
Enhancing Medical Image Security with FPGA-Accelerated LED Cryptography and LSB

Watermarking

Wajdi Elhamzi1,2

1 Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz

University, Al-Kharj 11942, Saudia Arabia
2 Department of Computer Engineering, Higher School of Sciences and Technology of Hammam Sousse, University of Sousse,

Hammam Sousse 4011, Tunisia

Corresponding Author Email: wajdi.elhamzi@essths.rnu.tn

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410107 ABSTRACT

Received: 5 September 2023

Revised: 13 January 2024

Accepted: 2 February 2024

Available online: 29 February 2024

In telemedicine, the safeguarding of medical images is important, necessitating systems that

uphold patient privacy, ensure image integrity, and verify authenticity. Addressing the

challenge of processing time disparities in existing algorithms, this study introduces a novel

field-programmable gate array (FPGA)-based crypto-watermarking system for medical

image applications. The system integrates a least significant bit (LSB) watermarking

technique with the Lightweight Encryption Device (LED) cryptography algorithm. The LSB

technique, known for its minimal impact on image quality, is utilized to embed a concealed

message, subsequently encrypted by the LED algorithm for enhanced security. Traditional

software implementations of such algorithms have been hampered by significant processing

delays, with times ranging up to 34 seconds for smaller images and extending to 30 minutes

for larger ones. The predominant factor in these delays, the encryption/decryption process,

occupies 98% of the total processing time. To address this, the LED algorithm has been

accelerated using Vitis High-Level Synthesis (HLS) for hardware implementation,

effectively reducing time to market. The proposed architecture, subjected to rigorous

examination, testing, and evaluation, demonstrates superior performance in throughput and

processing speed compared to previous works. An extensive range of digital images was

employed to assess the coprocessor's efficacy. The results reveal an average Peak Signal-to-

Noise Ratio (PSNR) of 86.98 dB, indicating superior imperceptibility without attacks when

compared to earlier studies. Furthermore, under various attack scenarios, the system

maintains high imperceptibility, with an average PSNR of 53.68 dB, surpassing previous

methods in robustness. Comparative tests confirm that the proposed FPGA-based crypto

watermarking outstrips Real-Time Logic (RTL) implementations, achieving a PSNR above

82 dB. This indicates a marked improvement in imperceptibility relative to prior research.

Additionally, the system boasts a throughput of 449.35 Mbps and a speed enhancement of

77% over traditional software implementations, underscoring its effectiveness in the secure

processing of medical images.

Keywords:

medical imaging, least significant bit (LSB)

watermarking, LED lightweight

cryptography, parallel computing, high-

level synthesis (HLS), field-programmable

gate array (FPGA)

1. INTRODUCTION

In the last decade, the Internet of Things (IoT) field has

grown enormously. Most domestic gadgets now have sensors,

are linked to the internet, and are well integrated into our daily

habits. For example, GPS tracking allows you to find a service

near where you are or locate a location by showing you the last

route to follow. There are also thermostats and lighting

systems that can be operated remotely from an application. In

short, the Internet is developing more and more of a multitude

of everyday objects. Some automobiles can now warn you of

danger and recommend remedies for the situation.

From a health perspective, the internet can track your

movements and heart rate with smartwatches, as well as take

your body temperature or blood sugar index, a significant

feature for people with diabetes. IoT solutions for healthcare

plans will make healthcare centers smarter and enable them to

be more successful at what they do. The IoT has the

opportunity to reshape the interaction and connection between

users, technology, and equipment in healthcare environments,

making it easier to promote better care, reduce costs, and

improve outcomes. As well as linked medical devices, such as

sonography, computed tomography (CT) scans, magnetic

resonance imaging (MRI), and nuclear medicine imaging.

These devices create massive amounts of data that interact

with other IT infrastructures within the network, providing

processing such as analysis and visualization.

Moreover, the hacking act of the hacker known as MedJack

allowed attackers to inject malware into medical devices,

which then spread through the healthcare network

infrastructure.

Medical images are vulnerable to attacks like unauthorized

Traitement du Signal
Vol. 41, No. 1, February, 2024, pp. 85-97

Journal homepage: http://iieta.org/journals/ts

85

https://orcid.org/0000-0002-8516-763X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410107&domain=pdf

access, tampering, or interception, posing a significant threat

to patient privacy and medical diagnosis integrity, hence the

need for robust security measures in eHealth networks.

Attacks on secured images are defined differently than attacks

on any transmitted data in general. The objective of such

attacks is not only to decipher information but rather to corrupt

data and distort encrypted media. These medical image attacks

can be categorized into geometric attacks [1], like image

scaling, rotation, and clipping; image processing attacks, like

filtering and compression; and cryptographic attacks, and

signal processing attacks like histogram equalization [2],

contrast adjustment, gamma correction, and adaptive

histogram.

Medical data stolen in these types of attacks has been used

for tax evasion or identity theft practices, and it has even been

used to track prescription drugs, allowing hackers to order

medicines online for resale on the dark web. The medical

images acquired in imaging centers and hospitals can be

exchanged among several healthcare staff members to enhance

patient care and medical information management. As

presented in Figure 1, shared medical images are always done

on insecure networks, creating several security risks and

exposing medical images to threats such as data loss,

manipulation, errors, and attacks. The digital version of

medical images offers several benefits over their analog

counterparts, including ease of storage and transmission.

To protect patient privacy, digital medical photographs

must be maintained in a secure setting. It is also necessary to

identify changes to the image. Watermarking in medical

images achieves these goals.

Figure 1. General architecture of medical imaging

communication system

The present manuscript is structured as follows: Section 2

provides contextual information about medical image

safeguarding and cryptographic watermarking frameworks.

Section 3 delineates the proposed approach for watermarking

medical images and the algorithms used. Section 4 presents the

software implementation of the proposed solution, along with

the hardware acceleration technique that will be applied.

Section 5 provides an elaborate exposition of the hardware

design and a diverse range of experiments that employ

optimization techniques. Section 6 presents the results and

discussion of the hardware architecture for HLS and RTL. The

conclusion is ultimately presented in Section 7.

2. RELATED WORKS

The medical image may be disseminated through networks

for various reasons, including consultation and review with a

second medical expert, giving medical images to students and

researchers, letting patients examine their records, and many

more. Several devices, like smartphones, PCs, and tablets,

among others, may all be used to access medical data that is

shared through networks and servers. The primary concern is

whether the information received is authentic, secure, and

integrated. Following the issuance, the medical images may be

inspected for examination, processed for research reasons,

shared with others, and so on. The general architecture of the

medical image transmission system is illustrated in Figure 1.

The procedure of exchanging medical images via an

unprotected connection may expose them to unexpected

modifications. There is a possibility that they might be

changed inadvertently besides the harmful attacks [3, 4].

The Internet of Medical Things (IoMT), which is a subset

of the Internet of Things technologies, includes all the

connected devices and apps used in medical and health

information technology. The IoMT devices link patients,

doctors, and medical devices over a secure network. Following

the Deloitte [5] report for medical devices and transformation

in health care, it was estimated that the IoMT market would be

worth 41.2 billion and 158.1 billion, respectively, in 2017 and

2022. The IoMT’s linked medical equipment sector is

predicted to grow from 14.9 billion in 2017 to 52.2 billion by

2022. Today, this estimate seems to be relatively low. Because

of the COVID-19 pandemic, IoMT has grown by a factor of

ten. Quarantine and lockdown orders have sped up the growth

of telemedicine and telehealth. In this context, Hasan et al. [6]

developed a safe image security approach using an efficient,

lightweight cipher algorithm for the healthcare field. The

suggested lightweight cryptographic system combines two

permutation techniques to secure medical images. Regarding

security and processing time, the proposed approach is

examined, validated, and compared to regularly used

encryption methods. The suggested algorithm’s performance

was evaluated using a variety of test images.

