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Fixed-point techniques are fundamental in mathematical analysis, providing versatile 

tools for solving various problems across different domains. The utility of these 

techniques has attracted considerable interest from researchers, leading to numerous 

investigations and developments in this area.  This article introduces the new concept 

of a hybrid pair of an orthogonal ℓ-compatible map on orthogonal-complete metric 

space. We prove some common triple-fixed-point results for such contractions.  We 

have achieved several significant outcomes regarding triple fixed points for contraction 

mappings. These outcomes not only advance the theory of fixed-point theorems but also 

facilitate practical applications in mathematical modeling and analysis. To exhibit the 

potency of our approach, we provide an example that demonstrates the soundness of the 

new theorem premise, highlighting its relevance and applicability in real-world 

situations. The discoveries presented in this article have important implications for the 

study of integral equations. By using the triple fixed-point results established here, we 

can prove the existence of solutions to integral equations, which helps to solve 

important problems in mathematical physics, engineering, and other fields. In general, 

the contributions of this work expand the horizons of fixed-point theory and offer 

valuable insights into its applications in various areas of mathematics and beyond. 
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1. INTRODUCTION

In 1922, the seminal work of Banach [1] on contraction 

mappings led to the foundational fixed point (Fp) theorems in 

metric spaces (MS). These theorems have since been 

instrumental in various fields, extending the scope of Banach's 

principle to a broader context within MS. Fixed-point 

theorems have become a cornerstone in developing 

mathematical methods pivotal for tackling complex problems 

in applied mathematics and various scientific disciplines. The 

exploration of algorithms, particularly their convergence and 

divergence properties within optimization, and the 

incorporation of both ordinary and fractional differential 

equations, alongside integral equations, represent some of the 

intriguing applications of fixed-point theory. 

Fixed-point theory is bifurcated into two distinct streams of 

inquiry: one that addresses metric spaces, which is integral to 

computational disciplines such as computing, computational 

biology, and bioinformatics, and another that focuses on 

topological problems, capturing the interest of topologists and 

theoretical computer scientists. The integration of fixed-point 

theory into these fields underscores its versatility and wide-

ranging applications. Particularly, fractional differential 

equations have gained recognition for their efficacy in 

modeling the intricate dynamics of systems characterized by 

non-locality and memory effects. 

Nadler's extension [2] of the Banach contraction principle 

to multi-valued mappings in 1969 marked a significant 

advancement, laying the groundwork for the exploration of 

Fps within the realm of Hausdorff metric spaces. Subsequent 

research has yielded a multitude of Fp results for various 

classes of multi-valued contractive mappings, as documented 

extensively in the literature [3-6]. 

The evolution of fixed-point theory continued with the 

introduction of the concept of coupled Fps by Guo and 

Lakshmikantham [7] in 1987 within the framework of partially 

ordered MS. This notion was further expanded to multi-valued 

mappings by Hussain and Alotaibi [8], with numerous authors 

contributing to the establishment of coupled Fp theorems 

across diverse MS settings. 

Building on this foundation, Aydi et al. [9] in 2012 put 

forward the concept of coupled coincidence points for hybrid 

pairs of mappings, adhering to a monotone property. This was 

followed by the pioneering work of Berinde and Brocut [10], 

who presented the novel idea of tripled Fps in partially ordered 

MS, and Brocut [11], who explored tripled Fps for nonlinear 

mappings within the same context, elucidating both existence 

and uniqueness theorems for contractive type mappings. 

Amini-Haandi [12] further refined these ideas, proposing a 

simple and unified approach to the theories of coupled and 

tripled fixed points in partially ordered complete MS. For 

more details refer in references [13-17]. 

More recently, Rashwan et al. [18] broadened the scope of 

tripled Fps to Geraghty-type contractions in standard MSs 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 2, February, 2024, pp. 565-570 

Journal homepage: http://iieta.org/journals/mmep 

565

https://orcid.org/0000-0003-2797-262X
https://orcid.org/0000-0001-6346-605X
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110230&domain=pdf


 

endowed with binary relations. In the latest development, 

Etemad et al. [19] in 2022 validated the existence of solutions 

to certain problems by utilizing contraction mapping 

principles alongside measures of non-compactness, tripled Fp 

results, and the modulus of continuity. 

In recent developments within the realm of fixed-point 

theory, the year 2017 marked a notable advancement with the 

work of Eshaghi Gordji et al. [20], who introduced a novel 

perspective on orthogonality in metric spaces, thereby 

providing a means to expand upon existing theorems. 

Expanding upon their own preliminary findings, Eshaghi 

Gordji and Habibi [21] furthered this line of inquiry by 

establishing fixed-point theorems pertinent to generalized 

orthogonal metric spaces. Additional contributions that delve 

into orthogonal concepts within this mathematical area can be 

found in references [22-26]. 

Building upon this conceptual framework, Rad et al. [27] 

ventured into uncharted territory by proposing the idea of 

orthogonal coupled fixed points within orthogonal metric 

spaces (O-MS). In our current study, we delve into the 

interplay between hybrid pairs and orthogonal ℓ-compatible 

mappings. We present a theorem that not only asserts the 

existence but also the uniqueness of tripled fixed points (TFp) 

in orthogonal metric spaces. This theorem we propose serves 

as a synthesis and expansion of numerous established results, 

thereby enriching the existing body of literature. 

To illustrate the practical implications of our findings, we 

incorporate an example that underscores the effectiveness of 

these results. We culminate our discussion by demonstrating 

how the main theorem we have established can be effectively 

applied to ascertain the existence of non-negative solutions to 

integral equations. 
 

 

2. PRELIMINARIES 
 

Throughout this paper, we denote by Υ, N and R a 

nonempty set, the set of positive integers and the set of positive 

real numbers, respectively.  

