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Because batik is one of the most popular products in Indonesia, improving the supply 

chain system for batik products, for example total supply chain costs efficiency, will 

have a substantial and lasting effect on all chains involved. In the batik supply chain, it 

is common practice for each chain to have an independent policy, resulting in total 

supply chain cost inefficiency. This paper discusses the development of a mathematical 

model to optimise batik supply chain with a single-vendor multi-buyers and multi-

products. The optimisation model was developed by taking into account the frequent 

lateral transhipment system in the batik supply chain system as well as the buyers' 

random demand fluctuations. In addition, the optimisation model takes into account 

imperfect production systems in the vendor that produce a random number of defective 

products on a periodic basis. To obtain the optimum solution from the dynamic model, 

an optimisation-in-the-loop simulation system based on genetic algorithms was then 

used to solve the developed mathematical model. The presented case study 

demonstrates that the proposed Genetic Algorithms (GA) able to reach a convergent 

point; thus, the proposed optimisation-in-the-loop model able to provide an optimum 

solution for the supply chain system under consideration. 
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1. INTRODUCTION

Batik, is one of the leading products by Indonesia and has 

extensive use on the domestic market and high value on the 

international market. Therefore, enhancing the supply chain 

system for batik products will have long-term benefits. A 

crucial decision in the batik supply chain system is the strategy 

for ordering products from buyers to vendor, which affects the 

production management at the vendor. This strategy decision 

will have an effect on the demand fulfilment that can be 

converting into competitive advantage and profitability to the 

entire supply chain. Several previous researchers have paid 

attention to this topic because it is significant and strategic 

with different conditions, such as multiple shipment policy [1], 

time-phased price discount [2] and price-sensitive demand [3]. 

Obviously, each buyer in the batik supply chain will receive 

random customer demand. However, after a period of time, the 

demand pattern can be modelled with a statistical distribution, 

which is preferable to the average value [4]. This study will 

also model users demand using statistical distributions 

approach. In addition, it is common for products to be shipped 

from one buyer to another because shipping costs are 

comparatively low and the response time is fast, despite the 

fact that the purchase price of the product is higher than 

purchase price from the vendor. This is referred to as lateral 

transhipment in the distribution system [5], that typically 

aimed to balance the inventory level of the chains at the same 

echelon [6]. In contrast to the typical lateral transhipment 

system, in the investigated supply chain system, product 

delivery from one buyer to another will occur only upon 

request; this is comparable to reactive literal transhipment [7]. 

The buyers often adopt a minimum inventory policy when 

faced with uncertain demand, taking into account the lead time 

for orders from vendors and other buyers.  On the vendor side, 

the vendor will control the daily Economic Production 

Quantity (EPQ) because customer demands do not arrive 

simultaneously. The EPQ will be determined by considering 

optimum utilisation of the vendor production resources [8, 9]. 

Production process of batik is usually semi-automatic. The 

batik printers are controlled by operators. At the beginning, the 

operators will setup the batik printers and after several 

production units, defective products will occur, necessitating 

a setup of the batik printers. Such a production system is called 

an imperfect production system [10, 11]. The defective batik 

products will be reworked, but not all will be repairable. If a 

batik product cannot be repaired, it will be converted into 

patchwork. Consequently, the EPQ in the imperfect 

production system will be determined by considering the 

occurrence of defective products and the rework process. In 

this situation, the problem will grow intricate because of the 

numerous variables involved, and it will be further 

compounded when multiple products must be produced. 

The majority of problem-solving optimisation algorithms 

utilise static data. When the number of decision variables is 
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small, the exact optimisation algorithm can generate the 

optimum solution in a reasonable computation time. However, 

if the number of decision variables is very large, the resulting 

solution is only a feasible one, with no guarantee of optimality 

or one that is near to optimum. Genetic Algorithms (GA), 

which was coined by John Holland, can be utilised as an 

optimisation algorithm for stochastic models with a large 

number of decision variables [12]. Therefore, in this study, GA 

will be used as the optimisation algorithms, and since the 

demands data are modelled using statistical distribution and 

the information and materials flow are flowing dynamically in 

the supply chain system, then the GA will be used in-the-loop 

with the supply chain simulation system. This technique has 

several different terms, such as simulation optimisation [13] 

and optimisation-simulation closed-loop [14]. In this study, 

this technique will be called as optimisation-in-the-loop 

simulation. The previous studies shown that advantage of 

optimisation-in-the-loop simulation technique is the 

optimisation algorithm received dynamic feedbacks from the 

simulation during optimisation process so that the solution 

provided is the best solution in the steady state condition. This 

advantage is also used to address optimisation problem in the 

present study. 