Existing encryption systems have used the Advanced

Encryption Standard (AES), Data Encryption Standard (DES),

and Rivest-Shamir-Adleman (RSA) [7-9] algorithms to deal

with low-level efficiency matters while considering small data

sizes and high redundancy [10, 11]. As a result, these methods

are challenging to manage and assure adequate security for

healthcare images in the IoMT paradigm [12, 13].

Watermarking is the process of modifying data to

incorporate information about it. According to the definition,

it has two main aspects. The first step lets you insert a message

or brand into the image without anyone noticing. In the second

step, based on the watermark key, watermark algorithms can

detect and/or extract the previously inserted mark.

Watermarking methods are essentially divided into three

categories [14]. The first approach is called “watermarking by

region,” which uses the presence of zones of zero or minimal

interactions in the image to provide relevant diagnostic

information in Regions of Interest (ROI). They usually put the

mark on the image’s black background. Second, the reversible

or lossless method involves removing the watermark from the

image while keeping the gray levels of the original image.

These strategies also enable the updating of brand data. One

drawback is that the recovered image is no longer safe when

we remove the watermark. Finally, in this situation, the

watermark is very subtle and can’t be erased, with a focus on

how hard it is to see.

According to the available literature, recent research has

shown the feasibility of implementing digital watermarking

86

architectures using FPGA boards. The hardware and real-time

implementation of digital watermarking systems are exciting

topics. In recent years, several new works have been proposed

and developed. The researchers focused on the different parts

of the hardware design, such as how it had to work in real-time

and use less power while still being able to do a lot of work.

Zhang et al. [12] developed a fast image encryption system

based on the CBC mode of the AES algorithm. This paper

looks at AES-based image encryption to show that it is not

suitable for image encryption. But digital images can be

encrypted with the help of the AES used in CBC mode. The

chaotic system generates the initial vector, and the look-up

table approach creates AES in the tested method. Images can

be encrypted using the same AES key. The sampled image

cryptosystem is secure since AES is extremely secure.

Moreover, simulation results suggest that the AES-based

crypto-image approaches outperform those based on chaotic

systems. Thus, the tested method can be utilized as a

benchmark for emerging images. Image cryptosystems must

be improved to keep up with base-based schemes on the same

computer.

Khashan and AlShaikh [15] proposed a chaotic map for

building a vast key space that can be used to identify various

blocks. The critical image blocks are encrypted using a one-

time pad technique. Several tests were run on different images

to show the proposed architecture’s reliability and usefulness.

Based on the results of the security and performance

evaluations, the suggested approach may offer a high level of

security with less computational complexity, making it

suitable for real-time image encryption.

Das et al. [16, 17] developed a novel reversible image

watermarking technique based on embedding bit rate control

and contrast mapping. The suggested approach is validated

using MATLAB and Xilinx tools. The results show that an

FPGA Zynq-7000 board can be used to implement a low-

resource, power-optimized solution that works in real-time.

The suggested architecture can operate at a 100 MHz

frequency and 46 Mbps throughput. In the same context,

Arumugham et al. [18] have designed an integrated chaos-

watermarking encryption system. Based on chaotic algorithms,

IWT and SVD were used to add a watermark with a patient’s

name to a DICOM image that had been encrypted. The Altera

Startix FPGA platform implements a medical image

encryption system. A trade-off between power consumption

and security level perpetually exists. The proposed algorithm

also beats the FPP, a problem with other methods for

watermarking medical images.

Similarly, Hazra et al. [19] implemented a reversible

watermarking algorithm using FPGA circuits. This technique

is dedicated to medical image applications. The Xilinx System

Generator tool ensures the proposed design will work in

hardware. The results obtained are very encouraging and show

very high performance. The maximum frequencies are around

445 and 201 MHz, and the power consumption is about 1.215

and 0.104 W for embedding and extraction blocks,

respectively. Also, the hardware could be built into medical

diagnostic tools like CT and MRI scanners and X-ray

machines to make the images more secure.

Maity et al. [20] showed how to control the quality of

grayscale images by hiding data in a way that can be undone.

A user-defined secret key makes a watermark that depends on

the content, which controls access to the scheme’s quality. The

system exhibits high PSNR and MSSIM values, increased

embedding capacity, and resilience to different signal

processing processes. The hardware architecture takes up only

986 slices with a low power consumption of around 55 mW

when operating at 130 MHz as its maximal frequency. In this

context, Phadikar et al. [21] suggested an efficient hardware

architecture for implementing a quality access control method

based on the discrete cosine transform. Parallel processing

makes the VLSI architecture implied, which is based on an

FPGA circuit, better. Compared to similar approaches

described in the literature, the technique reduces power use by

90%. It can run at a maximum speed of 131.16 MHz and

process a 512×512 image at a throughput of 1.34 GB/s for both

the encoder and the decoder.

Using phase congruency and singular value decomposition,

Nayak et al. [22] developed an image watermarking method

that can be changed to make it more effective as a multi-

parameter optimal solution to hide metadata. The algorithm’s

performance is evaluated in MATLAB using several criteria,

such as the Normalized Cross-Correlation (NCC) index,

PSNR, and structural similarity. A high-performance FPGA

board was used to implement the proposed design.

Kaibou et al. [23] proposed a real-time FPGA

implementation of a secure chaos-based digital crypto-

watermarking system in the DWT domain using a codesign

approach. The suggested crypto watermarking system’s

performance has been assessed using various metrics and

statistical/differential analyses in terms of watermarked image

quality, robustness, and information security level. These

results showed how well the methods worked and proved that

the overall Hardware/Software (HW/SW) codesign method

was suitable. The crypto watermarking system that was made

can be used for images and videos, especially in the medical

field.

To improve the crypto watermarking system, Borra and

Thanki [24] suggest a non-blind, fragile DCT domain

watermarking scheme based on CS-based cryptography that is

proposed for invisibly hiding encrypted watermark images.

The simulation results indicate that the proposed scheme has a

maximum payload capacity of 1 bpp and a high

imperceptibility of 92 dB.

An approach for image watermarking based on LSB and

image gradients was introduced by Faheem et al. [25]. After

dividing the original image into nonoverlapping blocks, the

gradient was computed for each block. Ultimately, LSB was

employed to incorporate watermarked bits. This method

operated within the temporal domain, offering computing

efficiency and superior perceptual quality. It demonstrated

substantial resilience to image processing and geometrical

attacks.

The present research [26] investigates the incorporation of

the LSB technique with the quantum Haar wavelet transform.

The proposed approach utilizes a quantum wavelet transform

to include a binary image in the LSB of the quantum image.

The quantum Haar wavelet process guarantees that the

watermark is evenly distributed throughout the entire image,

enhancing its resistance against attacks. To sum up, using both

LSB and the quantum Haar wavelet transform together in

watermarking for quantum images is a safe and reliable way

to keep private quantum information safe.

3. LIGHTWEIGHT CRYPTO-WATERMARKING

SYSTEM

It is well known that encryption and watermarking may be

87

blended. Two categories may be made based on how they are

combined. The first type is watermarking, followed by the

encryption process (WFE). This method puts the watermark

into the host image before the watermarked data is encrypted.