Nadler [2] defined Fp in multi-valued maps, as follows: 

 

Definition 2.1. An element φ∈Υ is said to be a Fp of a set-

valued function D: Υ→CB(Υ) iff φ∈Dφ [2]. 

The concept of coupled Fp was introduced by Hussain and 

Alotabi [8], in 2011. 

 

Definition 2.2. [8] Let Φ: Υ×Υ→CL(Υ) be a given map. 

We say that (φ, ς)∈Υ×Υ is a coupled Fp of Φ iff φ∈Φ (φ, ς), 

ς∈Φ (φ, ς). 

Aydi, Abbas and Potoache [9] are presented the concept of 

coupled coincidence and coupled Fp of pair of maps in 2012, 

as follows: 

 

Definition 2.3. Let the maps Φ: Υ×Υ→CB(Υ) and g: Υ→Υ 

be given an element (φ, ς)∈Υ×Υ is called [9]: 

1. a coupled coincidence point of pair {Φ, g} if gφ∈Φ(φ, ς) 

and gς∈Φ(φ, ς); 

2. a coupled Fp of a pair {Φ, g} if φ=gφ∈Φ(φ, ς) and 

ς=gς∈Φ(φ, ς). 

Berinde and Borcut [10] initiated the notion of TFp and 

obtained a TFp theorem for single valued mapping. 

 

Definition 2.4. Let Υ be a non-empty set, a mappings D: 

Υ3→2Υ, and ≀: Υ→Υ [10]: 

1. The point (φ, ς, ω)∈Υ3 is called a TFp of D if φ∈D(φ, ς, 

ω), ς∈D(ς, φ, ω), ω∈D(ω, ς, φ). 

2. The point (φ, ς, ω)∈Υ3 is called a TCp (tripled 

coincidence point) of D and ≀ if ≀φ∈D(φ, ς, ω), ≀ ς∈D(ς, φ, ω), 

≀ ω∈D(ω, ς, φ). 

3. The point (φ, ς, ω)∈Υ3 is called a tripled common Fp of 

D and ≀ if φ=≀φ∈D(φ, ς, ω), ς=≀ς∈D(ς, φ, ς), ω=≀ω ∈D(ω, ς, 

φ). 

The following definition, which serves as the foundation for 

the rest of our work, is where we begin. 
 

Definition 2.5. Let Υ be non-void and ⊥⊆Υ×Υ be a binary 

relation. If ⊥ fulfills the following condition [20]: 

∃ ℘0: (∀ ℓ, ℓ ⊥ ℘0) or (∀ ℓ, ℘0 ⊥ ℓ), 

then (Υ, ⊥) is called an Oset. 
 

Definition 2.6. Let (Υ, ⊥, ℜ) be an orthogonal MS if (Υ, ⊥) 

is an Oset and (Υ, ℜ) is a MS [20]. 
 

Definition 2.7. Let (Υ, ⊥, ℜ) be an orthogonal MS [20]. 

1. Then ϱ: Υ→Υ is said to be orthogonally continuous in 

µ∈Υ if for each Oseq (orthogonal sequence) {µϖ}ϖ∈N in Υ with 

µϖ→µ, we have ϱ(µϖ)→ϱ(µ). Also, ϱ is said to be orthogonal 

continuous on Υ, if ϱ is orthogonal continuous in each µ∈Υ. 

2. Then Υ is called an orthogonally complete if every 

Cauchy Oseq is convergent. 

3. A function ϱ: Υ→Υ is called a Opres (orthogonal 

preserving) if ϱ(℘)⊥ϱ(ℓ) if ℘⊥ℓ. 

Inspired by the hybrid pair of mappings defined by Rao et 

al. [26], we implement a new orthogonally hybrid pair of maps 

and demonstrate some TFp theorems in O-complete MS for 

this contraction mapping. 
 

 

3. MAIN RESULT 
 

We modify the notion of hybrid pair of map contraction to 

orthogonal sets in this article. To illustrate our results, we also 

give some examples and application. 

Now, we begin with the definition of an orthogonal ℓ-

compatible. 
 

Definition 3.1. Let D: Υ3→2Υ be a multi-valued mapping 

and ≀ be a self-map on Υ. The Hybrid pair {D, ≀} is said to be 

orthogonal ℓ-compatible if ≀(D(φ, ς, ω))⊆D(≀φ, ≀ς, ≀ω) 

whenever (φ, ς, ω) is a TCp of D and ≀. 
Our main theorem is to present tripled Fp theorem via the 

orthogonal ℓ-compatible for an orthogonal complete MS. 
 

Theorem 3.1. Let (Υ, ⊥, p) be an orthogonal complete MS 

and let D: Υ3→CB(Υ) and ≀: Υ→Υ maps with D is Opres 

satisfying: 

(3.1) H(D(φ, ς, ω), D(ı, ȷ, ℓ))≤⊺p(≀φ, ≀ı)+ℜp(≀ς, ≀ȷ)+kp(≀ω, 

≀ℓ), ∀φ, ς, ω, ı, ȷ, ℓ∈Υ and ⊺, ℜ, k∈[0, 1) with ⊺+ℜ+k≤κ<1, 

where κ is a fixed number. 

(3.2) D(Υ3)⊆≀(Υ) and ≀(Υ) is a complete subspace of Υ.  

Then the mappings D and ≀ have a TCp. 

Further, D and ≀ have a unique tripled common Fp if one of 

the following conditions hold: 

(3.3) (a) {Φ, ≀} is orthogonal ℓ-compatible, ∃ ı, ȷ, ℓ∈Υ s.t. 

𝑙𝑖𝑚
ⅈ→∞

 ≀iφ =ı, 𝑙𝑖𝑚
ⅈ→∞

≀iς=ȷ and 𝑙𝑖𝑚
ⅈ→∞

 ≀iω=ℓ, whenever (φ, ς, ω) is a TCp 

of {Φ, ≀} and ≀ is orthogonal continuous at ı, ȷ, ℓ. 

