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The introduction of dynamic constraints to multi - criteria scheduling problems with
regular objective function makes release dates a variable. Therefore, normalization
equations for linear composite objective function are influenced by the release date.
This work established the equations using the linear min-max method. Normalization
equations for twelve (12) different objective functions, with both the cost and benefit
orientation equations are established. The need for normalization was also established
and the basis for deriving normalization equation for any multicriteria scheduling
problems from the single criteria objective was established. The normalization
equations for some multicriteria scheduling problems found in the literature were also
established. This work will encourage researcher to explored composite objective

functions for quantitative analysis of multicriteria problems.

1. INTRODUCTION

In a multi-criteria scheduling problem, two or more
performance measures may be aggregated to form a composite
function (simultaneous optimization) or a complex problem is
divided into simpler sub-problems, and each level is optimized
independently according to their importance [1]. This is called
hierarchical optimization. A dominated and a non-dominated
solution can also be obtained for a multi-criteria scheduling
problem using a continuously updated algorithm. This is called
pareto optimization.

In simultaneous optimization, each objective function is
expressed as a component of a composite function [2]. Three
different types of composite functions; linear, quadratic and an
arbitrary composite function are extensively discussed by
J&efowska [3]. For each of the classes, the objective function
is expressed mathematically. The general expression for the
three classes is given in the Egs. (1)-(3) using a bicriteria
problem with objective function, A and B.

Linear Composite Function

i=1(@iA; + BiBy) (1)
Quadratic Composite Function
i (@Af + BiBY) (2)
Arbitrary Composite Objective Function (ACOF)
i fAA) + fE(BY) 3)

The solution approach of interest in this work is
simultaneous approach using the linear composite objective
function (LCOF). The challenges of skewness when the value
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of a performance measure dominates over other as well as
dimensional imbalance for heterogeneous input data has been
reported for simultaneous optimization [4]. Normalization of
the input data before aggregation to form composite function
is the proffered solution [5].

Five different normalization techniques; three of which are
linear methods (sum, max, and max-min) and two non —linear
(enhanced accuracy and vector method) was reported by
Aytekin [6]. According to the study made by Vafaei et al. [7],
linear max-min is the best techniques for a simple addition
weighting system like linear composite function. The linear
max—min method involves the determination of the maximum
and minimum values of the criterion to be optimized. These
parameters are called the extreme values. The normalization
expression changes with the different objective functions as
well as the job environments. In dynamic job environment,
release dates is the parameter, and thus it influences the
normalization equation. The objective of this work is to derive
normalization equations for regular scheduling criteria under
non-zero release date constraints using the linear min-max
method.

Dynamic environment with distinct release dates is
considered. In this regard, this work established the linear
max-min normalization equations for regular performance
measures with distinct release dates jobs.

The remainder of this paper is organized as follows.

Relevant literature on the application of different
normalization techniques in multi criteria decision making are
discussed in section 2. Section 3 defines the problem using
some examples found in the literature as a case study. Section
4 discusses in details the use of linear; min-max techniques to
determines the normalization equations for Fourteen (14)
different regular scheduling criteria with imposed dynamic
constraint on job availability. The derived equations were also
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implemented for some existing problems found in the
literature. Conclusion and further research were discussed in
section 5.

2. LITERATURE SURVEY

Normalization is a pre-processing stage for multi-criteria
optimization problems used in several fields ranging from
computing, material selection, medical and biological
application, financing, industrial and project management
among others [8]. Numerous researchers in various fields have
explored the process within different context. For an instance,
in the field of synthetic biology, Degasperi et al. [9] compared
objective functions that use data-driven normalisation of the
simulations with those that use scaling factors. According to
Ersoy [10], normalization for multicriteria optimization
problems can be classified into various ways; the need for
normalization of objective functions, selection of suitable
normalization techniques, studying the effects of different
normalization techniques among others. Jain et al. [11]
proposed a method for dynamic selection (DS) of optimal
normalization technique using data complexity measures. The
work evaluates 14 popular learning algorithms for designing
dynamic selection model for the selection of optimal
normalization technique. In order to design this dynamic
selection model, 12 different data complexity measures are
extracted for 48 different benchmark datasets. Akande [12]
studied the need for normalization techniques in multicriteria
scheduling problems. The studies of suitable normalization
techniques for simple weighting method of solving
multicriteria problem as well as hierarchy solution method was
explored by Vafaei et al. [7, 13] respectively. The comparative
analysis of linear and vector normalization methods in
decision making for learning quota assistance was studied by
Budiman and Hairah [14]. Ranking of solution based on
normalization techniques was also discussed by Lakshmi and
Venkatesan [15].

