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Lameness is one of the most serious diseases affecting chickens, which can also increase 

the risk of premature culling of chickens and cause huge economic losses. So far, the 

process of detecting chicken lameness and finding out its location is still carried out 

traditionally by farmers checking directly in the cage, but this can actually result in 

increased stress levels in the chickens. Computer vision-based approaches with deep 

learning have been widely used to help farm automation, but there are several things 

that need to be considered and are problems; these include light variables, occlusion. In 

this study, Faster Regions with Convolutional Neural Network (Faster R-CNN), Single 

Shot MultiBox Detector (SSD) and You Only Look Once (YOLO), which is a 

Convolutional Neural Network (CNN) network model was chosen to perform the 

detection, tracking, and mapping of chicken locations. YOLOv8 was combined Adam 

Optimizer to improve training performance. Based on the results, customized YOLOv8 

has the best mAP, support, precision and F1-Score values compared to the others, with 

0.922, 0.987, 0.990 and 0.988. The matrix of transformation and coordinate-to-meter 

conversion produces chicken locations that match real conditions, not just the position 

of pixel (x, y) coordinates. From the detection and tracking, the location of 1 sick 

(lameness) chicken and 7 healthy chickens were obtained. The results of this research 

can properly display the movement and position of chickens in the cage, so they can be 

used to monitor chicken welfare. 
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1. INTRODUCTION

High levels of stress in chicken livestock can cause health 

and welfare problems for chickens such as injury or lameness, 

which is not in accordance with the Welfare Quality 

Assessment Protocol for Poultry [1]. Lameness is one of the 

most serious diseases affecting chickens, which can also 

increase the risk of premature culling of chickens and cause 

huge economic losses [2]. So far, the process of detecting 

chicken lameness and finding out its location is still carried out 

traditionally by farmers checking directly in the cage, but this 

can actually result in increased stress levels in the chickens [3]. 

Apart from that, this traditional method is greatly influenced 

by the health and mental condition of the breeder, so it takes a 

long time and allows errors in detection and lameness of the 

chicken's location. Automatic monitoring of livestock in cages 

offers the convenience of locating chickens [4]. The location 

chickens in the cage are an critical parameter that can be 

utilized as an sign of the welfare and health status of chickens 

which in the future can be used as material for the 

improvement and management of individuals and chicken 

herds. 

Location-based services are currently developing very 

rapidly thanks to the development and application of 

technology based on user location information. However, 

reliable products for indoor locations were not found in 

previous studies [5]. So far, most locations use GPS, but this 

becomes a problem when indoors because the signal becomes 

weak, which makes the location less precise. As a result, 

indoor locations are still an important research subject to 

investigate. In general, indoor location mapping methods fall 

into two categories: fingerprint or RFID-based localization 

algorithms [6] and image library-based matching, which 

requires various image databases [7]. Although there is still a 

lot of research related to indoor location mapping using RFID 

or fingerprint-based technology, this method has several 

disadvantages [8] such as the cost of RFID which is not cheap, 

frequency signals that are easily disturbed, and loss of privacy 

when other people have access to the same reader. In its 

implementation, if the chicken tracking process is carried out 

en masse, it requires RFID to be installed on each chicken, 

while the number of chickens in the cage reaches thousands. 

This of course requires a lot of effort, a lot of time and of 

course a very large cost. However, computer vision 
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technology can solve this problem because it only requires 

installing several cameras in the cage to track the chickens 

instead of setting up a number of RFIDs for each chicken.  