(b) ∃ ı, ȷ, ℓ∈Υ s.t. 𝑙𝑖𝑚
ⅈ→∞

 ≀iı=φ, 𝑙𝑖𝑚
ⅈ→∞

 ≀iȷ=ς and 𝑙𝑖𝑚
ⅈ→∞

 ≀iℓ=ω, 

whenever (φ, ς, ω) is a TCp of {Φ, ≀} is orthogonal continuous 

at φ, ς and ω. 
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Proof. By the definition of Oset, we can find φ0∈Υ satisfying 

(∀ φ ∈ Υ, φ ⊥ φ0) or (∀ φ ∈ Υ, φ0 ⊥ φ). 

We can find ς0 ∈ Υ is satisfying (∀ φ ∈ Υ, φ ⊥ ς0) or (∀ φ ∈ 

Υ, ς0 ⊥ φ), and we can find ω0 ∈ Υ is satisfying (∀φ∈Υ, φ⊥ω0) 

or (φ∈Υ, ω0⊥φ). 

It follows that φ0⊥D(φ0, ς0, ω0) or D(φ0, ς0, ω0) ⊥ φ0, ς0⊥D(ς0, 

φ0, ς0) or D(ς0, φ0, ς0) ⊥ ς0 and ω0⊥D(ω0, ς0, φ0) or D(ω0, ς0, φ0) 

⊥ ω0.  

Let φ1=D(φ0, ς0, ω0), φ2=D2(φ0, ς0, ω0), ......, φi+1=Di+1(φ0, ς0, 

ω0); ς1=D(ς0, φ0, ς0), ς2=D2(ς0, φ0, ς0), .........,ςi+1=Di+1(ς0, φ0, ς0), 

ω1=D(ω0, ς0, φ0), ω2=D2(ω0, ς0, φ0), ......, ωi+1=Di+1(ω0, ς0, φ0). 

If φi=φi+1, ςi=ςi+1 and ωi=ωi+1 for each I∈N∪{0}, then φi, ςi, 

ωi is a TFp of D. Suppose that φi≠φi+1, ςi ≠ςi+1 and ωi≠ωi+1 for 

all i∈N∪{0}. Then p D(φi, ςi, ωi), D(φi+1, ςi+1, ωi+1)>0, p D(ςi, 

φi, ςi), D(ςi+1, φi+1, ςi+1)<0, p D(ωi, ςi, φi), D(ωi+1, ςi+1,, φi+1)>0, 

for all i∈N∪{0}. Since D is Opres, we have φi⊥φi+1 or φi+1⊥φi, 

ςi⊥ςi+1 or ςi+1⊥ς i, ωi⊥ωi+1 or ωi+1⊥ωi, ∀i∈N∪{0}.  

Therefore, from (3.2), there exists an Oseq{φi}, {ςi} and {ωi} 

in Υ s.t.  

≀φi+1 ∈ D(φi, ςi, ωi), ≀ςi+1 ∈ D(ςi, φi, ςi) and ≀ωi+1∈D(ωi, ςi, φi), 

i=0,1,2, …… 

For deduced that, we get  

 

pi
φ=p(≀φi-1, ≀φi), pi

ς(≀ςi-1, ≀ςi), pi
ω=p(≀ωi−1, ≀ωi) (1) 

 

From (3.1), we have 

 

p2
φ=p(≀φ1, ≀φ2)≤H(D(φ0, ς0, ω0), D(φ1, ς1, ω1)) 

+κ≤⊺p(≀φ0, ≀φ1)+ℜ(≀ς0, ≀ς1)+եp(≀ω0, ≀ω1)+κ 

=⊺p1
φ +ℜp1

ς+եp1
ω+κ 

(i) 

 

p2
ς=p(≀ς1, ς2)≤H(D(ς0, φ0, ς0), D(ς1, φ1, ς1)) 

+κ≤⊺p(≀ς0, ≀ς1)+ℜp(≀φ0, ≀φ1) 

+եp(≀ς0, ≀ς1)+κ=ℜp1
φ+(⊺+ե)+κ 

(ii) 

 

p2
ω=p(≀ω1, ≀ω2)≤H(D(ω0, ς0, φ0), D(ω1, ς1, φ1)) 

+κ≤⊺p(≀ω0, ≀ω1)+ℜp(≀ς0, ≀ς1) 

+եp(≀φ0, ≀φ1)+κ=եp1
φ+ℜp1

ς+⊺p1
ω 

 

p3
φ=p(≀φ2, ≀φ3)≤H(D(φ1, ς1, ω1), D(φ2, ς2, ω2)) 

+κ2≤⊺p(≀φ1, ≀φ2)+ℜp(≀ς1, ≀ς2) 

+եp(≀ω1, ≀ω2)+κ2=⊺p2
φ+ℜp2

ς+եp2
ω+κ2 

≤⊺(⊺p1
φ+ℜp1

ς+եp1
ω+κ)+ℜ(ℜp1

φ+(⊺+ե)p1
ς+κ) 

+ե(եp1
φ+ℜp1

ς+⊺p1
ω+κ)+κ2 

=(⊺2+ℜ2+ե2)p1
φ+(2⊺ℜ+2եℜ)p1

ς+(2⊺ե)p1
ω+κ2+ 

(⊺+ℜ+ե)κ 

=(⊺2+ℜ2+ե2)p1
φ+(2⊺ℜ+2եℜ)p1

ς+(2⊺ե)p1
ω+2κ2 

(iii) 

 

p3
ς=p(≀ς2, ≀ς3)≤H(D(ς1, φ1, ς1), D(ς2, φ2, ς2)) 