2. RELATED WORKS

This section reviews previous studies on the total cost 

occurred in the entire parties in a supply chain known as Joint 

Total Cost (JTC), lateral transhipment system, imperfect 

production system, and simulation optimisation to show state 

of the art of this study. 

2.1 Joint Total Cost (JTC) 

It is commonly understood that optimisation of the supply 

chain system must be performed concurrently across all supply 

chains in order to achieve global optimum conditions. The JTC 

of the vendor and all of the buyers is one of the frequently 

employed optimisation objectives. Study about minimisation 

of JTC has been initiated by Goyal [15] at 1976 with a single-

supplier single-customer supply chain system was the object 

of the study. Continuation of that study has been investigated 

by Banerjee [16] by considering finite production rate, lot-for-

lot replenishment and deterministic condition. Further, that 

study has been extended by Goyal [17] with more general 

replenishment strategy. Goyal and Nebebe [18] proposed 

simple method to solve minimisation of JTC for single-vendor 

single-buyer by considering setup cost at the vendor. By nature, 

a buyer will face probabilistic demand from customer, 

therefore, Mahata et al. [19] have extended model proposed by 

Banerjee with fuzzy order quantity for the buyer to deal with 

the probabilistic condition. Besides discrete model of JTC, a 

continuous model for JTC has also been developed by 

Benkherouf and Omar [20] that considered constant 

production rate at the vendor and demand at the buyer is a 

function of time. 

Wee and Widyadana [21] studied the minimisation of the 

JTC for a single-vendor, single-buyer supply chain system 

with discrete delivery order, random machine unavailability 

time that may lead to unstable production at the vendor and 

lost sales for the buyer. Liu et al. [22] investigated about JTC 

minimisation with decision variables are number of shipments 

per production cycle, time interval between two successive 

shipments and the initial inventory for every production cycle 

in single-vendor single buyer supply chain system. Chan et al. 

[23] have developed JTC for a single-vendor multi-buyer

supply chain system with synchronized production and order

cycle lengths. In that study, the proposed vendor-buyer

coordination model was superior to two other coordination

models, namely the decentralised decision-making model and

the common cycle coordination model. Another study that has

discussed about JTC for single-vendor multi-buyers supply

chain system is Chen [24], in which pricing and promotion for

perishable products that impact buyer demand were

considered. Ben-Daya et al. [25] have developed JTC for a

single-vendor multi-buyer closed-loop supply chain system. In

that study, the vendor used the backward supply chain to

remanufacture products from the buyers in order to make the

supply chain environmentally friendly.

Another factor that influences the total cost of a supply 

chain system is transhipment practice. Consequently, in the 

following subchapter, a number of previous studies on 

transhipment practices with varying objectives are reviewed. 

2.2 Lateral transhipment system 

Several researchers in the past have conducted research on 

supply chain systems with lateral transhipment. Bassey and 

Zelibe [26] present a new model for a two-echelon location-

inventory system with response time constraints. In this study, 

the decision variables are the level of on-hand inventory, the 

level of lateral transshipment, and the level of backorders 

under steady-state conditions. Shokouhifar et al. [27] proposed 

inventory management for the blood supply chain by 

considering lateral transshipment to reduce shortage and waste 

costs. Wang et al. [28] studied the stochastic preparedness and 

response phrases of disaster management by contemplating 

lateral transhipment in order to have economical and adaptable 

shipment. Li et al. [29] studied lateral transhipment under the 

condition that shortage buyers request to other buyers and that 

multiple buyers will fulfil demand. 

Another transhipment model has been investigated by Van 

Wijk et al. [30]. In that study, two stock points play the role of 

two vendors that will supply critical parts to several customers. 

Three demand-fulfilment strategies have been investigated: 

own stock, literal transhipment, and an emergency procedure. 

Wang et al. [31] used agent-based system for resources joint 

planning to enable transhipment cross-echelon and normal 

transhipment at the same echelon. Tarhini et al. [32] have 

modelled a transhipment system for single-vendor multi-

buyers under the VMI policy. In this study, it is also possible 

to dispatch directly from the vendor to all of the buyers in order 

to reduce the JTC. 