On the receiving end, the encrypted data with the watermark

is first decrypted, and then the data with the watermark is

retrieved. The second type is encryption followed by the

watermarking process (EFW), which involves inserting the

encrypted watermark into the original encrypted data. It has

the advantage of homomorphic encryption. The most frequent

approach to watermark embedding is to include the watermark

in the cover object’s LSB pixel. Despite its simplicity, LSB

substitution has several downsides. Because that can survive

changes like cropping, adding unwanted noise, or lossy

compression, a more advanced attack that sets the LSB bits of

each pixel to one will completely destroy the watermark

without damaging the cover object. Once a hacker understands

the technique, he may readily modify the encoded watermark.

For this reason, the encryption process is still fundamental to

strengthening security and avoiding hackers.

Several algorithms, like the well-known AES, DES, and

RSA, have been made and suggested for encrypting images.

But using these algorithms with the Internet of Medical

Objects is not a good idea for hardware systems because it

could go against the real-time rule and use a lot of power. So,

a crypto-watermarking process that works must use the least

amount of hardware resources possible. In this work, we

developed a lightweight cryptography algorithm to get around

problems with power use, security level, and processing time.

The WFE approach is the main design of the proposed system.

To protect data, it uses a lightweight cryptography algorithm

called LED [27-30] after using the LSB watermarking

technique to hide a secret message, as illustrated in Figure 2.

Figure 2. Architecture of the proposed crypto-watermarking

system

3.1 Watermark embedding/extraction process

This process consists of two steps. First, using the

watermark image, the LSB technique is applied to the medical

image. The image comprises three components (R, G, B).

Each pixel in the image is composed of 3 unsigned 8-bit

values (red, green, and blue), with a range between 0 and 255

represented by 8-bit values (b7b6b5b4b3b2b1b0). b7 is the most

significant bit (MSB), and b0 is the LSB. For example, if we

assume that the pixel candidate is equal to 254 (11111110),

changing the MSB state from 1 to 0 becomes 126 (01111110),

causing a drastic change. On the other hand, if we change the

LSB from 0 to 1, we obtain 255 (11111111), like nothing’s

changed. This LSB technique hides the message or image into

the candidate image.

Figure 3 presents the embedding process based on the LSB

watermarking scheme. The transformation process is applied

to the input image.

Figure 3. The LSB embedding process

The inserted message can contain several pieces of

information about the patient and his associated information,

such as the folder number, the attending doctor, the date, etc.

Indeed, a logo could be hidden in the original image, proving

that the shared medical image is authentic.

3.2 Watermark encryption/decryption process

If the watermark is already embedded, the second step

encrypts the watermarked image based on the LED algorithm

1 [22]. The LED cipher uses the fewest chips compared to

other cryptosystems of similar strength. As a block cipher, the

LED belongs to the S-PN category. Two variations exist, one

for each possible key size. Compared to LED128, whose key

length is 128 bits, LED64’s key length is just 64 bits. The

LED64 has 32 rounds, while the LED128 has 48. In this

analysis, the LED64 was used to encrypt and decrypt

information. Remember that from now on, you should be using

LED64 instead of LED. The four fundamental operations that

constitute the LED algorithm are known as AddConstants, S-

Box, ShiftRows, and MixColumns, as illustrated in Figure 4.

AddConstants: In this function, bitwise XOR operations

are used to add more round constants to the state. The round

constants of a linear feedback shift register (LFSR) are given

as 6-bit values in the RC [5:0] format.

S-box: The LED algorithm employs the same S-box table

as the PRESENT algorithm [31]. This table contains 16

nibbles (4-bit) of elements from 0x0 to 0xF as inputs and their

corresponding hexadecimal values as outputs. The substitution

box for LED is given in Table 1.

Table 1. Substitution box of LED cipher

X 0 1 2 3 4 5 6 7

S (X) C 5 6 B 9 0 A D

X 8 9 A B C D E F

S (X) 3 E F 8 4 7 1 2

ShiftRows: For i= 0; 1; 2; 3; row i of the array state is

rotated i cell positions to the left.

MixColumns: Each array state column is identified as a

column vector and is replaced by the vector multiplied by the

matrix M given by Eq. (1).

𝑀𝐷𝑆 = (

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

)

4

= (

4 1 2 2
8 6 5 6
𝐵 𝐸 𝐴 9
2 2 𝐹 𝐵

) (1)

Here is a description of LED encryption algorithm 1, as the

crypto module uses it in the form of pseudo-code.

88

The plaintext and the constant matrix will be XOR’d

together as part of the work that the AddConstants function is

expected to do. An 8-byte representation of the key size was

used to generate the matrix, beginning with Ks7 and ending

with Ks0.

To generate the first column of the matrix, an XOR

operation was performed on the key bytes while they were in

their respective places. The second column’s six-round

constant bits (RC5 to RC0) started with zero and underwent a

one-bit left shift for each round, with RC0 being the outcome

of a Xor between RC5, RC4, and one. The last bit, RC0,

resulted from an XOR between RC5 and RC4. To begin, we

will provide the constant matrix, which is represented in

Figure 4.

Algorithm 1. LED Encryption procedure with 64-bit and r = 32.

1 Require: A 64-bit plaintext P, 64-bit key K.

2 Output: A 64-bit ciphertext C.

3 S ← P

4 SK ← GenerateSubkey (K)

5 S ← AddRoundKey (S, SK)

6 For j = 1 to (r/4) do

7 For i = 1 to 4 do

8 S ← AddConstants (S, (i*4+j))

9 S ← S-Box (S)

10 S ← ShiftRows (S)

11 For v =1 to 4 do

12 S ← MixColumns (S)

13 End for

12 End for

13 S ← AddRoundKey (S, SK)

14 End for

15 C ← S

16 Return C

Figure 4. The LED algorithm

The same function, AddRoundKey, is used with the

decryption procedure. However, S-Box, ShiftRows, and

MixColumns are reversed to InvSubBytes, InvShiftRows, and

InvMixColumns.

4. THE PROPOSED IMPLEMENTATION

4.1 Performance metrics

In order to evaluate the efficiency of an algorithm adopted

for watermarking, performance measures are implemented.

Different metrics can be applied to evaluate an algorithm's

performance, including its robustness to attacks, the quality of

the watermarked image (referred to as imperceptibility), its

capability to process the watermark, the time required for

embedding and extraction operations, and more.

The proposed scheme's performance is assessed using

metrics like PSNR, structural similarity (SSIM) index, and

Normalized Correlation (NC) to evaluate the robustness of

watermarked images and to find the correlation between two

vectors or images.

the similarity between original and watermarked images,

and the accuracy of the embedded watermark. These metrics

help researchers determine the strengths and weaknesses of

different watermarking algorithms, enabling informed

decisions for specific applications.

4.1.1 PSNR

PSNR is a term frequently employed in the domains of

image and video processing. It is the ratio between the original

and watermarked images and is utilized in the watermarking

field to find the similarity between the two. The PSNR

presented by Eq. (2) is a metric utilized to assess the

imperceptibility attributes of watermarking techniques.

𝑃𝑆𝑁𝑅(𝐶,𝑊) =
∑ ∑ 𝐶(𝑥, 𝑦)𝑊(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

∑ ∑ [𝐶(𝑥, 𝑦)]2𝑁
𝑦=0

𝑀
𝑥=0

 (2)

4.1.2 SSIM index

The SSIM between the embedded image W and the original

image C is computed using this metric. A SSIM value in

proximity to 1 indicates a higher degree of similarity between

the two images, suggesting that their structures are identical.