+κ2≤⊺p(≀ς1, ≀ς2)+ℜp(≀φ1, ≀φ2)+եp(≀ς1, ≀ς2)+κ2 

=ℜp1
φ+(⊺+ե)p1

ς+κ2≤ℜ(⊺p1
φ+ℜp1

ς+եp1
ω+κ) 

+(⊺+ե)(ℜp1
φ+(⊺+ե)p1

ς+κ)+κ2 

=(2⊺ℜ+2եℜ)p1
φ+[(⊺+ե)2+ℜ2]p1

ς 

+ℜեp1
ω+κ2+(⊺+ℜ+ե)κ 

=(2⊺ℜ+2եℜ)p1
φ+[(⊺+ե)2+ℜ2]p1

ς+ℜեp1
ω+2κ2 

(iv) 

 

p3
ω=p(≀ω2, ≀ω3)≤H(D(ω1, ς1, φ1), D(ω2, ς2, φ2))+κ2 

≤⊺p(≀ω1, ≀ω2)+ℜp(≀ς1, ≀ς2)+եp(≀φ1, ≀φ2)+κ2 

=⊺p2
ω+ℜp2

ς+եp2
φ+κ2=եp2

φ+ℜp2
ς+⊺p2

ω+κ2 

=ե(⊺p1
φ+ℜp1

ς+ℜp1
ς+κ)+ℜ(ℜp1

φ+(⊺+ե)p1
ς+κ] 

+⊺(եp1
φ+ℜp1

ς+⊺p1
ω+κ)+κ2 

=(2⊺ե+ℜ2)p1
φ+2(⊺ℜ+եℜ)p1

ς+(⊺2+ℜ2)p1
ω+κ2 

+(⊺+ℜ+ե)κ 

=(2⊺ե+ℜ2)p1
φ+2(⊺ℜ+եℜ)p1

ς+(⊺2+ℜ2)p1
ω+2κ2 

(v) 

Let 

 

F=[
⊺ ℜ ե
ℜ ⊺ +ե 0
ե ℜ ⊺

] denoted F2 by [

τ2 𝑏2     𝑐2

p2 𝑒2      ≀2

g2 𝑏2      κ2

] (2) 

 

It is obviously τ2+b2+c2=p2+e2+≀2=g2+b2+κ2 

=(⊺+ℜ+k)2≤κ2<1. 

Now, we prove by induction: 

 

Fi=[

τⅈ 𝑏ⅈ      𝑐ⅈ

pⅈ 𝑒ⅈ      ≀ⅈ

gⅈ 𝑏ⅈ       κⅈ

] (3) 

 
where, τi+bi+ci=pi+ei+≀i=gi+bi+κi=(⊺+ℜ+ե)i≤κi<1. 

From Eq. (3) is true for i=1, 2. 

Assume Eq. (3) is true for some i. Consider 

 

Fi+1=Fⅈ ⋅ F=[

τⅈ 𝑏ⅈ      𝑐ⅈ

pⅈ 𝑒ⅈ       ≀ⅈ

gⅈ 𝑏ⅈ       κⅈ

]. [
⊺ ℜ ե
ℜ ⊺ +ե 0
ե ℜ ⊺

] 

=[

⊺ τⅈ + ℜ𝑏ⅈ + եci τⅈ + (⊺ +ե)b𝑖 + ℜc𝑖     k𝜏𝑖 +⊺ c𝑖

⊺ 𝑝𝑖 + ℜe𝑖 + ե ≀ⅈ ℜ𝑝𝑖 + (⊺ +ե)e𝑖 + ℜ ≀ⅈ    k𝑝𝑖 +⊺≀ⅈ

⊺ g𝑖 + ℜb𝑖 + եκ𝑖 ℜg𝑖 + (⊺ +ե)b𝑖 + ℜκ𝑖   kg𝑖 +⊺ κ𝑖

] 

 
We obtain τi+1+bi+1+ci+1=(⊺+ℜ+ե)(τi+bi+ci) 

=(⊺+ℜ+ե)i+1≤κi+1<1. 

Similarly, we get pi+1+ei+1+≀i+1=gi+1+bi+1+κi+1 

=(ե+ℜ+ե)i+1≤κi+1<1. 

Then (3) is true for all positive integer value of i. 

Now from (i)− (vi) and proceeding this way, we obtain  

 

[

pⅈ+1
φ

pⅈ+1
ς

pⅈ+1
ω

]=[

τⅈ 𝑏ⅈ      𝑐ⅈ

pⅈ 𝑒ⅈ       ≀ⅈ

gⅈ 𝑏ⅈ       κⅈ

] [

p1
φ

p1
ς

p1
ω

]+[
𝑖κⅈ

𝑖κⅈ

𝑖κⅈ

],  

∀i=1, 2, 3, .... 

 

That is, pⅈ+1
φ

≤ 𝜏ⅈp1
φ

+ 𝑏ⅈp1
ς

+ 𝑐ⅈp1
ω + 𝑖κⅈ ; pⅈ+1

ς
≤ pⅈp1

φ
+

𝑒ⅈp1
ς

+≀ p1
ω + 𝑖κⅈ; pⅈ+1

ω ≤ gⅈp1
φ

+ 𝑏ⅈp1
ς

+ κⅈp1
ω + 𝑖κⅈ, ∀i=1, 2, 

3, .... 

For j>i, we get p(≀φj, ≀φi)≤p(≀φj, ≀φj−1)+p(≀φj−1, ≀φj−2)+....... 

+p(≀φi+2, φi+1)+p(≀φi+1, ≀φi)=pj
φ+pj-1

φ+··· +pi+2
φ+pi+1

φ, ≤τj−1p1
φ 

+bj−1p1
ς+cj−1p1

ω+(j−1)κj−1+τj−2p1
φ+bj−2p1

ς+cj−2p1
ω+(j−2)κj−2+...