The lengthy order delivery time by vendor is one of the 

factors that encourages transhipment. One of the factors that 

influences the order delivery time to customers is the 

occurrence of rework on defective products due to imperfect 

production systems which also have an effect on vendor 

production costs. Several studies on imperfect production 

systems in various supply chain systems are reviewed in the 

subsequent subchapters. 

2.3 Imperfect production system 

Most of the supply chain optimisation model studies 

assumed the production system at the vendor is perfect, all 

produced products are in good quality. However, it will be 
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more realistic when considering the imperfect production 

systems that lead to the production of defective products. 

Some studies on the consideration of imperfect production 

system have been considered by previous researchers. 

Aghsami et al. [33] developed an inventory model based on 

Markovian queueing model by considering imperfect process 

in the queueing system. The model has been tested in blood 

inventory management in a hospital. Another study that 

considered imperfect production factor to determine EPQ has 

been conducted by Ali et al. [34]. In that study, the defective 

products can be considered as rework or salvage units. 

Imperfect production consideration will affect to the over 

production planning that affect to the CO2 emissions. Priyan 

[35] studied about the effect of green investment to reduce the 

carbon emissions caused by an imperfect production system. 

Zhang et al. [36] proposed an Economic Manufacturing 

Quantity (EMQ) by considering condition-based maintenance 

and imperfect production. In addition to the EMQ, the 

threshold for preventive maintenance is also optimised using a 

semi-Markov decision process. Jauhari [37] studied about 

sustainable inventory model in a closed-loop supply chain by 

considering energy usage, imperfect production and green 

investment. In that study, the inventory level and the green 

investment were optimised by controlling the production rate. 

The sustainability factors considered are energy consumption 

and the carbon emissions. Product quality and environmental 

considerations will motivate a supply chain to invest in 

technologies that support both factors. Sepehri et al. [38] 

proposed a sustainable inventory model by taking into account 

investments in preservation technology to control the 

progression of product deterioration, carbon reduction 

technology, and quality enhancement technology to improve 

an imperfect production system. 

Dynamic and numerous variables consideration in a supply 

chain causes the analysis model of the supply chain to become 

stochastic; therefore, the simulation model is the most 

appropriate analysis model. In the subsequent subchapters, 

previous research on simulation models with optimisation is 

reviewed. 

 

2.4 Simulation optimisation 

 

A simulation system can provide greater realism and 

precision [39, 40] because it can display the actual status of 

system variables. Tan et al. [41] modelled stochastic rescue 

requests, time and space distribution of traffic, and the 

dynamic rescue process in an urban road network system using 

a simulation system. The simulation system used Particle 

Swarm Optimisation (PSO) as the optimisation tool to 

optimise the deployment plan for three types of road rescue 

vehicles. Badakhshan and Ball [42] suggested a combination 

of system dynamic simulation and GA to maximise the 

Economic Value Added (EVA) of a supply chain system with 

a single product and multi-customers. 

Saputro et al. [43] proposed a two-phase supplier selection 

analysis. In the first phase, Multi Criteria Decision Making 

(MCDM) techniques were used to select suppliers, while in the 

second phase, multi-objective simulation optimisation was 

used to maximise Total Value of Purchasing (TVP) while 

minimizing total cost. Continual monitoring of predictive 

maintenance and inventory policy in the series-parallel 

production system is yet another application of the simulation 

optimisation approach [44]. Mesquita and Tomotani [45] 

conducted another study that demonstrated the effectiveness 

of simulation-based optimisation. Two inventory control 

policies combined with an order-up-to lot sizing policy were 

simulated and optimised in order to minimise total inventory 

cost on a single machine with a sequence-dependent setup time. 

Cost optimisation for a supply chain system must be 

performed across the entire supply chain, which is referred to 

as JTC, as evidenced by the aforementioned works. In addition, 

in the lateral transhipment system, the majority of studies 

focused on inventory balancing at the buyer level, and reactive 

lateral transhipment from a buyer is still uncommon. 

Numerous studies have examined imperfect production 

systems, however, periodic imperfect production process that 

occur at random remain uncommon. Simulation-optimisation 

is a reliable approach for analysing a system's uncertainty, and 

it will be used in this study. Therefore, a significant 

contribution of the study is the analysis of a single-vendor 

multi-buyer supply chain system with multi-products, taking 

into account the random periodic imperfect production process 

using optimisation in-the-loop simulation based on AG. 