According to Vafaei et al. [7], it was stated that the linear
min max method is the suitable normalization techniques for
simple weighting method of solving multicriteria problem.
The method is a subset of orientation dependent normalization
techniques which is either benefit orientation or cost
orientation. For this class, the normalization equation changes
for different criteria as well as the imposed constraints. There
are numerous multicriteria scheduling problems with release
dates found in the literature that requires normalization in
order to explore simultaneous optimization by computing the
LCOF. These include Generating bicriteria schedules for
correlated parallel machines involving tardy jobs and weighted
completion time by Lin and Yin [16], Bi-criteria scheduling
problems: Number of tardy jobs and maximum weighted
tardiness by Huo et al. [17], minimization of total tardiness and
total flowtime on single machine with non-zero release dates
[4].

However, there are literature that established normalization
equations for different objective function with the imposed
constraints. Establishing the normalization equations for
different regular criteria with unavailability constraints (non
zero release date) is the purpose of this work. Though,
Oyetunji and Oluleye [18] established the equations for the
extreme parameters for completion time using only the benefit
orientation. The corresponding equations for other regular
performance measures are missing.
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3. PROBLEM DEFINITION

Consider a bi-criteria scheduling problem with flexible
maintenance and job release dates with the objective of
minimizing the makespan and total tardiness simultaneously.
The problem was solved by Chen et al. [19]. The LCOF of the
problem is defined as:

F (Crnaxs Ttot) = @ Cax + BTror 4)
where:

Crmax 1S the makespan.

T;o¢ is the total tardiness.

a and g are the attached weight of the two criteria.

Assuming a==0.5.

The two performance measures are defined as follows:

The makespan is the completion time of the last scheduled
job. It is the highest or maximum completion time.

Cax=max (C, ,C,, C5...,C) 5)
The tardiness of job i is defined as:
T; = max {0,(C; — d;)} (6)

The total tardiness is the sum of tardiness of all the jobs.

Teor: Xi=1 Ti = Xizy max {0,(C; — d)} (7

The two performance measures have the same unit and the
challenge of dimensional imbalance does not exist. However,
the domination of makespan value over the total tardiness is
inevitable for small job sizes while the total tardiness values
will also dominate over the makespan for large job sizes.
Therefore, multicriteria decision for application of scheduling
methodology by direct application of LCOF values without
normalization will results in skewed decision towards certain
criteria. This is not effective given that the two criteria are of
equal importance.

Furthermore, Lin and Lin [20] considered the problem of
generating bicriteria schedules for correlated parallel
machines with the objective of minimizing the number of tardy
jobs and weighted completion time simultaneously. The
LCOF of the problem is defined as:

F (Ctots Nt) = a Ceor + BN (3)
where:

Cto: 15 total completion time.

N, is the number of tardy jobs.

o and S are the attached weight of the two criteria.

Assuming a=£=0.5.

The unit of total completion time is the time unit and that of
total number of tardy jobs is job unit. Therefore, direct
combination to obtain LCOF is impossible because the two
inputs are heterogeneous data. Furthermore, the completion
time values will likely dominate over the total number of tardy
jobs. To solve these challenges, input data will be pre-
processed to becomes a dimensionless data and to eliminate
the dominating of one data over the other before computing
LCOF. This pre-processing is called normalization. This work
presents the normalization equations for regular performance



measures with jobs release date constraint.

4. LINEAR MIN-MAX NORMALIZATION
TECHNIQUES
This normalization technique performs a linear

transformation of the objective function value obtained by a
given solution method to a dimensionless and scaled data (0,
1). Two different orientations of linear min-max techniques
are usually employed; the benefit and the cost orientation.

4.1 Benefit and cost orientation

The benefit optimization orientation implies that the
increase in the performance values of the alternatives
evaluated in criterion j is preferred to the decrease while the
cost optimization orientation implies that the reduction in the
performance values of the alternatives in criterion j is preferred
to the increase [8]. The general equations for the two
orientations are given in Egs. (9) and (10).