., ≤τi+1p1
φ+bi+1p1

ς+ci+1p1
ω+(i+1) κi+1+τip1

φ+bip1
ς+cip1

ω+iκi, 

≤(τj−1+τj−2+…+τi+1+τi) p1
φ+(bj−1+bj−2+…+bi+1+bi)p1

ς+(cj−1+cj−2 

+ci+1+ci)p1
ω+[(j−1)κj−1+(j−2)κj−2+.....+(i+1)κi+1+i κi], 

≤(κj−1+κj−2+…+κi+1+κi)+(p1
φ  p1

ς+p1
ω)+ ∑ ⊺ κ⊺𝑗−1

⊺=ⅈ
, 

≤
κⅈ

1−κ
(p1

φ+p1
ς+p1

ω)+∑ ⊺ κ⊺𝑗−1

⊺=ⅈ
→0, as i→∞, because 0≤κ<1. 

Hence {≀φi} is a Cauchy Oseq. Similarly, we can show that 

{≀ςi} and {≀ωi} are Cauchy Oseq. 

Suppose ≀(Υ) is an orthogonal complete, an Oseq {≀φi}, {≀ςi} 

and {≀ωi} are convergent to some α, β, γ∈≀(Υ), respectively. 

There exists φ, ς, ω∈Υ s.t. α=≀φ, β=≀ς and γ=≀ω. 

Now, we get p(D(φ, ς, ω), α)≤p(D(φ, ς, ω), ≀φi+1)+p(≀φi+1, 

α)≤H(D(φ, ς, ω), D(φi, ςi, ωi))+p(≀φi+1, α)≤⊺p(≀φ, ≀φi)+ℜp(≀ς, 

≀ςi)+kp(≀ω, ≀ωi)+p(≀φi+1, α)=⊺p(α, ≀φi)+ℜp(β, ≀ςi)+kp(γ, 

≀ωi)+p(≀φi+1, α). 

Taking i→∞, we get p(D(φ, ς, ω), α)≤0 so that α∈D(φ, ς, ω). 

i.e., ≀φ∈D(φ, ς, ω). Similarly, we prove ≀ς∈D(ς, φ, ς) and 

≀ω∈D(ω, ς, φ). 

Thus (φ, ς, ω) is a TCp of D and ≀. Suppose (3.3) (a) holds. 

567



 

Since (φ, ς, ω) is a TCp of D and ≀, there exists ı, ȷ, ℓ∈Υ 

s.t. 𝑙𝑖𝑚
ⅈ→∞

 ≀iφ=ı, 𝑙𝑖𝑚
ⅈ→∞

 ≀iς=ȷ and 𝑙𝑖𝑚
ⅈ→∞

 ≀iω=ℓ. 

Since ≀ is an orthogonal continuous at ı, ȷ and ℓ, we have 

≀ı=ı, ≀ȷ=ȷ and ≀ℓ=ℓ. 

Since ≀φ∈D(φ, ς, ω), we have ≀2φ∈≀(D(φ,ς,ω))⊆D(≀φ,≀ς,≀ω).  

Since ≀ς∈D(ς,φ,ς), we have ≀2ς∈≀(D(ς,φ,ς))⊆D(≀ς,≀φ,≀ς). 

Since ≀ω∈D(ω,ς,φ), we have ≀2ω∈≀(D(ω,ς,φ))⊆D(≀ω,≀ς,≀φ). 

Then (≀φ, ≀ς, ≀ω) is TCp of D and ≀.  
Similarly, we prove that (≀iφ, ≀iς, ≀iω) is a TCp D and ≀. 
Also, it is clear ≀iφ∈D(≀i−1φ, ≀i−1ς, ≀i−1ω), ≀iς∈D(≀i−1ς, ≀i−1φ, 

≀i−1ς), ≀iω∈D(≀i−1ω, ≀i−1ς, ≀i−1φ).  

From condition (3.1), we get p(≀ı, ≀ȷ, ≀ℓ)≤p(≀ı, ≀iφ)+p(≀iφ, 

D(ı,ȷ,ℓ))≤ p(≀ı, ≀iφ)+H(D(≀i−1φ, ≀i−1ς, ≀i−1ω), D(ı, ȷ, ℓ))≤p(≀ı, 
≀i)+⊺p(≀iφ, ≀ı)+ℜp(≀iς, ≀ȷ)+եp(≀iω, ≀ℓ). 

Taking i→∞, we get p(≀ı, D(ı, ȷ, ℓ))≤0, ⇒≀ı∈D(ı, ȷ, ℓ). 

Hence, ı=≀ı∈D(ı, ȷ, ℓ). Similarly, we can prove that ȷ=≀ȷ∈D(ȷ, 

ı, ȷ) and ℓ=≀ℓ∈D(ℓ, ȷ, ı). Thus, (ı, ȷ, ℓ) is a tripled common Fp 

of D and ≀. Suppose condition (3.3) (b) holds. 

Since (φ, ς, ω) is a coincidence point of {D, ≀}, there exists 

ı, ȷ, ℓ∈Υ s.t. 𝑙𝑖𝑚
ⅈ→∞

 ≀iı=φ, 𝑙𝑖𝑚
ⅈ→∞

 ≀iȷ=ς and 𝑙𝑖𝑚
ⅈ→∞

 ≀iℓ=ω. 

Since ≀ is continuous at φ, ς, and ω, we get φ=≀φ, ς=≀ς and 

ω=≀ω. 

Hence (φ, ς, ω) is a tripled common Fp of {D, ≀}. 

Now, we prove uniqueness of tripled common Fp. Assume 

that (φ∗, ς∗, ω∗)∈Υ is another TFp of D satisfying (φ, ς, ω)≠(φ∗, 

ς∗, ω∗). Then p (D(φ, ς, ω), D(φ*, ς*, ω*))=p(φ, φ*)>0, p(D(ς, φ, 

ς), D(ς*, φ*, ς*))=p(ς, ς *)<0, p(D(ω, ς, φ) D(ω*, ς*, φ*))=p(ω, 

ω*)>0. 