 

 
3. RESEARCH METHOD 

 
3.1 The supply chain description 

 
The supply chain system under consideration has one 

vendor and five buyers. There are five batik products that flow 

across the supply chains. The historical data indicates that 

Buyer 2 and 3 sometime make purchases from Buyer 1. On the 

other side, Buyers 1 and 3 sometime place an order to Buyer 

5, whereas Buyer 4 sometime orders from Buyer 2. Lateral 

transhipment refers to the practice of one buyer utilising 

another buyer's on-hand inventory. When the buyers anticipate 

stock-outs and place orders to other buyers, this is referred to 

as reactive transhipment [34]. Figure 1 depicts the supply 

chain system diagram under consideration. 

As described in the introduction, after several production 

units, the semi-automatic batik printers occasionally produce 

prints with defects. However, not all batik with printing 

defects can be reworked into successful batik goods. In order 

for vendors to fulfil orders from all customers, the production 

quantity of the batik products must take into account the 

probability that the batik printers will produce defective 

products and the number of defective batik products that can 

be reworked. 

 
3.2 The supply chain system variables and parameters 

 
The supply chain system was simulated using Microsoft 

Excel, during the simulation, the decision variables were 

optimised using GA. Therefore, this case study is considered 

as simulation-based stochastic optimisation. The decision 

variables and the parameters are explained in the nomenclature 

section at the end of this paper. 

 

3.3 Mathematical models development 
 

The main objective of the optimisation model is to minimise 

JTC, which consists of VTC and BTC. The subsequent sections 

detail the model development procedure. 

 

3.3.1 VTC model 

The first cost element of the VTC is VSC, determined by 

multiplying the total number of production runs for all 
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products by the setup cost per production run for all products. The following formula represents the VSC formula. 

 

 
 

Figure 1. The supply chain system diagram under consideration 

 

𝑉𝑆𝐶 = ∑ ∑ 𝑆𝑝𝑡 × 𝑃𝑅𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

 

𝑃𝑅𝑝𝑡 = {
1, 𝑖𝑓 𝑃𝐷𝑝 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) 

 

The second cost element of the VTC is VLC, determined by 

multiplying the total number of lost sales for all products by 

the lost sales cost per unit for all products. The following 

formula expressed the VLC formula. 
 

𝑉𝐿𝐶 = ∑ ∑ 𝐿𝑆𝑝𝑡 × 𝐿𝑂𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

 

𝐿𝑂𝑝𝑡 = 𝑚𝑎𝑥 (0; 𝐷𝑝𝑡 − (𝑃𝐷𝑝𝑡 + 𝑃𝑝𝑡−1)) 

𝐷𝑝𝑡 = ∑ 𝑄𝑝𝑡𝑏

𝐵

𝑏=1

; ∀𝑝; ∀𝑡 

(2) 

The next cost element of the VTC is VHC, determined by 

multiplying total ending inventories of all products by their 

carrying costs. The equation below illustrates the VHC 

formula. 

 

𝑉𝐻𝐶 = ∑ ∑ 𝐻𝑝𝑡 × 𝐼𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

 

𝐼𝑝𝑡 = 𝑚𝑎𝑥(0; (𝑃𝐷𝑝𝑡 + 𝑃𝑝𝑡−1) − 𝐷𝑝𝑡) 

𝐷𝑝𝑡 = ∑ 𝑄𝑝𝑡𝑏

𝐵

𝑏=1

; ∀𝑝; ∀𝑡 

(3) 

 

The last component of the VTC is the VWC, determined by 

multiplying the number of reworked all products by their 

rework costs per unit. The following equation depicts the VWC 

formula. 

 

𝑉𝑊𝐶 = ∑ ∑ 𝑃𝐷𝑝𝑡 × 𝑝𝑜𝑝𝑡 × 𝑅𝑊𝑝

𝑇

𝑡=1

𝑃

𝑝=1

 

𝑝𝑜𝑝𝑡 = {
0 ≤ 𝑝𝑜𝑝𝑡 ≤ 𝑃𝑂𝑝  , 𝑖𝑓 ∑ 𝑃𝐷𝑝 ≥ 𝑤𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

 

Hence, the VTC can be expressed as indicated by the 

following formula. 

 

𝑉𝑇𝐶 = 𝑉𝑆𝐶 + 𝑉𝐿𝐶 + 𝑉𝐻𝐶 + VWC (5) 

 

3.3.2 BTC model 

The BTC consists of BOC, BLC, and BHC. The BOC is 

determined by multiplying the order frequency during 

simulation by the ordering cost to the vendor or another buyer, 

as indicated in the following formula. 