Deep learning-based computer vision technology is 

currently developing rapidly. To solve problems in chicken 

coops, various deep learning-based approaches have been 

used. Some examples include the use of a Convolutional 

Neural Network (CNN) to estimate the number and density of 

chickens in a crowd [9], the use of a CNN with a ResNet 

architecture to detect unhealthy chickens [10], and the use of 

a CNN with an SSD architecture to identify the health status 

of chickens [11, 12]. Accuracy and efficiency, along with 

monitoring chicken behavior, are essential to determine the 

health and welfare of chickens [13-18]. CNN is an approach 

using deep learning methods specifically designed for object 

classification, so that it can be used for solving problems in the 

livestock sector [19]. The image-based localization method 

depends on the label tag assigned to the image, comparing the 

image with a database of tagged images to determine the 

closest and most similar match [20]. Pretrained Deep 

Convolutional Neural Networks can perform extraction of 

matching features, some researchers use SSDs to extract those 

matching features [21]. Conventional methods are used to 

detect objects, such as Viola-Jones Detector (VJ), Directional 

Gradient Histogram Detector (HOG), Deformable Part Based 

Model (DPM) [22-26]. Recent research utilizes deep 

convolution neural networks for faster and more accurate 

detection, such as the use of R-CNN, Faster R-CNN, and You 

Look Only Once (YOLOv1) [19, 27-29]. With a range of 

complex backgrounds, YOLOv8, a Deep Learning 

Convolutional Neural Network (CNN)-based method, can 

maximize item detection accuracy and speed in real time [30]. 

Several related studies have been carried out by researchers 

regarding the detection and tracking of chickens, such as 

detecting the location of chickens around the feed location 

using a tracking and detection algorithm called Faster R-CNN 

using a multi-angle view which in each additional frame will 

follow the movement of the camera. From 2000 the image data 

used achieved an accuracy of 89.6% when compared to human 

observations [31]. A study conducted an assessment of the 

distribution of 700 broiler chickens in cages. From the 

experimental results, the number of chickens that did not 

approach the feed area was calculated based on the number of 

chickens minus the total number of chickens that approached 

the feed area and it was found that 56% were not near the 

feeding route [32]. Research that detected the movement 

behavior of chickens around feed using the R-CNN and SVM 

algorithms obtained results of 92% [33]. Using real time 

computer vision technology to monitor the welfare of chickens 

in the cage using SISO modeling with root mean square results 

R2=0.60 [17]. 

Computer vision-based approaches with deep learning have 

been widely used to help livestock automation [34], but there 

are several things that need to be considered and are problems; 

these include light variables, occlusion, movement, and a 

number of other environmental factors that can influence the 

quality of the resulting system [35]. Apart from that, natural 

factors will cause actual data and experimental data to differ 

significantly when experimental results are applied to real-

world natural settings. Several disciplines must be integrated 

to apply visual technologies in the field of livestock 

automation, and different anomalies will have a significant 

impact on real-world applications. It is difficult to guarantee 

accurate, reliable and real-time performance of related 

technologies [36]. Most previous studies discussing chickens 

have only found the location of chickens around certain feed 

or objects, so they could not show the location of chickens in 

the cage as a whole. This opens up opportunities to develop 

locations in poultry farms, especially chickens in cages. This 

research focuses on the use of convolutional neural networks 

(CNN) to map the location of lame chickens based on the 

process of tracking movements and identifying chickens in 

cages.  

 

 

2. MATERIAL AND METHOD 
 

In this area, we attempt to depict the proposed strategy, the 

method of mapping the location of chickens in cages consists 

of three components, namely: preparation, detection and 

tracking of chickens, mapping the location of chickens. These 

workflow components can be described as follows: 

(1) Preparatory components, used for shooting chickens by 

carrying out the calibration process and installation of several 

cameras with various positions and angles of the cage. 

(2) Chicken detection and tracking components, which start 

from the stage of loading videos, converting video to images, 

labelling, divide images to training-testing-validation, 

proposing preprocessing, augmentations and optimizer, 

evaluation of trained YOLOv8, to the stage of displaying 

results. 

(3) The component of mapping the location of chickens, 

estimating the position of chickens in the cage with pixel 

coordinate stages, perspective transform and finally displaying 

the coordinates of chicken objects. 

The workflow of mapping the location of chickens in cages 

can be seen in Figure 1. 

 

 
 

Figure 1. Overview of methods for mapping the location of 

chickens in cages 
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2.1 Dataset characteristic 

 

The dataset was obtained from Indra Farm, which is a 

broiler chicken farm in Kudus City. The area of each chicken 

coop is 600m2 with partitions every 60m2. Sample data taken 

in an area of around 15m2 contained 8 chickens. The video was 

recorded using a Yi-Lite action Cam camera with a resolution 

of 1920×1080 pixels (frame width×height) and a frame rate of 

29.75fps. 

The chicken dataset was taken from video recordings of 

chicken activities in cages carried out with several cameras, 

lighting conditions, and camera angle positions were varied. 