Y.= YsM—Ymin

)

Ymax—Ymin

_ Ymax—Ysm
YC— Ymax—Ymin (10)
where:

Y, is the benefit orientation normalized value of the
objective function, X.

Y, is the cost orientation normalized value of the objective
function, X.

Y5 is the objective function value obtained from a given
solution method.

Yonin is the minimum value of the objective function.

Ynax 1S the maximum value of the objective function.

The Y, and Yy, are called the extreme parameters. The
equations for these parameters are functions of objective
function of interest as well as the imposed constraints.

Determination of extreme values

Regular performance measures are functions of completion
time. Therefore, the equation for the extreme parameters for
completion time will be determine and use for other
performance measures.

Given a set of N jobs to be scheduled on a single machine
with distinct release dates, randomly generated from R,,,;,, to
Rmax-

The minimum values (best case scenario) occur when
i The first schedule job (i=1) is schedule at minimum

Rimin
ii. the waiting time, (W;) of all the jobs is zero. This is
possible if R;,; = C;

The Gantt chart under this condition is represented in Figure

1.

Figure 1. The Gantt chart for the best case scenario
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Ciot =201 C=C, + C, + C3 + ... + Cy
Ci= P+ Ryin = Zil=1Pi+ Rinin
C,= Ci+ P, =3%7, P;+ Rin
G= G+ P3=Zi3pi+ Rinin

Ch=Cii+ P :Z?PL"" Rinin (D
ngén :Zi1=1pi + Rmin + Z?:l Pi + Rmin +
) Z?Pi-l_ Rmin+ +Z7L'1Pi+Rmin
Clot"=Yica P+ X5y P+ Xiq P T P+
anin

The maximum values (worst case scenario) occurs when the
waiting time, (w;) of the first schedule job is maximum. The
Gantt chart under this condition is represented in Figure 2.

Rmar

Figure 2. The Gantt chart for the worst case scenario
Therefore,

Ciot =21 C=C, + C, + C3 + ... + Cy
61=P1+Rmax Zilpi+Rmax
C,=C+P,=P + Ry + P, = 3P+

Rmax
Z?Pi'i' Rmax+ P3

Rmax

C3=C+ P 3P+

(12)

Cr=Cy+ B = Z?_lpi + Rpax + P
Z? Pi + mRmax
Cot* =Y P+ X P+ X P
NRmax

n
=1 Pi t

The benefit and cost orientation equations can be
determined from the extreme values.
Benefit orientation
_ CsM—Cmin
CN_ Xmax—Xmin
Xmax — Xmin = (anax +P+ ZLZPL' +
YiPi+..  +XPP)-(Py 4+ XIP 4+ XIP 4 .+

Z? P; + nRpin) = nRipax — NRyun (13)
C _Csm— (P + Zl?Pi"'Z?Pi + .+ Z?Pi"'Rmin)
N=
NRmax
Co= Csm— (PL+ ZFPi+ 3P + .+ ITPi+ NRinin)
N NRmax— NRmin
Cost orientation
XN: Xmax_X
Xmax—Xmin (14)

1 2 3
c Vi Pi+ Y P+ 3} P; .. 1Pi+ NRmax—Csm
N=

NRmax— NRmin

Makespan (maximum completion time)
The maximum completion time, called the makespan is the
completion time of the last job in a system.



Cinax =max (C; , C, , ..., C3) (15)

The minimum values of C,,,, is possible when all the jobs
has zero waiting time and the first scheduled job has the
minimum possible value of release date.

The Gantt chart under this condition is represented in Figure

Figure 3. The Gantt chart for computing minimum C;, .

Thus, the completion time of the last job is the summation
of all the completion time.

max =max(P, Xi Py ) X2Pi, oy BEP* Rmin) (16
CRit = TP+ Rin

The maximum values (worst case scenario) occurs when the
waiting time, (W;) of the first schedule job is maximum. The
Gantt chart is represented in Figure 4.