Since {D, ≀} is Opres, we get Dφ⊥Dφ∗ and ≀φ⊥≀φ∗ or 

Dφ∗⊥Dφ and ≀φ∗⊥≀φ, Dς⊥Dς∗ and ≀ς⊥≀ς∗ or Dς∗⊥Dς and 

≀ς∗⊥≀ς, Dω⊥Dω∗ and ≀ω⊥≀ω∗ or Dω∗⊥Dω and ≀ω∗⊥≀ω. 

From the condition of H(D(φ, ς, ω), D(φ∗, ς∗, ω∗))≤⊺p(≀φ, 

≀φ∗)+ℜp(≀ς, ≀ς∗)+kp(≀ω, ≀ω∗), ∀φ, ς, ω, φ∗, ς∗, ω∗∈Υ and ⊺, ℜ, 

ե∈[0, 1) with ⊺+ℜ+ե≤κ<1, we have H(D(φ, ς, ω), D(φ∗, ς∗, 

ω∗))=0. 

Therefore φ=φ∗, ς=ς∗ and ω=ω∗. 

So, {D, ≀} has a unique tripled common Fp.  

The following example illustrates Theorem 3.1. 

 

Example 3.2. Let Υ= [0, 1], and define a relation ⊥ on Υ by 

φ⊥ς, ς⊥ω, and ω⊥φ, if φ, ω≥0, ς≤ 0. 

Then (Υ, ⊥, p) is an orthogonal complete MS. Define a 

maps D: Υ3→CB(Υ) and ≀: Υ→Υ defined as D(φ, ς, ω)=[0, 

(
1

8
)sin(φ)+(

1

4
)sin(ς)+(

1

3
)sin(ω)] and ≀φ=

7

8
φ. 

H (D(φ, ς, ω), D(ı, ȷ, ℓ))=|(
1

8
sinφ+

1

4
sinς+

1

3
sinω)–

(
1

8
sinı+

1

4
sinȷ+

1

3
sinℓ)|=|(

1

8
sinφ-

1

8
sinı)+(

1

4
sinς-

1

4
sinȷ)+(

1

3
sinω-

1

3
sinℓ)|≤

1

8
|sinφ-sinı|+

1

4
|sinς–sinȷ|+

1

3
|sinω-sinℓ|≤

1

8
|φ-ı|+

1

4
|ς–

ȷ|+
1

3
|ω-ℓ|≤

7

56
|φ-ı|+

14

56
|ς–ȷ|+

56

3ꓫ 56
|ω-ℓ|≤

1

7
|
7

8
φ-

7

8
ı|+

2

7
|
7

8
ς–

7

8
ȷ|+

8

21
|
7

8
ω-

7

8
ℓ|≤

1

7
|≀φ-≀ı|+

2

7
|≀ς–≀ȷ|+

8

21
|≀ω-≀ℓ|.  

It is clear that all axioms of Theorem 3.1 are fulfilled and (0, 

0, 0) is tripled common Fp of D and ≀. 
Let (Y, ⊥) be an orthogonal set. Consider on the product 

space Y 3 → Y, the following condition: (i, j, ℓ) ≤ (φ, ς, ω) if 

and only if i ≤ φ, j ≤ ς, ℓ ≤ ω, for (i, j, ℓ), (φ, ς, ω) ∈ Y 3. 

 

Definition 3.3. Let Y be a nonempty set and D: Y 3 → Y be 

a map. An element (φ, ς, ω) is called a TFp on D if D(φ, ς, ω) 

= φ,  D(ς, ω, φ) = ς, D(ω, φ, ς) = ω [28]. 

From, Hille and Phillips [29], Theorem 7.2.5 extended to 

concept of orthogonal complete MS as follows:  

Definition 3.4. A function η: R+ → R+ is said to be 

superadditive if η(s) + η(t) ≤ η (s + t), ∀ s, t ∈ R+. It is well 

known that every nondecreasing, convex function ψ: R+ → R+ 

with ψ (0) = 0 is superadditive. 

 

Theorem 3.5. Let (Y, ⊥, d) be an orthogonal complete MS. 

Assume there exists nondecreasing functions ψn: R+ → R+, n 

= 1,2,3 such that ψ = ψ1 + ψ2 + ψ3 is convex, ψ (0) = 0, and ψn(t) 

→ 0 as n → for each t > 0. Let D: Y 3 → Y be a mapping which 

is nondecreasing in each of its variables and satisfying 

 

≀ (D (φ, ς, ω), D(i, j, ℓ)) ≤ ψ1(≀(φ, i)) + ψ1(≀(ς, j)) + 

ψ1(≀(ω,ℓ)) 
(4) 

 

for each φ ≥ i, ς ≥ j, ς ≥ j. Suppose either 

(a) D is an orthogonal continuous or; 

(b) If a nondecreasing orthogonal sequence (φk, ς k,ωk) → 

(φ, ς,ω), then (φk, ς k, ωk) ≤ (φ, ς, ω), for all k ∈ N, if there 

exists φ0,ζ0,ω0 ∈ Y with φ0 ≤ D(φ0, ς 0,ω0), ς 0 ≤ D(ω0,φ0, ς 

0),ω0 ≤ D(ς 0,ω0,φ0), 

(c) D is O preserving; 

(d) If for each (φ, ς, ω), (i, j, ℓ) ∈ Y3, then D has a unique 

TFp. 

 

Proof. By the definition of Oset, we can find φ0∈Υ satisfying 

(∀ φ ∈ Υ, φ ⊥ φ0) or (∀ φ ∈ Υ, φ0 ⊥ φ) 

We can find ς0 ∈ Υ is satisfying (∀ φ ∈ Υ, φ ⊥ ς0) or (∀ φ ∈ 

Υ, ς0 ⊥ φ), and we can find ω0 ∈ Υ is satisfying (∀φ∈Υ, φ⊥ω0) 

or (φ∈Υ, ω0⊥φ). 