The imperceptibility characteristics of the watermarking

scheme are substantiated with the aid of SSIM. The calculation

is performed using Eq. (3).

𝑆𝑆𝐼𝑀(𝐶,𝑊) =
∑ ∑ 𝐶(𝑥, 𝑦)𝑊(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

∑ ∑ [𝐶(𝑥, 𝑦)]2𝑁
𝑦=0

𝑀
𝑥=0

 (3)

4.1.3 NC

The NC measures the similarity between the extracted and

inserted watermarks by calculating the correlation coefficient.

The NC value varies between 0 and 1. A higher correlation

factor indicates a more robust watermarking system, as it

signifies a stronger resemblance between the original and

extracted watermarks. While a smaller value shows the

dissimilarity between two images. Eq. (4) defines the NC

calculation.

𝑁𝐶(𝑊,𝑊′) =

∑ ∑ [𝑊(𝑥, 𝑦)𝑊′(𝑥, 𝑦)]𝑁
𝑦=0

𝑀
𝑥=0

√∑ ∑ 𝑊(𝑥, 𝑦)𝑁
𝑦=0

𝑀
𝑥=0 . √∑ ∑ 𝑊′(𝑥, 𝑦)𝑁

𝑦=0
𝑀
𝑥=0

 (4)

4.2 Software implementation

We have implemented the LED64 algorithm. The

measurements were performed on an Intel (R) Core (TM) i7

CPU Q 720 clocked at 1.60 GHz. As a first step in our research,

we used the Python programming language to make a rough

architecture for the crypto-watermarking module. Two

components define the top level of this design: LSB-

Watermarking and LED64 algorithms. As described in

Subsection 3.1, the LSB process consists of replacing the LSB

in each pixel with the bit of message to be hidden. The LED

algorithm encrypts and decrypts the entire image that has been

watermarked and will be sent over the network. With

encryption, the hacker can’t see the original medical image or

any other hidden information.

We used different types and sizes to test the crypto-

watermarking system.

The grayscale medical images from Kaggle [32-34] are used

89

for testing the crypto watermarking scheme to determine the

effectiveness and robustness of the scheme against various

image processing techniques and attacks.

A set of X-rays [32] sized 768×768 and 2496×2048, MRI

[33], and CT [34] sized 512×512 and 296×296 respectively, as

shown in Figure 5, the input is the original image. We got the

watermarked image, which is too close to the original after we

put the watermark into it. After that, we ensure the protection

of the whole image based on the LED cipher.

The generated image is too evident to doubt that it is

encrypted, so be ready to send it via any communication tool

or protocol with no risk of being susceptible to attacks.

The person who gets the image can decrypt it immediately

and use the embedded watermark to check if it is authentic.

The results show that the reconstructed images have very high

quality and a slight degradation of information that is not

remarkable to the naked eye and cannot harm the details of the

valuable information. During these tests, the processing time

becomes more interesting with high resolutions. For that, we

think of analyzing the functions used to extract the block,

which causes the slowing down of the system in the following

experiment.

Figure 5. (a) Original image (b) Watermarked image (c)

Encrypted image (d) Decrypted image

Table 2. Software processing time for watermarking functions

Image Size Embedding (s) Encryption (s) Total (s) Decryption (s) Extraction (s) Total (s)

X-ray 296×296 0.09 15.37 15.46 18.37 0.23 18.6

MRI 512×512 0.26 45.76 46.02 55.62 0.65 56.27

CT 768×568 0.4 76.67 77.07 90.71 1.1 91.81

X-ray 2496×2048 4.4 889.46 893.86 1061.79 19.81 1081.6

As can be seen from Table 2, the embedding process is

faster compared to the encryption process. Processing time

increases or decreases proportionally to the image size. These

results clearly indicate that the encryption and decryption

processes are the most time-consuming operations for both

forward and inverse crypto-watermarking systems. The

encryption operation consumes 98% of the processing time.

Also, when image size increases, the crypto-watermarking

system happens more slowly, which is a design flaw since it

must operate in real time. We are considering how to speed up

the LED encryption algorithm with a hardware accelerator to

solve this problem. The solution suggested in this paper is to

keep implementing the LSB-based embedding process into

software and translate the block cipher into an FPGA-based

hardware solution. So, using the Xilinx FPGA, we can follow

two flow designs: RTL code written manually or high-level

language based on the HLS tool.

This could make the FPGA design process less complicated

and reduce the time spent on engineering development, which

means reducing the time to market.

4.3 Hardware implementation

4.3.1 High level synthesis tool

At the beginning of the digital era, the design of digital

circuits went through a behavior description of the system’s

architecture in the form of logic gates. As the circuits get more

complicated, describing them with logic gates gets more

challenging and expensive. For more than 20 years, hardware

description languages have made people more productive by

making it easier to describe digital circuits. This means that,

compared to the traditional method of drawing the circuit

layout by hand, the designers might have to give up some

performance (area, power consumption, and speed). But it is

expected that the increase in productivity will more than make

up for these problems. Embedded systems are getting

increasingly complicated, which means they need to be

described at a higher level of detail. This makes creating HDL

code more expensive as the design process goes on. So,

behavioral synthesis (HLS) comes along, which lets HDL code

be made from a description in C, C++, or System C. Because

digital systems are getting increasingly complicated, there is a

lot of research in HLS.

The process, which is still in its early stages, entails doing

automatic hardware synthesis (through a description in a very

low-level language known as RTL, which is commonly used

for Verilog and/or VHDL) through the translation of a higher-

level language such as Java, C, or C++, which is then

annotated. Several microelectronics companies, including

those that excel at producing FPGA and ASIC circuits,

perform HLS. Xilinx introduced the Vitis HLS tools [35], Intel

presented the Intel HLS compiler [36], and Synopsys

developed Symphony HLS [37].

Figure 6. Vitis HLS flow

90

To speed up the process of making prototypes and make

them competitive, we have adopted Xilinx Vitis HLS tools.

Figure 6 shows that Vitis HLS can make an RTL design from

a function written in a high-level programming language like

C, C++, or System C. This is because it works faster and is

more flexible than other C-to-FPGA tools of the same type.

The design flow followed to get an RTL-HLS IP is illustrated

in Figure 6.

The first step starts by developing an HLL code design, a

testbench, and a golden reference, representing the estimated

outputs for a defined output vector. The second step consists

of the functional simulation of the main HLL using the

testbench.

4.3.2 LED HLS-IP

For this paper, we used the C/C++ programming language

to implement the LED lightweight encryption method. We

used Vitis HLS to make the algorithm and test its performance

in the RTL design by co-simulating it. The design was then

examined and adjusted to enhance throughput.

The LED-64 encryption algorithm comprises 32 rounds, as

described in Figure 7, and each round is a set of functions, as

described in Section 3.2. The HLS-C tool simulated the LED-

64 principal function to check the outputs generated compared

to the golden reference. Indeed, we use an image sized

512×512 to obtain the encrypted image. After that, with the

decrypted image, as soon as the functional simulation step is

successfully validated, we go to the synthesis step, which

represents the most sensitive step of the design flow since

several refinements of the C/C++ code are carried out. After

studying the hardware’s performance, the necessary

optimizations must be devised. The LED-64 top function was

synthesized into an RTL block using the HLS tool, and each

sub-function was synthesized into a sub-block that was

instantiated into the top-level design.

Figure 7. Encryption LED HLS-IP description

Figure 7 illustrates the LED algorithm code in C/C++. As

shown, the HLS model consists of several loop instructions.