The camera is installed for 24 hours to get optimal video of 

chicken movements, but for sample data it uses 18,000 frames. 

Examples of images from the video taken can be seen in Figure 

2 and Figure 3. 

 

 
 

Figure 2. Sample image from video with bright lighting 

 

 
 

Figure 3. Example image from video with dark lighting 

 

During the observation process, the specific behavior 

obtained was that healthy chickens were actively moving. 

Healthy chickens were busy pecking and excited when they 

saw the food they were given. Apart from that, healthy 

chickens communicate with each other, some chickens even 

make a lot of noise. Meanwhile, chickens that are sick or 

lameness show different behavior, such as losing their appetite, 

not even moving at all from a certain position and still 

appearing to be sleeping. 

 

2.2 Multi camera 

 

The problem of object tracking has become a popular area 

of research in recent times [37]. Normally, each chicken object 

is tracked consistently in a single video but the fact of 

occlusion makes this a challenge. Therefore, the proposed 

solution is to set up several cameras to ensure the movement 

of some of those objects [38]. 

In this research, the camera self-calibration method [39] 

was used. This calibration method can be performed 

independently of shooting the object. This method is very 

suitable for non-metric cameras because it can eliminate the 

impact of interior orientation instability of the photo. The 

camera's intrinsic and extrinsic parameters are required for 

calibration [40]. The extrinsic parameters of the camera are not 

related to the internal parameters, such as focal length, field of 

view, etc. Extrinsic parameters depend only on the location 

and orientation of the camera. On the other hand, the camera 

model's intrinsic matrix governs the images and parameters 

such as focal length, aperture, field of view, resolution, etc. 

based on the way the camera is captured. Intrinsic matrices 

convert points from a camera coordinate system to a pixel 

coordinate system, while extrinsic matrices convert points 

from a world coordinate system to a camera coordinate system. 

Multi-camera scenarios are carried out in the cage, so 

occlusion can be minimized. The multi-camera calibration 

used indicates that there are several cameras which are then 

numbered 0, 1, 2. There are steps for the calibration process, 

namely: initialize parameters with two cameras that have a 

wide viewing angle selected with the first camera used for 

calibration and the second as a reference. Illustration of 

multiple cameras to take picture objects can be seen in Figure 

4. 
 

 
 

Figure 4. Multi camera 

 

2.3 Perspective transform 

 

Homography is the mapping between two planar surface 

images from different perspectives [41] or also referred to as a 

technique in image transformation to change one image plane 

of one camera into a different camera view by changing the 

position and rotation of each camera [42]. 

A simple example of homography is the use of a document 

scanner application, if it is noticed that the results produced by 

the application, no matter how the position of holding the 

phone, appear as if scanning documents directly from above 

(broad view), this is one technique on computer vision called 

homography (aka Perspective Transformation). 

In a linear basis, an example of homography calculation 

with a matrix of 3×3 is as follows: 
 

𝐻 = [

ℎ00 ℎ01 ℎ02

ℎ10 ℎ11 ℎ12

ℎ20 ℎ21 ℎ22

] (1) 

 

If you look at the first set of corresponding points [x1, y1] 

and [x2, y2]. Thus, homography H maps it in the following 

way: 
 

[
𝑥1

𝑦′

1

] = 𝐻 [
𝑥2
𝑦2
1

] = [

ℎ00 ℎ01 ℎ02

ℎ10 ℎ11 ℎ12

ℎ20 ℎ21 ℎ22

] [
𝑥2

𝑦2

1

] (2) 

 

There are 8 unknown parameters in projective 

transformation matrix and there is 1 unknown scaling 

coefficient w for each point. With 4 points, there are 8+4×1=12 

unknowns. Each point provides 3 equations. Using 4 points, 

there are 12 equations for 12 unknowns. 
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[
𝑥′

𝑦′

𝑧′

] = [

𝐴00 𝐴01 𝑏0

𝐴10 𝐴11 𝑏1

ℎ0 ℎ1 1
] [

𝑥
𝑦
1
] (3) 

 

Or 𝑤 [
𝑥′

𝑦′

1

] = [

𝐴00 𝐴01 𝑏0

𝐴10 𝐴11 𝑏1

ℎ0 ℎ1 1
] [

𝑥
𝑦
1
] (4) 

 

Transformation equation for point 𝑝0 = [
𝑥0

𝑦0
] (5) 

 

𝑤0 [
𝑥0′

𝑦0′
1

] = [

𝐴00 𝐴01 𝑏0

𝐴10 𝐴11 𝑏1

ℎ0 ℎ1 1
] [

𝑥0

𝑦0

1
] (6) 

 

Three equations for 1 point. 
 