 

𝐵𝑂𝐶 = ∑ ∑ ∑ ∑ ((𝐴0𝑡 × 𝑛𝑜𝑝𝑎0𝑡)

𝑇

𝑡=1

𝑃

𝑝=1

𝐵

𝑏=1

𝐵

𝑎=1

+ (𝐴𝑎𝑏𝑡 × 𝑛𝑜𝑝𝑎𝑏𝑡)) ; 𝑎 ≠ 𝑏 

𝑛𝑜𝑝𝑎0𝑡 = {
1, 𝑖𝑓 𝑄𝑝𝑎0 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑛𝑜𝑝𝑎𝑏𝑡 = {
1, 𝑖𝑓 𝑄𝑝𝑎𝑏 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6) 
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The BLC is calculated by multiplying the cost of lost sales 

for all products by the total number of lost sales for all products 

across all buyers, as indicated in the following equation. 

 

𝐵𝐿𝐶 = ∑ ∑ ∑ 𝑙𝑠𝑏𝑝𝑡 × 𝑙𝑜𝑏𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

𝐵

𝑏=1

 

𝑙𝑜𝑏𝑝𝑡 = 𝑚𝑎𝑥 (0; 𝑑𝑏𝑝𝑡 − (𝑄𝑝𝑎0 + 𝑄𝑝𝑎𝑏 + 𝑖𝑝𝑡−1)) 

(7) 

 

The BHC is calculated by multiplying the carrying cost for 

all products by the number of ending inventories for all 

products across all buyers, as stated in the following equation. 

 

𝐵𝐻𝐶 = ∑ ∑ ∑ ℎ𝑏𝑝𝑡 × 𝑖𝑏𝑝𝑡

𝑇

𝑡=1

𝑃

𝑝=1

𝐵

𝑏=1

 

𝑖𝑏𝑝𝑡 = 𝑚𝑎𝑥(0; (𝑄𝑝𝑎0 + 𝑄𝑝𝑎𝑏 + 𝑖𝑝𝑡−1) − 𝑑𝑏𝑝𝑡) 

(8) 

 

To calculate the BTC, sum the values of BOC, BLC, and 

BHC, as depicted in the following equation. 

 

𝐵𝑇𝐶 = 𝐵𝑂𝐶 + 𝐵𝐿𝐶 + 𝐵𝐻𝐶 (9) 

 

3.3.3 JTC model 

The JTC, which is the sum of the VTC and BTC, indicates 

the entire cost of the supply chain system, as indicated in the 

following formula. 

 

𝐽𝑇𝐶 = 𝑉𝑇𝐶 + 𝐵𝑇𝐶 (10) 
 

3.4 GA development 

 

As an optimisation tool, there are three essential 

components of genetic algorithms that are chromosome 

development, fitness function determination, and genetic 

operations including crossover and mutation. In the 

subsequent sub-sections, all of these essential details will be 

elaborated. 
 

3.4.1 Chromosome model 

As an evolutionary optimisation algorithm, GA will encode 

a model's decision variables as chromosomes to determine 

their optimal value. Table 1 displays the decision variable of 

the supply chain optimisation model and how they are encoded 

in the proposed GA. The decision variables are constrained to 

a maximum value of 3000 units due to the production capacity 

of the vendor and the overall buyer's demand, which never 

surpasses 3000 units. In order to provide a wide range of 

values for a gene by using a sufficient number of bits, therefore 

binary encoding is used in the proposed GA. 

When a is the index for all buyers and b is the index for 

buyer that received order from another buyer, according to 

Figure 1, then a will move from 1 to 5 and b value will be 1, 2 

and 5. Therefore, there will be P×5×5 genes in a chromosome. 

The proposed GA will be integrated with the supply chain 

simulation, resulting in a substantial increase in computation 

time. In order to reduce the computation time, the population 

size is made variable. The initial population size is fixed, and 

in subsequent generations, identical chromosomes will be 

reduced to two copies only, resulting in a decrease in 

population size. It will also prevent the GA from being stuck 

in local optimal conditions caused by the dominance of super 

chromosomes. 

 

Table 1. The decision variables and their encoding 

 
Decision Variable Encoding Max. Min. 