It follows that φ0⊥D(φ0, ς0, ω0) or D(φ0, ς0, ω0) ⊥ φ0, ς0⊥D(ς0, 

φ0, ς0) or D(ς0, φ0, ς0) ⊥ ς0 and ω0⊥D(ω0, ς0, φ0) or D(ω0, ς0, φ0) 

⊥ ω0.  

Let φ1=D(φ0, ς0, ω0), φ2=D2(φ0, ς0, ω0), ......, φi+1=Di+1(φ0, ς0, 

ω0); ς1=D(ς0, φ0, ς0), ς2=D2(ς0, φ0, ς0), .........,ςi+1=Di+1(ς0, φ0, ς0), 

ω1=D(ω0, ς0, φ0), ω2=D2(ω0, ς0, φ0), ......, ωi+1=Di+1(ω0, ς0, φ0). 

If φi=φi+1, ςi=ςi+1 and ωi=ωi+1 for each I∈N∪{0}, then φi, ςi, 

ωi is a TFp of D. Suppose that φi≠φi+1, ςi ≠ςi+1 and ωi≠ωi+1 for 

all i∈N∪{0}. Then p D(φi, ςi, ωi), D(φi+1, ςi+1, ωi+1)>0, p D(ςi, 

φi, ςi), D(ςi+1, φi+1, ςi+1)<0, p D(ωi, ςi, φi), D(ωi+1, ςi+1,, φi+1)>0, 

for all i∈N∪{0}. Since D is Opres, we have φi⊥φi+1 or φi+1⊥φi, 

ςi⊥ςi+1 or ςi+1⊥ς i, ωi⊥ωi+1 or ωi+1⊥ωi, ∀ i ∈ N∪{0}.  

Let (M,ϱ) be a MS which is defined by ϱ((φ, ς, ω),(i,j,ℓ)) = 

≀(φ,i) + ≀( ς,j) + ≀(ω,ℓ). Then it is straightforward to show that 

(M,⊥,ϱ) is a orthogonal complete MS. Let ϱ: M → M be 

defined by  

ϱ(φ, ς, ω) = (D(φ, ς, ω),D(ς, ω, φ),D(ω, φ, ς)). 

Then from Eq. (1), we have ≀(ϱ(φ,ζ,ω),ϱ(i,j,ℓ)) = ≀(D(φ, ς, 

ω),D(i, j,ℓ))+ ≀(D(ς, ω, φ),D(j,ℓ,i)) + ≀(D(ω, φ, ς), 

D(ℓ,i,j))≤ ψ1(≀(φ,i)) + ψ2(≀(ς,j)) + ψ3(≀(ω,ℓ)) + ψ3(≀(φ,i)) + 

ψ1(≀(ς, j))+ ψ2(≀(ω, ℓ)) + ψ2(≀(φ, i)) + ψ3(≀(ς, j)) + ψ1(≀(ω, ℓ)) 

= ψ(≀(φ, i)) + ψ(≀(ς, j)) + ψ(≀(ω,ℓ)) ≤ ψ(≀(φ, i)) + ≀( ς, j) + 

≀(ω, ℓ) = ψ(≀((φ, ς, ω),(i, j,ℓ))).  

Since D is nondecreasing in each of its variables then ϱ is 

non-decreasing. From our assumptions, ϱ is either orthogonal 

continuous or if a nondecreasing orthogonal sequence ik → i, 

for ik,i ∈ M then ik ≤ i for each k ∈ N. Also, (φ0, ς 0, ω0) ≤ ϱ(φ0, 

ς 0, ω0). 

Then all the assumptions of Theorem 3.5. are satisfied. Thus, 

ϱ has a Fp (φ0, ς 0, ω0) and so (φ0, ς 0, ω0) is a TFp of D. 

Now suppose that condition (c) holds. Then for each i, j ∈ 

M, there exists ℓ ∈ M which is comparable to φ and ζ. Thus, 

by Theorem 3.5., the Fp of ϱ is unique and so (φ, ς, ω) is the 

unique tripled fixed point of D. Since (ς, ω, φ) and (ω, φ, ς) are 

TFp’s of ϱ too then, by the uniqueness, we get φ = ς = ω. 
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4. APPLICATION

In this section, we use the theoretical results obtained in the 

previous part to clarify the existence and uniqueness of the 

solution for the following system: 

φ(s) = g(s) + ∫ G(s, σ)
τ

0

[I1(σ, φ(σ)) + I2(σ, ς(σ))

+ I3(σ, ω(σ))]p,

ς(s) = g(s) + ∫ G(s, σ)
τ

0

[I1(σ, ς(σ)) + I2(σ, ω(σ))

+ I3(σ, φ(σ))]p,

ω(s) = g(s) + ∫ G(s, σ)
τ

0

[I1(σ, ω(σ)) + I2(σ, ς(σ))

+ I3(σ, φ(σ))]p

(5) 

∀ s∈ [0, τ]. Consider the following axioms: 

A1: g: [0, τ] →R and G: [0, τ] ×R→R, are an orthogonal 

continuous; 

A2: I⊺: [0, τ] ×R→R (⊺=1, 2, 3) are an orthogonal continuous;

A3: there is a constant δ>0 s.t. ∀ φ, ς∈R, 0≤I1(σ, φ)-I1(σ, ς) 

≤δ(φ-ς), 0≤I2(σ, φ)-I2(σ, ς) ≤δ(φ-ς), 0≤I3(σ, φ)-I3(σ, ς) ≤δ(φ-ς); 

A4: δ2 max
s∈[0,τ]

(∫ G(s, σ)pσ
τ

0
)

2
≤

1

7
. 