𝑤0𝑥0′ = 𝐴00𝑥0 + 𝐴01𝑦0 + 𝑏0 (7) 
 

𝑤0𝑦0′ = 𝐴10𝑥0 + 𝐴11𝑦0 + 𝑏1 (8) 
 

𝑤0 = ℎ0𝑥0 + ℎ1𝑦0 + 1 (9) 
 

Grouping variables on one side. 
 

𝐴00𝑥0 + 𝐴01𝑦0 + 𝑏0 − 𝑤0𝑥0′ = 0 (10) 
 

𝐴10𝑥0 + 𝐴11𝑦0 + 𝑏1 − 𝑤0𝑦0′ = 0 (11) 
 

ℎ0𝑥0 + ℎ1𝑦0 − 𝑤0 = 1 (12) 
 

In matric-vector form, 
 

[
𝑥0 𝑦0 1
0 0 0
0 0 0

    
0 0 0
𝑥0 𝑦0 1
0 0 0

    

0 0 −𝑥0′

0 0 −𝑦0′
𝑥0 𝑦0 −1

] =

[
 
 
 
 
 
 
 
 
𝐴00

𝐴01

𝑏0

𝐴10

𝐴11

𝑏1

ℎ0

ℎ1

𝑤0 ]
 
 
 
 
 
 
 
 

[
0
0

−1
] (13) 

 

12 equations (4 points) in matrix-vector form. 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑥0

0
0
𝑥1

0
0
𝑥2

0
0
𝑥3

0
0

 𝑦0

0
0
𝑦1

0
0
𝑦2

0
0
𝑦3

0
0

 1
0
0
1
0
0
1
0
0
1
0
0

0
 𝑥0

0
0
𝑥1

0
0
𝑥2

0
0
𝑥3

0

0
 𝑦0

0
0
𝑦1

0
0
𝑦2

0
0
𝑦3

0

0
1
0 
0
1
0
0
1
0
0
1
0

0
0
𝑥0 

0
0
𝑥1

0
0
𝑥2

0
0
𝑥3

0
0
𝑦0

0
0
𝑦1

0
0
𝑦2

0
0
𝑦3

−𝑥0′

−𝑦0′
−1
0
0
0
0
0
0
0
0
0

0
0
0

−𝑥1′

−𝑦1′
−1
0
0
0
0
0
0

0
0
0
0
0
0

−𝑥2′

−𝑦2′
−1
0
0
0

0
0
0
0
0
0
0
0
0

−𝑥3′

−𝑦3′
−1 ]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝐴00

𝐴01

𝑏0

𝐴10

𝐴11

𝑏1

ℎ0

ℎ1
𝑤0

𝑤1
𝑤2

𝑤3 ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

0
0

−1
0
0

−1
0
0

−1
0
0

−1]
 
 
 
 
 
 
 
 
 
 

 (14) 

 

After computing solution, first 8 elements of the vector are 

kept. 4 elements last scaling coefficients are discarded and 1 is 

appended. 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝐴00

𝐴01

𝑏0

𝐴10

𝐴11

𝑏1

ℎ0

ℎ1
𝑤0
𝑤1

𝑤2
𝑤3 ]

 
 
 
 
 
 
 
 
 
 
 

 9 element vector is reshaped as 3×3 matrix 

[
 
 
 
 
 
 
 
 
𝐴00

𝐴01

𝑏0

𝐴10

𝐴11

𝑏1

ℎ0

ℎ1

1 ]
 
 
 
 
 
 
 
 

 (15) 

[

𝐴00 𝐴01 𝑏0

𝐴10 𝐴11 𝑏1

ℎ0 ℎ1 1
] (16) 

 

[
𝑥′

𝑦′

𝑧′

] = [

𝐴00 𝐴01 𝑏0

𝐴10 𝐴11 𝑏1

ℎ0 ℎ1 1
] [

𝑥
𝑦
1
] (17) 

 

Remember when going back to cartesian coordinates x’ and 

y’ are divided by z’ 

 
𝑥′

𝑧′
     

𝑦′

𝑧′
 (18) 

 

2.4 Pre-processing and augmentations of chicken dataset 

 

The chicken dataset automatically adjusts the image data's 

size, orientation, cropping, and noise reduction. The data 

preprocessing stage was carried out using the Python 

programming environment. The data was also contrast-

corrected and transformed to grayscale. By doing this, the 

dataset is made better for analysis and a more effective model 

is produced.  