PDp Binary 3000 0 

RPp Binary 3000 0 

Qpa0 Binary 3000 0 

Qpab Binary 3000 0 

rpa Binary 3000 0 

 

3.4.2 Fitness function determination 

In GA, chromosomes with a high fitness value are able to 

survive until the final generation; thus, it is associated with 

maximisation. However, the objective of this study's 

optimisation model is to minimise the JTC, which is contrary 

to the GA searching concept. Therefore, fitness function of the 

chromosome is formulated as a big number, that always higher 

than JTC, subtracted by average of JTC during simulation, as 

shown in Eq. (11). 

 

𝑒𝑣 = 𝑔 −
𝐽𝑇𝐶

𝑇
 (11) 

 

3.4.3 Crossover mechanism 

This study employs a standard one-cut point crossover, 

which is based on randomly defined cutting points and normal 

sub-gene exchange. Nevertheless, the crossover operation is 

carried out for each gene on a chromosome. The mechanism 

of the one-cut point crossover for each gene is depicted in 

Figure 2. 
 

 
 

Figure 2. Mechanism of the one-cut point crossover 
 

3.4.4 Mutation mechanism 

A semi-guided non-uniform mutation process is utilised in 

the GA to explore values inside a variable's current value and 

its limit value. This mutation process alters the traditional non-

uniform mutation method introduced by Michalewicz [12]. 

The modification aims to increase the efficiency of the GA's 

exploration while preserving the stochastic character of its 

process. The mutation method directs the GA to adjust the 

mutant gene based on its fitness value. Despite this, the change 

in value remains arbitrary. The method of the semi-guided 

non-uniform mutation is explained by following procedure. 

Step 1: Select a gene in a chromosome based on mutation 

probability; 

Step 2: Decode the gene to be integer value; 

Step 3: Increase the decoded value with random delta and 

still lower than or equals to the maximum limit; 

Step 4: Evaluate the fitness value, if the fitness value is 

better than current fitness value, then go to Step 6, otherwise 

go to Step 5; 

Step 5: Decrease the decoded value with random delta and 

still higher than or equals to the minimum limit; 

Step 6: Encode the gene. 

For example, a randomly selected gene for PD1 00011101 

is converted to the value 29 by the decoding step. The next 

step will increase this value at random to 35. If the JTC with 

the new PD1 value is superior to the JTC with the previous PD1 
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value, the new PD1 value will be encoded and reinserted into 

the chromosome. If not, the previous PD1 value is reduced, 

encoded, and reinserted into the chromosome. 

 

 

4. RESULTS AND DISCUSSIONS 

 

This study took place at a batik supply chain system in 

Yogyakarta, Indonesia. There are five batik products (P=5) 

and five buyers (B=5) that are sell the batik products to the 

customers. There is only one vendor that serve all of the buyers. 

Tables 2-5 are the summary of the parameter values for the 

vendor and each buyer. 

 

Table 2. The parameter value for the costs 

 
Chain Parameter Value 

Vendor 

S 5700 

H1 3500 

LS1 5500 

H2 3500 

LS2 6500 

H3 3500 

LS3 4000 

H4 3500 

LS4 7000 

H5 3500 

LS5 4000 

RW1 1500 

RW2 1300 

RW3 1300 

RW4 1300 

RW5 1300 

Buyer 1 

A0 13000 

A15 13000 

h1 2000 

ls1 20000 

h2 2000 

ls2 25000 

h3 2000 

ls3 20000 

h4 2000 

ls4 20000 

h5 2000 

ls5 25000 

Buyer 2 

A0 8000 

A21 8000 

h1 2000 

ls1 25000 

h2 2000 

ls2 25000 

h3 2000 

ls3 25000 

h4 2000 

ls4 25000 

h5 2000 

ls5 25000 

Buyer 3 

A0 10000 

A31 8000 

A35 8000 

h1 2000 

ls1 25000 

h2 2000 

ls2 30000 

h3 2000 

ls3 25000 

h4 2000 

ls4 30000 

h5 2000 

ls5 25000 

Buyer 4 

A0 8000 

A42 8000 

h1 2000 

ls1 35000 

h2 2000 

ls2 25000 

h3 2000 

ls3 25000 

h4 2000 

ls4 25000 

h5 2000 

ls5 25000 

Buyer 5 

A0 13000 

h1 2000 

ls1 25000 

h2 2000 

ls2 25000 

h3 2000 

ls3 25000 

h4 2000 

ls4 35000 

h5 2000 

ls5 30000 

 