R'I‘T'IGX

Figure 4. The Gantt chart for computing maximum C,,
Therefore,

rrrrllgajcc = max (pl + Rmaxv 212 Pi + Rmax: 213 pi + Rmax:
+ . 2P+ Riyax)

max — yn
max _Zi Pi +Rmax

Benefit orientation

— _CsM—Cmin
CN_

Cmax—CXmin

Cmax = Cmin = (Rmax*t XPP) - QP Pi+ Rni) = (17)
Co= Csm = 7 Pi+ Rinin)
N Rmax—Rmin
Cost orientation
X = Xmax_X
N Xmax—Xmin (18)
_ Z?Pi‘*‘ Rmax— Csm

N= NRmax— MRmin

Total flow time

The flow time is the time a job spent in the shop after its
availability. It is computed as the differences between the
completions time of job i and its release date.

(19)
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Itis also the sum of job processing time and the waiting time.

Fi =Pl+ Wi (20)

Fiot =XPFpr=F, + F, + F3 + .. + E, (21)
Just like the completion time, the extreme values for
flowtime are also computed from the waiting time. The

waiting time is computed as:
Wiys = G — Tipa (22)

When Ci+1 > T,

W; is called the waiting time of job i.

When C; 1 <13,

W; is the machine or processor waiting time, called the idle
time.

When Ci = Ti+1»

Wi, = 0, then F;; is minimum, thus F;,; = P;,;.

Given a set of N jobs to be scheduled on a single machine
with distinct release dates, randomly generated from R,,,;,, —
Rmax-

The minimum values (best case scenario) occurs when the
waiting time, (w;) of all the jobs is zero. The Gantt chart is
represented in Figure 5.

Figure 5. The Gantt chart for computing minimum F;,

Ftrggn 22111 Fimin — Flmin + Fzmin + anin +

Fmin

min n pmin tot (23)
Fot=YXtF™ =P, + P, + P; + ..+ P,
Fo =21 P
The flow time is maximum, when
i.  W;is maximum.
ii. C;(orCiyq)is maximum and r; is minimum.
Fi = Ci — T'i
Fi = Pi + Wi
Fiof* =X Fot*=(Ci— 1 + CGo— 1, + C3—
4+ ...+ C—1) ' (24)
Fie® = S P = 37 (Clags — RPMm)
Fl:rggx:anax+P1+Zz'2Pi +ZL$PL' +---Z?Pi -
anin
Benefit orientation
X—Xmi
F = min
N Xmax—Xmin
Xmax — Xmin = (anax +P+ Zizpi +ZI.3P1: +
NP P MRy ) — XU P (25)
(MRmax + Py + XEP+ ZP P+ PP -
anin )
FsmM—X1'P;

N= 2 -1
Pi+ Y2Pi+¥3Pi+.+ I 1Pi+ nRmax— "Rmin

Cost orientation



2 3
_ MRmax+Pit+ YiPi+ Y7 Pi+.+ XI'P; —nRpyin —X
N7 pi+ 2P+ + X3P+t TP 1P+ nRmax— nRmin

Maximum flow time
The maximum flow time is defined as:

Fpox = max (F, F,, F5, ..., E)
From Eq. (23), F; = P;,
min = max (P, Py, Py, .., By)

i = max (P;)

Tsm

T - TsM—Tmin -
N Tmax_Tmin Tmax (34)
(26) T= Tsm
NSl P+ TR P+ 3P . PP+ MRmax—YiL, d
Cost orientation
X — Xmax_X
(27) N Xmax—Xmin (35
- Y Pi+ 32 P+ X3P .. ZFPi+ NRimax—Yie,d-Tsm )
N '1—1Pi +le=1 Pi+ Zf Pi .. Z?Pi + anax_Z?:ﬂi
The maximum tardiness
(28) Maximum tardiness (T;,4) iS given by:

Tmax = max (maX {0: (Ci - dl)}

The minimum possible value of maximum tardiness is zero

The flow time is maximum when,
i.  W;is maximum.
ii. C; (or Ci;q) is maximum and r; is minimum.
Tmix=Q (36)
Fi = Ci -1
The maximum value of maximum total tardiness
Fi = Pi + Wi
Ttrtr)lgx = (Cmax - dmin)
EMY —max(C, — 1y, C, — 15, C3— 13, .. Cp— 1)
Benefit orientation
The maximum value of E,,, is achieve when the
completion time is maximum (makespan) and the release date NTypgp= M min —__Tsm
is minimum. Tmax_TminT Cmax—dmin 37)
NTmax: Y
max — Cmax—Amin
Fmax - Cmax — Tmin (29)
Cost orientation
Benefit orientation
— Xmax—X _Cmax_dmin_XSM
= , Xy=
NE, .= X~ Xmin Xmax—Xmin N Cmax—Amin (38)
max Xmax—Xmin (30)
NE, = —sm=max (i) The total lateness
(Cmax= Rmin)= max (P;) Lateness is measure as the difference between the
Cost orientation completion time an_d the dge date.
The lateness is given by:
_ Xmax—X
2 31) Li = (Ci—d;)
Liot :Zln=1 L; :Z?=1(Ci_di)

Xmax—Xmin
— (Cmax— Rmin) —X

N (Cmax— Rmin)— max (P;)

The total tardiness

This is the sum of tardiness of all the jobs. The tardiness of

job i is defined as:

T; =max {0, (C; — d;)}
(Teor): Xieq Ty =2i=1 max {0,(C; — d;)}

The minimum value of total tardiness s zero,

min _
Ttot -

The due date of job i, can never be 0 or negative, it implies
that the total tardiness is maximum when the completion time

is maximum.

The maximum value of total tardiness is given by:

tot tot

Yo P+YE P+
n

Tmax —
anax T Li=1 d

tot

Benefit orientation

Tmax — (Cmax _ ln:l di)
P L XIP+

Minimum total lateness

_ (L) = Yis L= (Ciot™ — =1 d.)
Lrt%ltn = i1=1Pi + Zi2=1 P + 213=1 b; ?:1 P + (39)
NRyin — ?=1 di
Maximum total lateness
(LEoF") = Xiza Li = (Co = Xiz1 dy)
(32) Lipt = Lici P+ X Pt X P Zn P+ (40)
NRyax — Z?:l di
Benefit orientation
L = LsM—Lmin L = LsM—Lmin
N Lmax—Lmin’ N Lmax—Lmin
(41)

1 2 3 n n
Lsm=Xij=1 Pi+ Xim1 Pi+ Xj=1 Pi - Xj=1 Pi + NRmin— Xi=1 4;

(MRmax— NRmin)

(33)

Cost orientation
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(42)
L P +Y2 P+ Y3 P o X Pi+ nRpin— Ik, d.—X
i=1"1 i=1"1 i=171  ai=1"1 min i=1%74SM

(MRmax— "Rmin)

The maximum lateness
The maximum lateness is given by,

Lmax = max(ci_di)
The LM =0 (43)
This occurs when d; = C; forall i.

The L7:%% occurs when the completion time is maximum
and the due date is minimum.

‘;nnltlzfc: (Cmax _dmin) (44)
Benefit orientation
Lsm—Lmin _ Lmax
NLmax: L;I:x_l‘min - Cmax—dmin (45)
Cost orientation
= Xmax—Xsm.
XN_ Xmax—Xmin (46)

X _ Cmax—Amin—Xsm
N

Cmax—Amin

The total earliness

The job earliness has been expressed in two different ways
in the literature; the classical definition and the opposite of
lateness definition.

Earliness, defined as the opposite of lateness is express as
E; = (d;—Cy).

Total earliness (Eyo) = Xy Er = X1 (di—C) = (L)

With this definition, the earliness based performance
measure is a maximization problem.

The extreme values

The E;,; is minimum when the completion time is
maximum.

Minimum total earliness

(Efo") = Xies Ei = (B, di = CIp™)

Etrgin = Yi=1 di - i1=1 P+ Zi2=1 P + (47)
L$=1 Pi ?:1 Pi + anax
Maximum total earliness
(Ef®) =X B = (T, d, — C™)
EfGE" = Yie di — X P+ XL P+ (48)
?=1 PL' Z?:l Pi + anin
Benefit orientation
_ EsM—Emin
NE, ,=——™T01
tot Emax—Emin
NE¢o = (49)

n 1 2 3 n
Esm—Xi=19;— Xj=1 Pi + X1 Pi+ Xj=1 Pi - Xj=1 Pi + NRmax

NRmax—NMRmin

Cost orientation
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NEiax (50)
Tieqdi- ToaPi+ Xy Pi+ Nioy Py Tiq P+ NRyin— Esm
NRmax—NRmin
Maximum earliness
(Emax)= max(d;— C;) =max(- Ly), Eqi% =0 (51

This occurs when d; < C;.
The EI2X is when the completion time is minimum and the
due date is maximum.

max —
max

(dmax— Cmin) (52)

Benefit orientation

(53)

Cost orientation

Xmax—X  _ dmax— Cmin—X

Xn= (54)

Xmax—Xmin (dmax— Cmin)

Classical definition of earliness
The earliness, E; of job | is defined as:

E;= max{— Li, 0}.