The image is rotated, flipped, and its brightness is changed 

to finish the data augmentation stage after the prior data 

pretreatment step. Augmentation is used to increase the 

amount of data by making modifications to the existing 

chicken dataset. The purpose of this data augmentation is to 

add more data, which increases the final model's complexity 

and potential to increase accuracy. 

 

2.5 Object detection algorithm 

 

In the field of computer vision, object detection has 

developed rapidly [43]. One of the most challenging topics in 

the field of computer vision because it has to perform a 

combination of object classification and object localization. 

Simply put, the goal of this detection method is to find out 

where each object is located in an image, which is called object 

localization, and to put each object into a category called 

object classification. The three most well-known object 

detection algorithms are the faster R-CNN, YOLO and SSD. 

A team of Microsoft researchers created the Faster R-CNN 

model. For object detection, Faster R-CNN is a deep 

convolutional network that presents to the user as a single, 

end-to-end, unified network. The network has the ability to 

swiftly and precisely anticipate the positions of various items. 

The networks that Faster R-CNN evolved from, R-CNN and 

Fast R-CNN, came first. An expansion of Fast R-CNN is 

called Faster R-CNN. Because of the region proposal network 

(RPN), quicker R-CNN performs quicker than Fast R-CNN, 

as its name implies [19]. 

Despite not having a delegated region proposal network, 

SSD (single shot detector) predicts boundary boxes and 

classes directly from feature maps in a single pass. SSD can be 

trained end-to-end for better accuracy. SSDs have better 

location coverage, scale, and aspect ratio. The model can run 

at real-time speed and still beat state-of-the-art Faster R-CNN 

accuracy by eliminating delegated region proposals and using 

lower resolution images [12]. 

YOLO is an algorithm that can detect objects in real-time 

by using neural network theory to learn patterns. In their 

famous research paper "You Only Look Once: Unified, Real-

Time Object Detection", the authors frame the object detection 

542



problem as a regression detection problem (finding numerical 

values instead of categorical) rather than a classification task. 

By separating bounding boxes spatially and associating 

probabilities to each image detected using CoCo, the authors 

frame the YOLO algorithm which was first introduced in 2015. 

This algorithm is used to detect traffic signals, people, meters. 

parking, and animals because it is very accurate and fast [29].  

Optimization algorithms play a key role in deep learning by 

facilitating neural networks' efficient learning and 

convergence to optimal solutions. The Adam optimizer is one 

of the most widely used optimization algorithms for deep 

neural network training, and both researchers and practitioners 

are still fascinated by the pursuit of optimal performance and 

training efficiency [44]. Adaptive moment estimation, or 

"Adam" optimizer, is a term for an iterative optimization 

process that reduces the loss function when neural networks 

are being trained [45]. 

To put it briefly, CNN has an object detection method that 

may be used to track and map an object's location. The three 

popular object identification algorithms are YOLO, SSD, and 

Faster R-CNN. Therefore, apart from studying the chicken 

dataset using the Faster R-CNN and SSD algorithms, the 

research also widens the reach of the Adam optimization 

technique which will be integrated with YOLO. 

 

2.6 Implementation environment 

 

In this section, deep learning analysis of tracking and 

mapping chicken locations with chicken data sets is 

implemented using a number of object detection algorithms, 

such as Faster R-CNN, SSD and YOLO. Using a Jupyter 

notebook and the sklearn packages, the Anaconda platform 

was utilized to program in Python [46]. Operating system: 

Windows 10 Pro from Microsoft CPU: 4×2.50GHz Intel(R) 

Core(TM) i5-7200U CPU; RAM: 12288 MB; SSD: 250 GB; 

GPU: 2 GB NVIDIA GeForce 940MX; These parameters 

were followed in the execution of every experiment. 