The first loop is the SK loop, which reads 8 bytes of plaintext

and 8 bytes of input keys and separates each byte into two

nibbles. We obtain 16 nibbles of the state and 16 nibbles of the

key. Afterward, the function AddRoundKey is applied once,

which applies the AR loop. The third loop block comprises

two nested loops: L rounds and L steps. The L steps loop

presents all steps involved during one round of AR loop, SB

loop, SR loop, and MC loop. In fact, this inner loop is iterated

four times. The L rounds loop describes the 32 rounds

performed with LED64 and comprises the LL steps followed

by a reminder of an AR loop. In the last loop, the CP loop, all

the state nibbles are added to make a ciphertext byte. The LED

encryption was simulated with a golden reference and a

testbench file. The HLS model is synthesized using the Vitis

HLs C synthesis tool to make the RTL description. This will

then be exported as hardware intellectual property (IP) so it

can be added to the Pynq Project. Once the synthesis step is

completed, we proceed to the analysis of design

implementation. To improve the performance of our design,

we need to analyze and interpret it to find the flaws in how it

is currently being used and think of ways to fix them. So, the

Xilinx Vitis HLS tool has an option for implementation

analysis that lets us check the scheduling of tasks, data routing,

and any potential problems like data dependency violations.

5. HARDWARE IMPLEMENTATIONS AND

OPTIMIZATIONS

This section will discuss how we used Vitis HLS to build

and optimize the crypto-watermarking algorithms.

After finishing the LED block cipher synthesis process, we

got a Pynq-Z1-based hardware implementation (xc7z020-

clg400-1). The Vitis HLS tool makes and builds the HDL

model based on the target platform. The synthesis results are

detailed and organized according to the chosen performance

criterion. As a result, we find performance estimates,

utilization estimates, and interface results. We will explore

three different implementations of the LED algorithm: 1)

initial implementation; 2) unrolled-based optimization; and 3)

pipelined-based optimization. During HLS optimization, the

LED top function goes through synthesis into an RTL block.

At the same time, each subfunction is transformed into a sub-

block that is subsequently instantiated into the top-level design.

Furthermore, the arguments of the top function are

transformed into input/output (I/O) ports. The HLS tool

facilitates the selection of the handshaking protocol to be

integrated into the input/output (I/O) ports of the designated

block(s). Input/output (I/O) ports can be realized through two

methods: streaming data from or to a first-in, first-out (FIFO)

buffer or reading and writing data to or from memory. The

design may call for the implementation of various

handshaking protocols.

5.1 Naive implementation

We start with an initial Naive Implementation (NI)

according to the software solution without optimization. A

primary way to use the LED algorithm has yet to be optimized.

In this version, all loops are rolled, and no optimization is

applied. As illustrated in Figure 8, already generated by the

Xilinx Vitis HLS tool, the overall latency of the LED-

decryption circuit is 8988 clock cycles. This considerable

delay is because the code was written without any parallelism,

pipeline, or duplication of functions. Without optimization, all

loops require full processing time to execute their operations.

The computation of loop latency involves the multiplication of

the iteration latency by the trip count. In order to establish a

91

loop, it is necessary to have one cycle for initiation and another

for leaving the loop. This rationale accounts for the inclusion

of two additional cycles for all loops. The L-steps loop is

examined in the current research, which shows that the four

functions are implemented in accordance with the

recommended method as mentioned. The L steps are a round

comprising the SB, SR, MC, and AR loops. The delay for each

loop is calculated by multiplying the iteration latency by the

trip count, as shown in Figure 8. We see that 270 clock cycles

are needed to complete 1 iteration of L steps, giving 1080

clock cycles to complete 1 step, which equates to 4 rounds.

One step needs a total of 1115 cycles to be completed since

each loop requires two extra cycles for input and output during

execution. The LED encryption HLS-IP exhibits a global

execution latency of 8988 for processing a 64-bit block since

it is a sequential implementation. Some optimization

techniques may be performed to reduce the global latency. In

the subsequent implementation, our focus lies on unrolling

these functions, intending to mitigate latency.

Figure 8. Vitis HLS report of the naive implementation

synthesis

5.2 Unrolled-based optimization

By default, loops are rolled. Each loop iteration corresponds

to a “sequence” of states. This sequence will be repeated

multiple times based on the loop trip count. The Unrolling

Loops (UL) option is a compelling and exciting way to show

more parallelism and get a shorter latency. It decreases loop

overhead, increases scheduling parallelism, and enables array-

to-scalar promotion and continual propagation. However, UL

increases operation counts, which may negatively impact the

area. The optimization directives were applied to the

AddRoundkey, SubBytes, ShiftRows, and MixColumns

functions in order to achieve encryption with high throughput

and low latency. This technique prioritizes enhancing

performance through the utilization of the unrolling loops

option. According to its nomenclature, the UNROLL pragma

expands a loop by duplicating its core in the Register Transfer

Level (RTL) design. This directive enables the concurrent

execution of multiple iterations of the loop. The unrolling

process can be executed entirely or partially by modifying the

duplication factor. In the following subsection, we detail the

results of the two solutions, entirely and partially unrolled.

5.2.1 Partially unrolled-based optimization

The present study evaluates the initial implementation,

deemed naive, by analyzing the implementation results

utilizing the Xilinx Vitis scheduler. This analysis aims to

determine which functions can be unrolled and to what extent.

Multiple experiments were conducted, wherein the primary

setup involved unrolling the SB loop by a factor of 4, while

the SR, MC, and AR loops were unrolled by a factor of 2. The

results obtained from the Partially Unrolled Implementation

(PUI) are illustrated in Figure 9. Focusing on the nested loops

with L rounds and L steps, we see that every sub-loop has a

delay of 16 cycles, which facilitates the usage of the pipeline

technique in the following subsection. The L-step latency is

reduced to 632 clock cycles instead of 1080 in the initial

implementation. Therefore, the global latency improved by

42%. The reduction factor obtained with partial unrolling

depends on the loop structure and the degree of unrolling

applied. Generally, increasing the degree of unrolling leads to

a higher reduction in latency, which could be even more

fascinating. In the next experiment, we will focus on

increasing the factor of unroll to achieve higher parallelism

and reduce the number of cycles required for execution, which

will ultimately lead to faster processing times and improved

performance. We will also explore the impact of different

unrolling factors on power consumption and resource

utilization. The best latency achieved with this optimization

was 0.150 ms, which is acceptable compared to our target of

0.4 ms.

Figure 9. Vitis HLS report of the PUI-based optimization

synthesis

5.2.2 Entirely unrolled-based optimization

We use a parallel architecture when applying Entirely

Unrolled Implementation (EUI), which reduces the latency to

256 clock cycles, as shown in Figure 10. The presence of

nested loops is the underlying cause of the latency or interval

being experienced. The L-step inner loop exhibits a latency of

7 clock cycles per iteration, resulting in a cumulative total of

28 clock cycles for all iterations. The loop, denoted as L

Rounds, exhibits a latency of 30 clock cycles for each iteration.

These latencies should be considered when designing the

pipeline stages for the processor, as they can significantly

impact the system’s overall performance. Additionally,

optimizing these loops may reduce the number of clock cycles

required for their execution. The speedup compared to partial

unrolling and the naive implementation is equal to 52% and

98%, respectively.

Figure 10. Vitis HLS report of the entirely unrolled-based

implementation optimization synthesis

Using a parallel architecture is an effective way to optimize

the system’s performance. However, it requires carefully

considering hardware resources and trade-offs between speed

and cost.