Total earliness (Eqo) = X%, E; = )., max (d;—C;,0) =
n .

2 max{—Li,0}.
Minimum total earliness

(Efs™) =0 (55)
Maximum total earliness
(Efpf™) = Xisq Ei = Qisa d, — €5
Efpt*=2Xiz1 d, — i Pt YR P+ (56)
PaP o TP+ Ry,
Benefit orientation
X-X
X —_— min
N Xmax_Xmm (57)
X _ X
N S A= S P+ XA P+ By Py o XLy Pi+ MRmin (58)
Cost orientation
XN: Xmax_X
Xmax—Xmin 9
_ X d;— T Pi+ 3, P+ B Py o T Pi+ NMRpun— X (5 )

Xy =
N 1 2 3
Y. d;- Y Pi+ X P+ Y Pi ..

Z?=1 Pi+ NRpin
Maximum earliness
E; = max{- Li, 0}

Fori=1:n



Emax = max{EI, Ez, E3, .

min —
Emax =0

S ER}

This occurs when d; < C; forall i.

Enn:tlzralc =0, E_;rnng;c: (dmax_ Cmin)

(60)

(61)

explored the classical definition of earliness.
The Total Number of Tardy/Late Jobs
The minimum number of tardy/late job is zero while the

maximum number is the total number of jobs.
Benefit orientation

Xz X Xmin  _ _X
' . . N Xmax—Xmin  Xmax 64
Benefit orientation Neany (64)
==y
X—Xmi X
X — min__ — SM 62
N Xmax—Xmin  dmax= Cmin 62) Cost orientation
Cost orientation _ Xmax-X _ X
XN_ Xmax—Xmin - ﬁ (65)
_ Xmax—X _ dmax— Cmin — Xsm
Xy= — = - (63) .
Xmax=Xmin max~ Cmin Table 1 shows the summary of the extreme values equations
. N for the considered performance measures.
Baker and Trietsch [21] and Akande and Ajisegiri [22]

Table 1. The extreme values of some performance objectives

Criteria Benefit Orientation Cost Orientation
C Csm— (P + 37 P; + X3 Pi + .. +3 Pit nRmin ) TiaPi+3E  Pit X3P . ST Pi+ NRmax— Csm
tot NRmax— NRmin NRmax— NRmin
C Csm — (Z?Pi + Rmin) Z?Pi"‘ Rmax— Csm
max Rmax - Rppin NRmax— NRmin
F Fsy~37' P; MRimnax+Pit YFPi+ + $7Pitet SPPi — NRmin =X
tot Py+Y2Pi+ Y3 Pitot IFLPi+ NRpax— NRmin P+ Y2Pi+ + X3P+t I LPi+ nRpax— NRmin
E Fsy—max (P;) (Cmax— Rmin) =X
max (Cmax— Rmin)— max (P;) (Cmax— Rmin)— max (P;)
T Tsm Ei1=1 Py +Z§=1 Pi+ 213 Pi ... Z?Pi + anax_E?=1d_TSM
tot Tl Pit BEy Pt B] Py o B Pi+ MRpax—XiL, d Y Pi+ i, Pt 53P; . SPPi+ NRmax—Yie,d
T Tsm Cmax—Admin—Xsm
max Cmax—dmin Cmax—Amin
L Lsy=Xioy Pi+ Xy Pit T Pi . B1Ly P + MRmin— X1 4, Sia Pi+ Xioy Pit B3 Py o Tl PitRimin— 2o, d;=Lsy
tot
(MRmax— NRmin) (MRmax— NRmin)
L X Admax— Cmin—X
max dmax_ Cmin Amax— Cmin
1 2 3
E ESM_Z?=1 di_ Eil=1 Pi+ E%=1 Pi+ Z?ﬂ Pj ... Z'{L:lPi +NRmax Z?:l di_ Yica Pi+ Xis  Pi+ X1 Pi .. Z?:1 Pi+ NRpin— X
tot NRmax=NRmin Y di_ 21‘1:1Pi + 21'2:1Pi+ Z?:lpi w L2 Pi+ NRmin
E X Amax— Cmin—X
max Admax— Cmin Amax— Cmin)
n 1 2 3 n
Eror X i=1d; = Xi= P + YiciPi+ Xici P Xin Py + MRpn — X
d— Y P+ YA P+ Y P . T Pi+ MRy n 1 2 3 n
(CD) EL_1 i EL_1 i 21_1 i El—l i 21—1 i min Zi=1 di — i=1 Pi + Zi=1 Pi + Z[:l Pi e Z[=1 Pi + anin
E Xsm Amax— Cmin — Xsm
max Amax— Cmin Amax— Cmin
Ne X
SM =
N¢/N, e N