In this study, SSD, Faster R-CNN, YOLOv8 and YOLOv8 

with Adam optimizer was selected to perform detection and 

tracking. This stage makes the chicken object labeled into two, 

namely: healthy chickens and lame chickens. The learning rate 

for the optimizer is 0.001 with Batch size 16. The epoch was 

gradually added to find the best model training results, and in 

the 100th epoch the training results were obtained with the best 

accuracy value.  
 

2.7 Evaluation method 
 

The four metrics used by the object detection algorithm in 

CNN for analysis are mAP, Recall, Precision, and F1-Score. 

The analysis of the chicken dataset for tracking and mapping 

location lameness chicken in this chapter is based on 

experiments; four (4) advanced evaluation metrics have been 

selected to test the strengths and weaknesses of the CNN 

method technique. Mapping of the evaluation metrics is 

presented in this subsection. 

 

𝑚𝐴𝑃@𝛼 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1  for n classes (19) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (20) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

𝐹1 = 2 ∗
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

 
(22) 

 

 

3. RESULT AND DISCUSSION 

 

Using the chicken dataset, the CNN model for detection and 

tracking lameness chicken was effectively implemented 

following experimental testing. This section presents the 

findings and a discussion of the experimental analysis of the 

study's chicken dataset. The four standard metrics mAP, F1-

score, precision, and recall that are used to assess the chicken 

dataset in this study are presented in detail in this section. SSD, 

YOLO, and Faster R-CNN are the deep learning-based 

detection techniques that are assessed and explored. 

Additionally, YOLO and the Adam optimizer method will be 

integrated. 

 

3.1 Results 

 

The evaluation outcomes are predicated on the most 

advanced performance metrics available for deep learning in 

general; these metrics include mAP, precision, F1 score, and 

recall [47]. For each of the four evaluation methods that were 

employed, all experimental parameters were left at their 

default settings. A suitable, pre-trained chicken dataset. A 

comparison of the outcomes of three distinct object detection 

methods using the chicken dataset is provided, as was 

previously covered in Section 2. All other performance 

measures have values between 0 and 1. The strategy is better 

as the metric value approaches 1. The performance analysis of 

the CNN approach for object detection on the chicken dataset 

in this work is presented in Table 1. 

 

Table 1. Performance analysis of object detection algorithm 

on chicken dataset 

 

Methods 
Faster R-

CNN 
SSD YOLOv8 

YOLOv8 

Custom 

mAP 0.897 0.845 0.914 0.922 

Precision  0.918 0.856 0.968 0.987 

Recall  0.892 0.827 0.953 0.990 

F1-Score 0.905 0.841 0.960 0.988 
 

 
 

Figure 5. Perspective transform for indoor location mapping 
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Perspective transform is a very useful feature when 

synchronizing images. The perspective transform process 

begins with knowing the coordinates (x, y) of the pixel from 

the source, which will then be transformed according to the 

coordinates (x, y) of the destination pixel. Broadly speaking, 

the perspective transform process can be seen in Figure 5. 

From the image example above, it is known that the 

coordinates (x, y) of the image source pixel are [[760, 434], 

[1200, 424], [380, 1064], [1900, 1064]], while for the 

coordinates (x, y) of the image destination pixel is [[0, 0], 

[1920, 0], [0, 1080], [1920, 1080]]. Based on the values of the 

source and destination coordinates, the resulting 

transformation matrix is as follows: 

 

[
−5.9203594805 −3.5710104803 6049.2917536526
−0.1753952653 −7.7173916721 3482.6483873065
−0.000162403 −0.0050548736 1

] (23) 

 

To calculate the coordinate location after perspective 

transform, the source pixel value is multiplied by the matrix 

transformation as follows: for example, the pixel coordinates 

of a sick chicken object are [836.742], then: 

 

(1) Step 1-The transformation matrix is multiplied by the 

value of the (x, y) coordinate pixels as follows: 

 

[
−5.9203594805 −3.5710104803 6049.2917536526
−0.1753952653 −7.7173916721 3482.6483873065
−0.000162403 −0.0050548736 1

] × 

[
836
742
1

] = [
−1549.818548
−2390.286675
−2.886485119

] 

(24) 

 

(2) Step 2-The value obtained from the first two rows is 

divided by the third row so that it is obtained (x, y) as 

given below: 

 
[1549.818548/ −2.886485119, −2390.286675 / −2.886485119]

=  [536,922, 828,096] (25) 

 

(3) Step 3-Convert the value of the destination 

coordinate into real size / meter scale by doing a scale, 

the length of the X coordinate [0.1920] is equal to 3 

meters, while the length of the Y coordinate [0.1080] 

is equal to 5 meters. 