Let Υ=∁([0, τ], R) be the set of all orthogonal continuous 

real-valued functions on [0, τ] taking values in R, and let 

M={π∈B: π≥0}. Set p: Υ×Υ→B as p(o, O)=esmax
s∈[0,τ] 

 |o(s)-O(s)|.

It is obvious that (Υ, ⊥, p) is an orthogonal complete MS. 

Theorem 4.1. Under hypotheses (A1) -(A4), Eq. (5) has a 

solution in Υ3, where Υ=∁([0, τ], R).

Proof. Let Υ=∁([0, τ], R). Define a relation ⊥ on Υ by s⊥σ 

iff s(α)σ(α)≥s(α) or s(α)σ(α)≥σ(α), ∀ α∈ [0, τ]. Define the 

operators  

D: Υ3 →CB(Υ) and ≀: Υ → Υ  by D(φ, ς, ω)(s) = g(s) +

∫ G(s, σ)
τ

0
[I1(σ, φ(σ)) + I2(σ, ς(σ)) + I3(σ, ω(σ))]pσ,  and

≀(φ0)=φ0∀s∈[0, τ] and φ, ς, ω∈ Υ . Thus ( Υ , ⊥, p) is an 

orthogonal complete MS. 

The triple (φ, ς, ω) is a solution of system (4) iff (φ, ς, ω) is 

a TFp of D. The existence of this triple follows from Theorem 

3.1, since ≀ is the identity map. Therefore, it is necessary to 

fulfill the remaining conditions of Theorem 3.1. 

For all φ, ς, ω∈Υ with φ⊥ς, ς⊥ω, ω⊥φ and s ∈ [0, τ]. Then 

D is Opres. 

Let us consider θ=
3

7
, we have H(D(φ, ς, ω), D(ı, ȷ,

ℓ))=es
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] |D(φ, ς, ω)–D(ı, ȷ, ℓ)| =es
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] | ∫ 𝐺
𝜏

0
(s,σ)

[p1(σ,φ(σ))+p2(σ,ς(σ))+p3(σ, ω(σ))] pσ-∫ 𝐺
𝜏

0
(s, σ) [p1(σ, ı(σ)) 

+p2(σ, ȷ(σ))+p3(σ, ℓ(σ))]pσ|=es
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏]|∫ 𝐺
𝜏

0
 (s, σ)[p1(σ, φ(σ))-

p1(σ, ı(σ))+p2(σ, ς(σ))-p2(σ, ȷ(σ))+p3(σ, ω(σ))-p3(σ, 

ℓ(σ))]pσ|≤es 
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] | ∫ 𝐺
𝜏

0
 (s,σ)[δ(φ(σ)-ı(σ))+δ(ς(σ)-

ȷ(σ))+δ(ω(σ)-ℓ(σ))]pσ|≤es 
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏]  |δ ∫ 𝐺
𝜏

0
(s,σ)[(φ(σ)-

ı(σ))+(ς(σ)-ȷ(σ))+(ω(σ)-ℓ(σ))]pσ|≤𝑒𝑠(
𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] δ ∫ 𝐺
𝜏

0
 (s,σ) pσ) 

|[(φ(s)-ı(s))+(ς(s)-ȷ(s))+(ω(s) - ℓ(s))]|≤
3ⅇ𝑠

7
|

𝑚𝑎𝑥
𝑠𝜖[0, 𝜏] {(φ(s)-

ı(s))+(ς(s)-ȷ(s))+(ω(s)-ℓ(s))}| by (A4)≤
3ⅇ𝑠

7

𝑚𝑎𝑥
𝑠𝜖[0, 𝜏] {(φ(s)-

ı(s))+(ς(s)-ȷ(s))+(ω(s)-ℓ(s))}≤
3

7
 max{ 𝑒𝑠 𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] |(φ(s)-ı(s))|,

𝑒𝑠 𝑚𝑎𝑥
𝑠𝜖[0, 𝜏]|(ς(s)-ȷ(s))|, 𝑒𝑠 𝑚𝑎𝑥

𝑠𝜖[0, 𝜏] |(ω(s)-ℓ(s))|}≤θ max {p(φ, ı),

p(ς, ȷ), p(ω, ℓ)}. 

This means that condition (3.3) of Theorem 3.1 is fulfilled. 

Thus, D has a TFp (φ, ς, ω) ∈ ∁([0, τ], R)×∁([0, τ], R)×∁([0, τ], 

R), which is a solution to Eq. (5). 

5. CONCLUSIONS

The application of fixed-point methods is a cornerstone of 

mathematical analysis due to their broad utility across 

numerous areas. This has drawn the attention of numerous 

researchers to the potential of these techniques. Among the 

most notable areas of application are the analysis of 

algorithmic behavior, particularly the phenomena of 

convergence and divergence in optimization, game theory, as 

well as in the study of both ordinary and fractional differential 

equations, alongside differential and integral equations, 

among others. 

In our study, we have formulated and proven theorems 

related to tripled fixed points (TFps) for mappings that are 

orthogonal and ℓ-compatible within the context of 

orthogonally complete metric spaces. We have supplemented 

our principal findings with illustrative examples that 

demonstrate their application. Additionally, we have deduced 

the existence of solutions for a class of complex tripled 

integral equations. Inspired by the pioneering efforts of Rad et 

al. [27], which explored the interconnections between n-tuple 

fixed point theorems and single fixed points, and the advances 

made by Roldan et al. [30] in establishing fixed point theorems 

within ordered metric spaces, we envision future research to 

extend the exploration of TFps to additional structural 

formations within metric spaces. 
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Fp/Fp’s Fixed Point/Fixed Points 
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TFp Tripled Fixed Point 
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Oseq Orthogonal-sequence 

Opres Orthogonal preserving 
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