Table 2. Normalization expression for some multicriteria problems

Multicriteria Problem

Benefit

Cost

Bi-objective optimization of
identical parallel machine
scheduling with flexible
maintenance and job release times
[19]

A new heuristic for m-machine
flowshop scheduling problem
with bicriteria of makespan and
maximum tardiness [23]
Generating bicriteria schedules
for correlated parallel machines
involving tardy jobs and weighted
completion time [16]
Minimization of total tardiness
and total flowtime on single
machine with non-zero release
dates [4]

Csm — (Z? Pi+ Rmin)+
Rmax— Rmin
Tsm
Zi1=1 Pi+ Ziz=1 Pi+ 213 P .. Z? Pi+ anax_Z?=1 d

Csm = (BT Pi + Rmin) |
"

Rmax— Rmin

Tsm

Cmax—dmin

Negy 4Csm= Py +Y2P; + X3P + .. +TF P+ NRyin)

N NRmax— NRmin
Tsm
Tl P+ Xi P+ X} Py o ZF P+ NRyax—31, d
Fsm—Xf Pi

-+
t
P1+Y2Pi+ T3P+t PP+ NRmax— NRmin

E;ﬂ Pi+ Rmax— Csm
NMRmax— NRmin

Zil=1 Pi+ Zl?=1 Pi+ 213 Pi ... Z?Pi + anax_Er=1 A-Tsm
Zilzl Pi + E%=1 Pi+ 213 Pi E?Pi + anax_2?=1d

+

E:l Pi+ Rmax— CSMJ_Cmax_dmin_XSM
NRmax— NRmin

Cnax=Amin

X +Z.-1=1 Pi+ 3% Pit 33Pi .. 3 Pi+ NRinax— Csm

N NRmax— NRmin

2}:1 P+ Z?=1 Pi+ Zf Pi ... Z?Pi + anax_ELl d—Tsm
Zil=1 P+ E%:l Pi+ 213 Pi .. E;ﬂ P+ anax_Z?=1d

 MRmax+Pi+ YPPi+ + B3Pi+.+ YI'P; — nRpin —X

U Pi+ YZPi+ + Y2Pit.+ Y LPit nRmax— MRmin
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4.2 Normalized LCOF

The extreme values and the X, for each of the criteria in a

multicriteria problem will be substituted into the LCOF Eq. (3).

The normalized LCOF can be used for effective comparison
of different solution.
Nycor = a Ny + B Ny +YN, (66)

where:

Ny cor is the normalized total composite function.

Ny is the normalized value of criterion X.

N,, is the normalized value of criterion Y.

N, is the normalized value of criterion Z.

Table 2 shows the N, -or equations for some multicriteria
scheduling problems found in the literature.

5. CONCLUSION

The complexity of multicriteria scheduling problems
increased with dynamic constraint imposition. The use of
LCOF as well as the need for normalization though established
in the literature but the appropriate normalization equation for
different criteria is a missing link. This work closed the gap by
establishing the normalization equation for numerous
scheduling performance measures. Some existing multi-
criteria problems found in the literature was also explored. The
work will open further research for exploring LCOF for Multi
Criteria Decision Making (MCDM) with dynamic constraint.
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