 

Table 2. Matrix transformation and conversion to meters 

 

No. Label Source [x, y] 
Destination  

[x, y] 

Real [x, y] 

Meter 

1 

Sick 

(lameness) 

chickens 

[836,742] 
[536.922, 

828.096] 
[0.839, 3.834] 

2 
Healthy 

Chickens 
[918,855] 

[702.625, 

944.031] 
[1.098, 4.371] 

3 
Healthy 

Chickens 
[1183,872] 

[1130.124, 

959.566] 
[1.766, 4.442] 

4 
Healthy 

Chickens 
[1054,894] 

[916.813, 

975.973] 
[1.433, 4.518] 

5 
Healthy 

Chickens 
[1098,993] 

[952.229, 

1041.807] 
[1.488, 4.823] 

6 
Healthy 

Chickens 
[925,1015] 

[712.841, 

1054.153] 
[1.114, 4.880] 

7 
Healthy 

Chickens 
[1368,1021] 

[1299.455, 

1057.847] 
[2.030, 4.897] 

8 
Healthy 

Chickens 
[1493,993] 

[1486.598, 

1042.382] 
[2.323, 4.826] 

 

From the process of matrix transformation and conversion 

of coordinates into meters, resulting in the location of the 

position of the chicken in the cage as shown in Table 2. 

 

3.2 Discussion 

 

To make sure the developed model can investigate the issue 

of detecting, tracking, and mapping lameness in chickens, an 

evaluation matrix is required. Figure 6 illustrates this 

evaluation of the model using the F1-score, recall, maAP, and 

precision values.  

 

 
 

Figure 6. Lameness chicken detection using a confusion 

matrix 

 

Specific details: 

TP: True Positive, meaning that the offense is both 

anticipated and actual. 

FP: False Positive; a violation is anticipated but not actually 

occurred. 

FN: False Negative; although the infraction is expected to 

exist, it does. 

TN: True Negative; no infraction is demonstrated, as is 

anticipated.  

The data set is separated into three sections: test sets for 

model evaluation, training and validation sets for model 

training. The test data set is constructed with items the model 

has never seen before, which serves as a measure of the 

model's generalization capabilities, even though several 

objects are used to create the training and validation data sets. 

In actual use, a single object can be used to train the model, 

which produces excellent occlusion resolution performance 

with that particular object but poor applicability to other 

objects. In this study, we used a restricted amount of photos 

(12,600 for training, 3,600 for validation, and 1,800 for 

testing) involving two types of objects, namely lame chickens 

and healthy chickens to get good performance. 

This performance is deemed sufficient for resolving 

occlusion in tracking scenarios. Top performance can be 

obtained by retraining the model with a larger corpus of photos 

or optimizing specificity by training with a single object type, 

all made possible by a streamlined workflow. In order to 

improve the model's comprehension of perspective, it also 

entails adding a dataset with a varied background and 

changing the scale of the top or bottom object. Moreover, 

enhancing edges in images through sharpening has been 

successful in resolving occlusion issues. 

 

3.2.1 mAP 

The mAP of the object identification algorithm utilizing the 

chicken dataset from this study is shown in Figure 7, with 

values of 0.897, 0.845, 0.914, and 0.922 for Faster R-CNN, 

SSD, YOLOv8, and YOLOv8 Custom, respectively. Since the 

optimal approach is the one with a rate that is closer to 1. For 

this reason, YOLOv8 Custom is superior to the others. 
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Figure 7. CNN model detection chicken dataset mAP 
 

3.2.2 Precision 

The precision of the object identification algorithm utilizing 

the chicken dataset from this study is shown in Figure 8, with 

values of 0.918, 0.856, 0.968 and 0.987 for Faster R-CNN, 

SSD, YOLOv8, and YOLOv8 Custom, respectively. Since the 

optimal approach is the one with a rate that is closer to 1. For 

this reason, YOLOv8 Custom is superior to the others. 