Table 3. The parameter value for the defective products 

 
p w PO Statistical Distribution 

1 5000 30% Poisson 

2 5000 30% Poisson 

3 5000 30% Poisson 

4 5000 30% Poisson 

5 5000 30% Poisson 

 

Table 4. The demand distribution from buyers to vendor 

 
From Buyer p Statistical Distribution 

1 

1 Normal (300, 35) 

2 Normal (10, 7) 

3 Uniform (22, 47) 

4 Uniform (2, 17) 

5 Normal (87, 7) 

2 

1 Normal (150, 20) 

2 Normal (50, 13) 

3 Uniform (100, 130) 

4 Uniform (10, 30) 

5 Normal (80, 20) 

3 

1 Uniform (30, 70) 

2 Normal (40, 10) 

3 Uniform (44, 83) 

4 Uniform (24, 93) 

5 Uniform (14, 33) 

4 

1 Uniform (120, 155) 

2 Uniform (30, 65) 

3 Uniform (20, 75) 

4 Uniform (10, 35) 

5 Uniform (10, 30) 

5 

1 Normal (60, 25) 

2 Uniform (20, 35) 

3 Uniform (80, 110) 

4 Normal (50, 20) 

5 Normal (90, 15) 

 

Table 5. The reactive transhipment demand distribution 

 
From Buyer To Buyer p Statistical Distribution 

1 5 

1 Uniform (2, 5) 

2 Uniform (2, 5) 

3 Uniform (3, 4) 

4 Uniform (4, 5) 
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5 Uniform (5, 8) 

2 1 

1 Uniform (2, 10) 

2 Uniform (5, 8) 

3 Uniform (5, 15) 

4 Uniform (4, 7) 

5 Uniform (2, 10) 

3 1 

1 Uniform (2, 15) 

2 Uniform (5, 7) 

3 Uniform (7, 9) 

4 Uniform (3, 11) 

5 Uniform (2, 7) 

3 5 

1 - 

2 - 

3 - 

4 - 

5 Uniform (3,6) 

4 2 

1 Uniform (7, 13) 

2 Uniform (2, 5) 

3 Uniform (4, 11) 

4 Uniform (3, 9) 

5 Uniform (1, 3) 

 

The simulation was conducted for 5 years (T = 60) to reach 

a state of equilibrium. The GA will be executed with i-

pop_size=30, pc=0.3, pm=0.5, and g=5000000000. The GA 

will terminate when the number of generations (gen) reaches 

500. After optimisation, the optimum JTC is IDR 

2.488.873.337 and the optimum values for the decision 

variables are shown in Table 6. 

 

Table 6. The decision variables values 

 
Decision Variable Value Decision Variable Value 

Q110 75 r11 461 

Q120 113 r12 412 

Q130 96 r13 1832 

Q140 179 r14 1487 

Q150 245 r15 1332 

PD1 686 RP1 187 

Q210 267 r21 47 

Q220 124 r22 107 

Q230 229 r23 104 

Q240 572 r24 131 

Q250 598 r25 97 

PD2 552 RP2 529 

Q310 79 r31 464 

Q320 123 r32 390 

Q330 174 r33 1789 

Q340 243 r34 1493 

Q350 83 r35 1333 

PD3 688 RP3 186 

Q410 79 r41 464 

Q420 123 r42 390 

Q430 174 r43 1789 

Q440 243 r44 1493 

Q450 83 r45 1333 

PD4 688 RP4 186 

Q510 79 r51 464 

Q520 123 r52 390 

Q530 174 r53 1789 

Q540 243 r54 1493 

Q550 83 r55 1333 

PD5 688 RP5 186 

 

From Table 6 above, the production lot-size in the vendor 

for all of the products is relatively higher than the reproduction 

point, except for product 2. It is because of product 2 has 

relatively high order variance from the buyers. The high order 

variance of product 2 is caused by the stochastic demand 

protection at the buyers represented by the reorder point is 

relatively lower compared to the other products.  

Naturally, defective production system factors will impact 

the vendor's production planning and inventory control. 

According to preliminary study, the optimum reproduction 

points for the vendor's batik products 1, 2, 3, 4, and 5 are 28, 

32, 1, 1, and 0 respectively. Thus, the optimal production 

points for products 1, 2, 3, 4, and 5 have increased to 159, 497, 

185, 185, and 186 units, respectively while the production 

quantity of all products are not significantly changed.  

The GA searching performance is shown in Figure 3, and 

from the figure, it can be analysed that start from generation 

209, there is no significant improvement of fitness value. It 

means that the GA has converged to the optimum solution. 