92

5.3 Pipelined-based optimization

Indeed, one of the required optimization methods for HLS

is Loop Pipelining (LP). Before the previous iteration is

finished, the LP permits a new one to start processing. The top

loop also uses a wholly pipelined loop architecture to reduce

latency and hardware costs. This approach allows for more

efficient use of resources and faster processing times, making

it particularly useful in high-performance computing

applications. Additionally, the pipelined architecture allows

for better scalability, as more iterations can be added without

significantly increasing hardware requirements. We attempt to

pipeline the basic implementation (PNI) in this first

experiment, as described in Figure 11, the Pipelined-Naive

Implementation (PNI). The inner loop L steps with a minimum

initiation interval (II) of 24 are subject to the pipeline approach.

The new increased latency is 96 clock cycles, which is

approximately 91% less latency compared to the 1080 cycles

required by the primitive architecture.

Figure 11. Vitis HLS report of the PNI-based optimizations

synthesis

In the second experiment, we based the partial unrolling

solution on the fact that all subloops (L rounds and L steps)

have equal latencies of 16 clock cycles. By doing so, we were

able to reduce the number of cycles required to execute the

loop by 80%. This optimization can significantly improve the

performance of the co-processor. Figure 12, which presents

the Pipelined-Partially Unrolled Implementation (PPUI),

shows a global latency of 1066. This improvement in global

latency can be attributed to the pipeline’s ability to process

multiple instructions simultaneously. However, it is essential

to note that this reduction may vary depending on the specific

task being performed.

Figure 12. Vitis HLS report of the PPUI-based optimization

synthesis

6. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the

suggested approach. The Python 3.8 in a computer Intel(R)

Core (TM) i7 CPU Q 720 clocked at 1.60 GHz was used to

perform tests on a grayscale standard image and a watermark

sized 512×512 and 32×32, respectively.

According to a subjective visual comparison between the

watermarked images and the original images in Table 3, the

crypto watermarking technique has achieved high

imperceptibility. proposed algorithm. As an objective

imperceptibility criterion, we computed the PSNR for the

cover and watermarked images. The PSNR values are 86.6,

88.9, 90.26, 87.18, and 82.18 for X-ray, MRI, CT, and X-ray

high-definition images. These high PSNR values suggest that

the images have minimal distortion and are of excellent quality

across different categories. For SSIM, the proposed crypto

watermarking method also performs well. The NC is equal to

1, which indicates that the extracted watermark is the same as

the embedded.

Table 3. Performance results without attack for the proposed

method

Image Size PSNR SSIM NC

X-Ray 296×296 86.6 0.9999653 1

MRI 512×512 88.9 0.9999785 1

CT 768×568 90.26 0.9999845 1

X-Rya 2496×2048 82.18 0.9999261 1

Various voluntary and involuntary image processing attacks

may later alter watermarked, decrypted medical images.

Therefore, it is crucial to assess the robustness of our

suggested approach in an under-attack environment. For these

tests, we select the MRI 512×512 medical image against the

following attacks: Salt and Pepper noise (SP) with variance

0.02, Gaussian Noise (GN), Median Filter (MF) 3×3, and

cropping (CR).

Table 4. Performance results with different attacks for the

MRI 512×512 image

Attack PSNR SSIM NC

SP 65.42 0.99976 0.9678

GN 58.51 0.99853 0.9472

MF 51.33 0.75931 0.8857

CR 39.46 0.69702 0.8545

According to the results in Table 4, the suggested scheme

has successfully reached a satisfactory outcome. A PSNR

average of around 53.68 dB indicates the higher quality of the

original and the watermarked image. For SSIM, the proposed

crypto watermarking performs well with SP and GN attacks;

however, it seems a little degraded for MF and CR attacks,

which indicates a little degradation on the extracted watermark.

The robustness is assessed by comparing the original and

extracted watermarks' similarity using the NC factor. These

show good robustness against SP and GN attacks but are not

good for MF and CR attacks. Despite this, the NC values

obtained remain superior to 0.75.

Table 5. Comparison of proposed methods

Studies Ref. [24]
Ref.

[25]

Ref.

[26]
Proposed

Method DCT+DWT
LSB-

HWT
HWT LSB

Encryption
CS based

encryption
-- - LED

PSNR 91.30 57.58 58 90.26

SSIM 1 1 0.9990 0.9999

NC 1 0.9993 - 1

To confirm the effectiveness of the proposed crypto

watermarking, the comparison of performance with other

methods [24-26] is shown in Table 5. The results of this table

prove that our scheme has better imperceptibility in

93

comparison with [25, 26]. Furthermore, the performance of the

proposed scheme is equivalent to literature [24]. In addition,

our scheme also outperforms [25, 26] in terms of robustness

against various attacks, as demonstrated in Table 5. This

highlights the superiority of our crypto watermarking method

not only in imperceptibility but also in its ability to withstand

malicious attempts to remove or alter the watermark.

This part evaluates, discusses, and compares the

implemented solution’s hardware utilization and performance

criteria for the LED encryption/decryption algorithm. To

examine the functionality of the RTL design, the Vitis HLS

tool synthesized and co-simulated the algorithms. Then, the

design was analyzed and optimized to achieve higher

throughput. The throughput Tp in this paper is calculated as

given in Eq. (5), and the efficiency is calculated by the

throughput-to-area ratio as given in Eq. (6).

𝑇𝑝 =
𝐵𝑙𝑜𝑐𝑘 ∗ 𝐹𝑚𝑎𝑥

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
 (5)

𝐸𝑓𝑓 =
𝑇𝑝

𝑆𝑙𝑖𝑐𝑒𝑠
 (6)

In this work, we implemented five HLS versions for the

LED cipher as described in Section 5. Table 6 presents a

detailed report for all design implementations. We note that

the maximum frequency achieved with HLS approaches

around 178.49 for the NI, PUI, and EUI architectures. When

applying the pipeline technique, the maximal frequencies

increase to 208.4 and 231.7 MHz with PNI and PPUI

architectures, respectively. For RTL approaches, the maximal

frequencies are around 83.8, 98.67, and 167.34 MHz [29, 30],

respectively.

So, when using the Vitis HLS tool, the frequency is doubled

compared to the manual RTL design [28]. Nevertheless, the

initial unsophisticated implementation exhibits significant

latency, fivefold more remarkable than the RTL

implementation. Optimization techniques, such as unrolling

and pipelines, were applied to attain optimal latencies. The

PPUI and EUI implementations yielded latencies of 1132 and

256 clock cycles, respectively. Regarding resource utilization,

it is observed that the manual RTL version [30] and the

pipeline-optimized versions exhibit superior performance.

Meanwhile, the unrolled versions are characterized by higher

logic consumption. This observation suggests that pipeline

optimization can effectively improve resource utilization in

HLS designs, while unrolling may not always be the best

approach due to its higher logic consumption. Further

exploration and experimentation could help determine the

optimal design strategy for a given application. On the other

hand, EUI, PNI, and PPUI HLS methods show better

throughput efficiency when compared to RTL, NI, and PUI

hardware implementations. These findings suggest that HLS

approaches may be more suitable for high-performance

computing applications that require fast and efficient

processing. However, it is crucial to consider the trade-offs

between hardware implementation methods and choose the

one that best fits the application’s specific requirements.

The throughput and latency achieved by each solution

determine the efficiency of the implementation, favoring the

throughput-optimal solutions. Throughput refers to the

amount of work that can be completed in a given period, while

latency refers to the time it takes to complete a task. Therefore,

the most efficient implementation is a solution that can achieve

high throughput and low latency.