 

 
 

Figure 8. CNN model detection chicken dataset precision 

 

3.2.3 Recall 

The recall of the object identification algorithm utilizing the 

chicken dataset from this study is shown in Figure 9, with 

values of 0.892, 0.827, 0.953 and 0.990 for Faster R-CNN, 

SSD, YOLOv8, and YOLOv8 Custom, respectively. Since the 

optimal approach is the one with a rate that is closer to 1. For 

this reason, YOLOv8 Custom is superior to the others. 

 

 
 

Figure 9. CNN model detection chicken dataset recall 
 

 
 

Figure 10. CNN model detection chicken dataset F1-Score 

3.2.4 F1-Score 

The F1-Score of the object identification algorithm utilizing 

the chicken dataset from this study is shown in Figure 10, with 

values of 0.905, 0.841, 0.960 and 0.988 for Faster R-CNN, 

SSD, YOLOv8, and YOLOv8 Custom, respectively. Since the 

optimal approach is the one with a rate that is closer to 1. For 

this reason, YOLOv8 Custom is superior to the others. 

From the results of this research, it can be seen that the 

YOLOv8 method with a combination of Adam Optimizer is 

able to properly detect chicken objects in the cage, and track 

the chicken's movements, so that mapping of the chicken's 

location can be carried out. In precision farming, mapping the 

location of chickens that are healthy or not can help farmers 

identify unhealthy chickens quickly and easily compared to 

traditional monitoring. Detecting, tracking and mapping the 

location of chickens in the cage using computer vision-based 

technology can save costs and time for manual monitoring, 

and can reduce detection errors caused by human error. By 

knowing the unhealthy condition of chickens, you can avoid 

mass deaths of chickens in cages, which will have an impact 

on losses in the production process on chicken farms. 

 

 

4. CONCLUSIONS 

 

Faster R-CNN, SSD and YOLOv8 can be used to object 

detection of lameness chicken objects well, but from the 

various object detection algorithms, YOLOv8 with 

combinations of Adam optimizer algorithms as well as several 

preprocessing and augmentation configurations, as the best 

mAP, support, precision and F1-Score values compared to the 

others. The matrix of transformation and coordinate-to-meter 

conversion produces chicken locations that match real 

conditions, not just the position of pixel (x, y) coordinates. 

From the detection and tracking of 8 chickens in the cage 

divider, the location of 1 sick (lameness) chicken and 7 healthy 

chickens were obtained.  

High evaluation results help farmers avoid errors and 

mistakes as well as delays in detecting chickens, such as 

during traditional monitoring, errors in the detection process 

result in chickens already dying which can have an impact on 

the welfare of other chickens, this can lead to the risk of mass 

chicken deaths in the cage. Computer vision technology, 

which does not directly observe and touch the chickens one by 

one, can speed up the detection process over a large area, 

thereby saving time and costs, this can of course increase the 

production of chicken farms. To improve the system's 

performance in dealing with occlusion and different lighting 

levels, in training, adding data sets with varying backgrounds 

and changing the scale of objects up or down, as well as 

increasing image edges through sharpening have succeeded in 

overcoming the occlusion problem. From this system, 

different chicken behavior can be detected well, both when the 

chicken is actively moving or staying in a place for a long time 

which can indicate that the chicken is unhealthy.  

The results of this study can display the movement and 

position of the location of chickens in the cage, so that it can 

be used as a monitoring of chicken welfare. The automated 

detection, tracking and mapping process based on computer 

vision, in the future, can provide an alternative change in 

traditional monitoring of livestock activity. This is clearly 

because computer vision-based technology has advantages, 

including being faster, simpler to use, reducing detection 

errors, and of course save costs. 
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NOMENCLATURE 

 

CNN convolutional neural networks 

HOG histogram of oriented gradients 

RFID radio frequency identification 

R-CNN regions with convolutional neural networks 

SSD single shot multibox detector 

SHOT stacked homography transformations 

SVM support vector machine 

VJ viola-jones detector 

YOLO you only look once 

547



Greek symbols 

Α, b parameter of projective transformation matrix 

H matrix homography 

h parameter of a matrix homography 

p point coordinates 

w scaling coefficient 

x horizontal axis 

y vertical axis 

z 3D cartesian axis 
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