

Higher input variables that are valued may tend to resist the 
effect of shorter sizes. To solve this issues, the normalized 
neural networks were trained to learn the weights associated 
with the links emanating from these inputs, leaving it to the 
network. The input / output datasets were 
therefore normalized within the -1 and +1 range. For each raw 
output dataset / input dataset (yi), the normalized value (xi) 
was calculated based on Eqn. 1. 

1
)(2

minmax

min 




yy

yy
x i

i   ….. (1) 

Where, ymax and ymin are the maximum and minimum values 
of the raw data. 

Networks consist of three or more layers: input, hidden 
layers, and layers of output. In Fig 3, the feed-forward ANN 
schema architecture developed with three inputs and four 
outputs is shown. 

 
Figure 3. Feed-forward ANN schema architecture of 

developed with four outputs and three inputs 
 

Different architectures have to be studied to determine the 
optimal architecture. The LMABR were used to train each 
network here. Due to its high accuracy in comparable function 
approximation, this training algorithm was chosen. In the 
output and hidden layer, the tangent sigmoid transfer function 
'tansig' and linear transfer function 'purelin' have been used for 
all networks. The prediction error model in output node has 
been estimated as follows to test the ability of prediction.  
Prediction error% 
 

    =
  

 
100 

 
The minimum, mean and maximum prediction errors for 

OC and MR were calculated and shown in Tables 2 and 3 for 
each network. For each model, the maximum percentage error 
specifies the worst prediction error. Table 4 shows the neural 
network performance with different OC and MR architectures. 
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Table 2. Performance of Neural Network with different architecture for OC 

Network 
Architecture 

Maximum 
Prediction 
error (%) 

Minimum 
Prediction 
error (%) 

Mean 
Prediction 
error (%) 

Correlation 
coefficient 

4-15-2 1.431 -153.227 -58.867 0.873 
4-20-2 46.988 -154.421 -18.005 0.403 
4-25-2 56.027 -62.276 -4.882 0.763 
4-30-2 60.027 -77.428 -2.111 0.605 
4-32-2 46.781 -77.389 -27.6 0.931 
4-35-2 1100.29 -105.431 119.502 0.801 
4-2-2-2 49.251 -59.425 14.333 0.757 
4-5-5-2 36.695 -163.022 -16.929 0.474 

4-12-10-2 232.8676 -38.388 68.053 0.538 
4-20-20-2 89.393 -159.204 -9.101 0.522 
4-22-18-2 63.69 -733.059 -25.146 0.4 

 
Table 3. Performance of Neural Network with different architecture for MR 

Network 

Architecture 

Maximum 
Prediction 
error (%) 

Minimum 
Prediction 
error (%) 

Mean 
Prediction 
error (%) 

Correlation 
coefficient 

4-15-2 1.276 -43.1049 -4.719 0.637 

4-20-2 56.816 -94.560 -10.442 0.647 

4-25-2 37.520 -90.476 -21.635 0.505 

4-30-2 158.518 -34.69 31.041 0.408 

4-32-2 179.509 -32.771 34.710 0.905 

4-35-2 149.54 -42.529 29.243 0.882 

4-2-2-2 35.876 -32.179 0.956 0.769 

4-5-5-2 31.032 -37.936 -1.153 0.731 

4-12-10-2 139.57 -6.888 52.963 0.765 

4-20-20-2 31.000 -50.771 -1.916 0.776 

4-22-18-2 257.960 -65.548 26.6 0.757 

 
Table 4. Neural Network Performance  

Network 
Architecture 

Correlation 
coefficient for overcut 

Correlation coefficient 
for machining rate 

4-15-2 0.873 0.637 
4-20-2 0.403 0.647 
4-25-2 0.763 0.505 
4-30-2 0.605 0.408 
4-32-2 0.931 0.905 
4-35-2 0.801 0.882 
4-2-2-2 0.757 0.769 
4-5-5-2 0.474 0.731 

4-12-10-2 0.538 0.765 
4-20-20-2 0.522 0.776 
4-22-18-2 0.4 0.757 

The 4-32-2 architecture model is considered the most 
suitable. The rise in the number of neurons can be seen as from 
30 to 32 in the hidden layer improves network performance 
and then decreases performance. Thus, the one hidden layer 
network consists of 32 neurons (4-32-2), trained with the 

LMABR, and was selected as the optimum network and used 
to model the OC and MR.  

4. CONCLUSIONS 

This paper introduces a method using the Levenberg-
Marquardt algorithm to optimize EMM process parameters. 
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To represent the relation between MR, OC and input 
parameters, an ANN model was developed. The model with 
the 4-32-2 architecture is the most suitable. The rise in the 
number of neurons can be seen as from 30 to 32 in the hidden 
layer improves network performance and then decreases 
performance. Therefore, 32 neurons (4-32-2), trained with the 
LMABR, consist of a network with one hidden layer and were 
chosen as the optimum network and used to model the OC and 
MR. This demonstrates that the net has better generalization 
efficiency, and the speed of convergence is faster. 
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