Table 6. FPGA round-based implementation results of LED block cipher with RTL and Vitis HLS approaches

Design

Implementation
Device Fmax (MHz) Latency (Clock Cycles)

Resources Utilization Tp

Mbps

Eff

Tp/Slices BRAM FF LUT(s)

RTL

[28] Spartan-3 XC3S50-5 98.67 32 - 77 456 197.34 0.1

[29] Xilinx Spartan 6 83.8 32 - 211 549 167.6 0.07

[30] Spartan-3 XC3S50 -5 167.34 32 - 70 274 334.68 0.3

Vitis HLS

(Our)

NI

Pynq Z1

177.49 280 3 853 720 40.56 0.015

PUI 177.49 164 0 795 715 69.26 0.025

EUI 177.49 8 0 683 701 1415 0.5

PNI 208.4 35 1 494 658 381.07 0.15

PPUI 231.7 33 1 547 669 449.35 0.16

Table 7. LED encryption/decryption processing time in second (S) based on Pynq Z1

Image Size SW (Pynq Z1)

HW

RTL Vitis HLS (Our)

[28] [29] [30] NI PUI EUI PNI PPUI

X-ray 296×296 16.87 0.11 0.13 0.067 0.55 0.32 0.015 0.06 0.0002

MRI 512×512 50.69 0.34 0.40 0.20 1.65 0.96 0.045 0.17 0.15

CT 768×568 83.69 0.56 0.67 0.33 2.75 1.60 0.078 0.29 0.25

X-ray 2496×2048 975.62 6.67 7.85 3.89 32.26 18.81 0.91 3.47 2.93

Table 8. Crypto-watermarking Processing time (s) based Pynq Z1

Image Size
SW Pynq Z1

Total
LSB (SW)+LED (HW) Pynq Z1

Total
ENC/EMB DEC/EXT ENC/EMB DEC/EXT

X-ray 296×296 15.46 18.6 34.06 0.15 0.29 0.44

MRI 512×512 46.02 56.27 102.9 0.43 0.82 1.25

CT 768×568 77.07 91.81 168.88 0.48 1.39 1.87

X-ray 2496×2048 893.86 1081.6 1975.46 5.31 23.3 28.61

94

Figure 13. Vivado block design of crypto-watermarking system

The last phase of our work involves conducting processing

time measurements and examining the hardware acceleration

that was initially intended. This will help us evaluate the

efficiency of the hardware acceleration and determine if it

meets our performance goals. We can make the necessary

adjustments to improve the overall system’s performance

based on the results. The various implementations synthesized

RTL designs were exported to Vivado, where we achieved the

design implementation in preparation for further study. Figure

13 presents the block design of the watermarking system

following the Xilinx Viviado tool.

We used the Xilinx Pynq Z1 board, the Xilinx Vivado

Design Tool version 2022.2, and Jypiter to conduct the tests

and validations. Table 7 summarizes the LED processing time

according to all implementation software and hardware. It is

evident that the utilization of hardware implementation is

more efficient in comparison to software solutions.

The processing time of the crypto-watermarking system is

presented in Table 8. The present study explores the utilization

of a pure software implementation, namely based on the ARM

processor, within an FPGA chip. Additionally, a hybrid

implementation approach is investigated, combining the LSB

software technique with a hardware solution including LEDs.

The obtained results prove the superiority of hardware

implementation over software implementation. Hardware

implementation offers faster and more efficient processing

than software optimization designed to carry out a particular

task without additional programming or interpretation.

Additionally, hardware implementation can reduce the risk of

errors, improve system reliability, and ensure adherence to the

real-time constraint. HLS methods have faster processing

times and higher throughputs than RTL versions. This is why

users choose to implement their designs at the HLS level.

7. CONCLUSIONS

This paper presents a novel hardware/software

implementation of crypto-watermarking that utilizes LSB and

LED methodologies. This study showcases the acceleration of

the LED cipher on an FPGA by implementing unrolling and

pipeline optimization techniques, which were used to expedite

the entire system. HLS can potentially lead to better

throughput in hardware designs because it allows for more

efficient optimization and exploration of design alternatives.

The present study comprehensively analyzes the proposed

architecture, highlighting its impressive imperceptibility,

high-speed, and low-power performance features. The results

of this study could have significant implications for

developing more efficient and cost-effective LED cipher

systems in various applications, such as secure medical

communication, data encryption, and IoMT. Further research

can be conducted to explore the potential of this architecture

in real-world scenarios.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deputyship for

Research & Innovation, Ministry of Education in Saudi Arabia

for funding this research work through the project number

(IF2/PSAU/2022/01/21316).

REFERENCES

[1] Licks, V., Jordan, R. (2005). Geometric attacks on image

watermarking systems. IEEE Multimedia, 12(3): 68-78.

https://doi.org/10.1109/MMUL.2005.46

[2] Garg, P., Kishore, R.R. (2020). Performance comparison

of various watermarking techniques. Multimedia Tools

and Applications, 79: 25921-25967.

https://doi.org/10.1007/s11042-020-09262-1

[3] Zear, A., Singh, A.K., Kumar, P. (2018). A proposed

secure multiple watermarking technique based on DWT,

DCT and SVD for application in medicine. Multimedia

Tools and Applications, 77: 4863-4882.

https://doi.org/10.1007/s11042-016-3862-8

[4] Lee, H.Y. (2019). Adaptive reversible watermarking for

authentication and privacy protection of medical records.

95

Multimedia Tools and Applications, 78(14): 19663-

19680. https://doi.org/10.1007/s11042-019-7322-0

[5] Haughey, J., Taylor, K., Dohrmann, M., Snyder, G.

(2018). Medtech and the internet of medical things: How

connected medical devices are transforming health care.

Deloitte.

[6] Hasan, M.K., Islam, S., Sulaiman, R., et al. (2021).

Lightweight encryption technique to enhance medical

image security on internet of medical things applications.

IEEE Access, 9: 47731-47742.

https://doi.org/10.1109/ACCESS.2021.3061710

[7] Swann, R., Stine, J. (2023). Evaluation of a modular

approach to AES hardware architecture and optimization.

Journal of Signal Processing Systems, 95: 797-813.

https://doi.org/10.1007/s11265-022-01832-w

[8] Prasanalakshmi, B., Murugan, K., Srinivasan, K.,

Shridevi, S., Shamsudheen, S., Hu, Y.C. (2022).

Improved authentication and computation of medical

data transmission in the secure IoT using hyperelliptic

curve cryptography. The Journal of Supercomputing,

78(1): 361-378. https://doi.org/10.1007/s11227-021-

03861-x

[9] Elhamzi, W., Jallouli, M., Bouteraa, Y. (2022). High

efficiency crypto-watermarking system based on

Clifford-multiwavelet for 3D meshes security.

Computers, Materials & Continua, 73(2): 4329-4347.

http://doi.org/10.32604/cmc.2022.030954

[10] Araghi, T.K., Abd Manaf, A. (2019). An enhanced

hybrid image watermarking scheme for security of

medical and non-medical images based on DWT and 2-

D SVD. Future Generation Computer Systems, 101:

1223-1246. https://doi.org/10.1016/j.future.2019.07.064

[11] Ghadirli, H.M., Nodehi, A., Enayatifar, R. (2019). An

overview of encryption algorithms in color images.