Contrary to deterministic optimisation, the fitness graph after 

GA has converged may be constant. In this optimisation-in-

the-loop simulation the fitness graph still subject to random 

variables variation. During optimisation process, minimum 

and maximum fitness based on maximum and minimum JTC 

also can be recorded. On the basis of Figure 3, it is also 

possible to conclude that JTC variance during optimisation 

process is comparatively low. The proposed optimisation-in-

the-loop simulation is therefore capable of optimising the 

supply chain model under stable state conditions. 

 

 
 

Figure 3. The proposed GA searching performance during 

simulation 

 

 

5. CONCLUSIONS 

 

From the preceding explanation, it can be concluded that the 

proposed optimisation model is able to provide optimum 

solution for the batik supply chain system under consideration, 

as indicated by the convergent GA. The proposed 

optimisation-in-the-loop simulation model is also capable of 

providing optimum solutions under steady-state conditions. 

From a managerial standpoint, the solutions are more reliable 

when dealing with changes in situations that do not change 

considerably. Another managerial recommendation is 

controlling the stock at the buyers from time to time to avoid 

lost sales. However, inventory level at the vendor is relatively 

stable. One of the most difficult aspects of using GA is 

ensuring that the algorithm does not become stuck in local 

optimum due to premature convergence and that it provides 

local optimum solutions. Because the proposed GA does not 

experience premature convergence, then the GA used in the 

optimisation-in-the-loop simulation system can be said fairly 

able to provide optimum solutions. 

For subsequent research, when the out-of-control 

probability of the vendor production system becomes high, the 

vendor requires a high level of autonomy to manage 
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production planning and inventory control. The optimisation 

model for chain systems should be modified to a vendor-

managed inventory (VMI) model. With the aid of information 

technology, the VMI model's optimisation results will be 

readily implemented with a high level of demand satisfaction 

at the buyers. 
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NOMENCLATURE 

 

 

General indexes 
 

p product index 

a, b buyer index 

c customer index 

t simulation period index 

 

General variables 
 

JTC joint total cost of the supply chain system 

T number of simulation period 

P number of products 

B number of buyers 

 

Vendor side (parameters) 
 

S set-up cost per production run (IDR) 

LSp lost-sales cost per unit of product-p (IDR/unit) 
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Hp carrying cost per unit of product-p per month 

(IDR/unit/month) 

RWp rework cost of product-p (IDR/unit) 

pop probability of production of product-p 

becomes out-of-control 

POp maximum probability of pop 

Dp demand from buyers of product-p 

wp number of productions of product-p where the 

production system starts out-of-control 

 

Vendor side (variables) 
 

PDp optimum production lot-size of product-p 

(units) 

RPp optimum re-production point of product-p 

(units) 

PRp number of production run of product-p (times) 

LQp number of lost-sales occurred of product-p 

Ip number of ending inventories of product-p 

VSC vendor’s total setup cost (IDR) 

VLC vendor’s total lost sales cost (IDR) 

VHC vendor’s total holding cost (IDR) 

VWC vendor’s total rework cost (IDR) 

VTC vendor’s total cost (IDR) 

 

Buyers side (parameters) 
 

A0 ordering cost per order with the vendor 

(IDR/order) 

Aab ordering cost per order of buyer-a with the 

buyer-b (IDR/order) 

lsp lost-sales cost per unit of product-p (IDR/unit) 

hp carrying cost per unit of product-p per month 

(IDR/unit/month) 

dpt demand from customers of product-p at 

simulation period-t (units) 

 

Buyers side (variables) 
 

Qpa0 optimum order quantity of product-p of buyer-

a with the vendor (units) 

Qpab optimum order quantity of product-p of buyer-

a with the buyer-b (units) 

rpa optimum reorder point of product-p (units) at 

buyer a 

nopa0 number of orders of product-p of buyer-a with 

the vendor 

nopab number of orders of product-p of buyer-a with 

the buyer-b 

lop number of lost-sales occurred of product-p 

ip number of ending inventories of product-p 

BOC buyers’ total ordering cost (IDR) 

BLC buyers’ total lost sales cost (IDR) 

BHC buyers’ total holding cost (IDR) 

BTC buyers’ total cost (IDR) 

 

GA 
 

i-pop_size initial population size 

pc crossover rate/probability 

pm mutation rate/probability 

gen number of generations 

g a big number 

ev fitness function of the chromosome 
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