Signal Processing, 164: 163-185.

https://doi.org/10.1016/j.sigpro.2019.06.010

[12] Zhang, Y., Li, X., Hou, W. (2017). A fast image

encryption scheme based on AES. In 2017 2nd

International Conference on Image, Vision and

Computing (ICIVC), Chengdu, China, pp. 624-628.

https://doi.org/10.1109/ICIVC.2017.7984631

[13] Mitra, A., Rao, Y.S., Prasanna, S.R.M. (2008). A new

image encryption approach using combinational

permutation techniques. International Journal of

Computer and Information Engineering, 2(2): 576-580.

[14] Coatrieux, G., Maître, H., Sankur, B., Rolland, Y.,

Collorec, R. (2000). Relevance of watermarking in

medical imaging. In Proceedings 2000 IEEE EMBS

International Conference on Information Technology

Applications in Biomedicine. ITAB-ITIS 2000. Joint

Meeting Third IEEE EMBS International Conference on

Information Technol, Arlington, VA, USA, pp. 250-255.

https://doi.org/10.1109/ITAB.2000.892396

[15] Khashan, O.A., AlShaikh, M. (2020). Edge-based

lightweight selective encryption scheme for digital

medical images. Multimedia Tools and Applications,

79(35-36): 26369-26388.

https://doi.org/10.1007/s11042-020-09264-z

[16] Das, S., Sunaniya, A.K., Maity, R., Maity, N.P. (2020).

Parallel hardware implementation of efficient embedding

bit rate control based contrast mapping algorithm for

reversible invisible watermarking. IEEE Access, 8:

69072-69095.

https://doi.org/10.1109/ACCESS.2020.2986134

[17] Das, S., Singh, P., Koley, C. (2020). Hardware

implementation of adaptive feedback based reversible

image watermarking for image processing application.

Microsystem Technologies, 26(10): 3271-3287.

https://doi.org/10.1007/s00542-018-4024-x

[18] Arumugham, S., Rajagopalan, S., Rayappan, J.B.B.,

Amirtharajan, R. (2019). Tamper-resistant secure

medical image carrier: an IWT–SVD–Chaos–FPGA

combination. Arabian Journal for Science and

Engineering, 44(11): 9561-9580.

https://doi.org/10.1007/s13369-019-03883-x

[19] Hazra, S., Ghosh, S., De, S., Rahaman, H. (2018). FPGA

implementation of semi-fragile reversible watermarking

by histogram bin shifting in real time. Journal of Real-

Time Image Processing, 14: 193-221.

https://doi.org/10.1007/s11554-017-0672-9

[20] Maity, G.K., Jana, P., Mandal, H., Chiu, T.L. (2019).

Power-aware VLSI design of reversible watermarking

for access control. Microsystem Technologies, 28: 705-

720. https://doi.org/10.1007/s00542-019-04342-1

[21] Phadikar, A., Mandal, H., Chiu, T.L. (2020). Parallel

hardware implementation of data hiding scheme for

quality access control of grayscale image based on FPGA.

Multidimensional Systems and Signal Processing, 31:

73-101. https://doi.org/10.1007/s11045-019-00650-x

[22] Nayak, M.R., Bag, J., Sarkar, S., Sarkar, S.K. (2017).

Hardware implementation of a novel water marking

algorithm based on phase congruency and singular value

decomposition technique. AEU-International Journal of

Electronics and Communications: 71: 1-8.

https://doi.org/10.1016/j.aeue.2016.10.025

[23] Kaibou, R., Azzaz, M.S., Benssalah, M., Teguig, D.,

Hamil, H., Merah, A., Akrour, M.T. (2021). Real-time

FPGA implementation of a secure chaos-based digital

crypto-watermarking system in the DWT domain using

co-design approach. Journal of Real-Time Image

Processing, 18(6): 2009-2025.

https://doi.org/10.1007/s11554-021-01073-3

[24] Borra, S., Thanki, R. (2020). Crypto-watermarking

scheme for tamper detection of medical images.

Computer Methods in Biomechanics and Biomedical

Engineering: Imaging & Visualization, 8(4): 345-355.

https://doi.org/10.1080/21681163.2019.1595730

[25] Faheem, Z.B., Ali, M., Raza, M.A., Arslan, F., Ali, J.,

Masud, M., Shorfuzzaman, M. (2022). Image

watermarking scheme using LSB and image gradient.

Applied Sciences, 12(9): 4202.

https://doi.org/10.3390/app12094202

[26] Yu, Y., Gao, J., Mu, X., Wang, S. (2023). Adaptive LSB

quantum image watermarking algorithm based on Haar

wavelet transforms. Quantum Information Processing,

22(5): 180. https://doi.org/10.1007/s11128-023-03926-1

[27] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. (2011).

The LED block cipher. In 13th International Workshop,

Nara, Japan, pp. 326-341. https://doi.org/10.1007/978-3-

642-23951-9_22

[28] Marchand, C., Bossuet, L., Gaj, K. (2017). Area-oriented

comparison of lightweight block ciphers implemented in

hardware for the activation mechanism in the anti-

counterfeiting schemes. International Journal of Circuit

Theory and Applications, 45(2): 274-291.

https://doi.org/10.1002/cta.2288

[29] Marchand, C., Bossuet, L., Gaj, K. (2017). Ultra-

lightweight implementation in area of block ciphers.

96

Foundations of Hardware IP Protection, pp. 177-203.

https://doi.org/10.1007/978-3-319-50380-6_9

[30] Al-Shatari, M., Hussin, F.A., Abd Aziz, A., Witjaksono,

G., Rohmad, M.S., Tran, X.T. (2019). An efficient

implementation of LED block cipher on FPGA. In 2019

First International Conference of Intelligent Computing

and Engineering, Hadhramout, Yemen, pp. 1-5.

https://doi.org/10.1109/ICOICE48418.2019.9035193

[31] Chest X-Ray Images (Pneumonia) DataSet from Kaggle.

https://www.kaggle.com/datasets/paultimothymooney/c

hest-xray-pneumonia, accessed on Apr. 17, 2022.

[32] Brain_Tumor_Detection_MRI DataSet from Kaggle.

https://www.kaggle.com/abhranta/brain-tumor-

detection-mri, accessed on Feb. 22, 2022.

[33] Breast Ultrasound Images Dataset (BUSI) DataSet from

Kaggle.

https://www.kaggle.com/datasets/sabahesaraki/breast-

ultrasound-images-dataset, accessed on Feb. 22, 2022.

[34] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C.,

Poschmann, A., Robshaw, M.J.B., Seurub, Y., Vikkelsoe,

C. (2007). PRESENT: An ultra-lightweight block cipher.

In 9th International Workshop, Vienna, Austria, pp. 450-

466. https://doi.org/10.1007/978-3-540-74735-2_31

[35] Vitis High-Level Synthesis User Guide.

https://usermanual.wiki/m/eff365c5fddc5d1e84992bdad

1c02d45d7b2ecfbeb9af6f50b5dd79dd2f973f7.

[36] Sussmann, M., Hill, T. (2017). Intel HLS compiler: Fast

design, coding, and hardware. White Paper.

[37] Ralphs, T.K., Guzelsoy, M., Mahajan, A. (2015).

SYMPHONY 5.6. 9 User’s Manual. SYMPHONY.

https://www.coin-

or.org/SYMPHONY/doc/SYMPHONY-5.6.9-

Manual.pdf.

97

https://www.kaggle.com/abhranta/brain-tumor-detection-mri
https://www.kaggle.com/abhranta/brain-tumor-detection-mri
https://www.kaggle.com/datasets/sabahesaraki/breast-ultrasound-images-dataset
https://www.kaggle.com/datasets/sabahesaraki/breast-ultrasound-images-dataset

