
Genetic Algorithm Using Feistel and Genetic Operator Acting at the Bit Level for Images

Encryption

Abdellah Abid* , Mariem Jarjar , Mourad Kattass , Hicham Rrghout , Abdellatif Jarjar ,

Abdelhamid Benazzi

MATSI Laboratory, Mohamed First University, Oujda 60000, Morocco

Corresponding Author Email: a.abid@ump.ac.ma

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140102 ABSTRACT

Received: 23 November 2023

Revised: 26 January 2024

Accepted: 12 February 2024

Available online: 29 February 2024

In this paper, a new medical image encryption technique based on genetic algorithms

acting at the bit level will be developed. Initially, a transformation to a binary matrix

notation of the original image is applied, followed by an evaluation function determined

by the Hamming distance between the obtained image and another pseudo-random image

generated from chaotic maps used. This discrimination function divides the image, viewed

as a population where each row represents an individual, into two categories: a strong

population and a weak population. An enhanced Feistel round will be implemented by

introducing a chaotic mating between the two categories based on a circular shift for the

right bloc and a pseudo-random permutation for the left bloc. Next, a genetic crossover

adapted for image encryption will be performed with another pseudo-random vector under

the control of a crossover table. To ensure the robustness of our approach, a genetic

mutation will be applied at the end of the encryption. A multitude of images of different

sizes and formats have been tested using our approach, with encouraging results.

Keywords:

image encryption, chaotic map, genetic

algorithm, fitness function, genetic operator,

Feistel network, hamming distance

1. INTRODUCTION

In today's digital age, the security of sensitive data,

especially medical images, is of paramount importance.

Safeguarding the integrity and the confidentiality of images is

crucial in a digital world where the exchange and the storage

of visual information are commonplace. Images may contain

private, confidential, or strategic data, and unauthorized

exposure can lead to several consequences for individuals and

organizations. To address this growing concern, numerous

image encryption methods have been developed, yet some still

exhibit vulnerabilities to sophisticated attacks.

With advancements in mathematics, cryptography swiftly

made its way into the realm of security. The emergence of

standards such as Hill [1-4], Vigenère [5-8], DES [9], Feistel

[10-13], AES [14, 15], and others has been observed. The

development of chaos theory and the availability of multiple

chaotic maps facilitate the creation of encryption algorithms.

Furthermore, by following Shannon's guidelines [16] and

incorporating feedback in the encryption mode, a strong

resilience is conferred upon the new cryptographic systems.

With the rapid advancement of chaos theory, we are

witnessing several improvements in these classical techniques.

Additionally, some of the currently highly recommended

solutions are genetic algorithms. In fact, genetic algorithms are

among the most frequently used optimization methods, with

numerous applications in various scientific fields [17-20]. The

genetic algorithm, first proposed by John Holland in 1975, is

one of the most renowned evolutionary algorithms, inspired by

the evolutionary process of living species. The genetic

algorithm is widely used to solve a variety of optimization

problems, starting with the initial random generation of

individuals, followed by selection for reproduction of the new

tribes, according to the value of their evaluation function. In

other words, the best-performing individuals have the

opportunity to be selected for the reproduction of future

generations. The selected individuals will be subjected to

genetic operators such as mutation, crossover, insertion and

reversion (Figure 1). With this in mind, most researchers have

developed encryption methods based on adaptation of genetic

algorithm to image encryption. Ghazvini et al. [21] proposed

an image encryption method based on genetic and chaos

algorithms. The method consists of three main steps: a

confusion phase using the Chen map, a second phase

performed by the logistic-sine map, and the final phase

involves selecting the encrypted image that yields the highest

entropy and the lowest correlation. Mahmud et al. [22] had

developed a novel cryptosystem based on the hybridization of

Ribonucleic Acid (RNA) and Genetic Algorithm (GA).

Initially, the logistic map and RNA codons are used to create

initial populations for GA. Finally, GA optimizes the images

using the fitness function based on entropy to find the

optimized encrypted image. Ferdush et al. [23] proposed a new

hybrid encryption system using PSO and GA with a chaotic

map. An image is initially encrypted using a chaotic function,

then PSO and GA are applied to select the best encrypted

image that exhibits the highest entropy and the lowest

correlation coefficient between adjacent pixels.

Our contribution in this work is to develop a robust

encryption system based on genetic algorithms using chaos

International Journal of Safety and Security Engineering
Vol. 14, No. 1, February, 2024, pp. 15-27

Journal homepage: http://iieta.org/journals/ijsse

15

https://orcid.org/0009-0005-1059-5831
https://orcid.org/0000-0001-8090-5210
https://orcid.org/0009-0003-4481-3150
https://orcid.org/0009-0000-4769-7149
https://orcid.org/0000-0002-7119-2068
https://orcid.org/0009-0005-1954-5400
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140102&domain=pdf

and an enhanced Feistel scheme employing a circular shift for

the right bloc and a pseudo-random permutation for the left

bloc. Followed by the two most widely used genetic operators

in cryptography, namely crossover and genetic mutation

adapted to image encryption.

Figure 1. Genetic algorithm process

2. PROPOSED METHOD

Based on chaos [24], this new technology describes the

construction of a genetic algorithm operating at the bit level.

The implementation of this new system is based on the

following axes:

2.1 Chaotic sequences development

The choice of chaotic maps is crucial for an encryption

system. Therefore, our algorithm utilizes the two most used

chaotic maps in cryptography, the logistic map, and the

skewed tent map. This choice is due to the ease of

implementation of both maps and their high sensitivity to

initial conditions.

2.1.1 The logistics map

The logistic map is a recurrent sequence defined by Eq. (1).

{
 𝑠0 ∈ [0,5 1] , 𝑟 ∈ [3,75 4]

 𝑠𝑛+1 = 𝑟𝑠𝑛(1 − 𝑠𝑛)
 (1)

𝑠0 is the initial value and 𝑟 is the control parameter.

The Lyapunov exponent λ of the logistic map is λ= log(2)>0,

which proves that this sequence is highly sensitive to initial

conditions.

2.1.2 The skew tente map

The Skew tent map is defined by Eq. (2).

{

𝑡0[0 1]𝑣 ∈ [0,5 1]

𝑡𝑛+1 = {

𝑡𝑛
𝑣
 𝑖𝑓 0 ≺ 𝑡𝑛 ≺ 𝑣

1 − 𝑡𝑛
1 − 𝑣

 𝑖𝑓 𝑣 ≺ 𝑡𝑛

 (2)

𝑡0 is the initial value and v is the control parameter.

The combination of these two chaotic maps will be used to

generate all the parameters necessary for the proper

functioning and operation of our new technique.

2.1.3 Chaotic table design

Our approach requires the use of a pseudo-random table

(WC) of size (13nm, 3) constructed from the chaotic maps

used with coefficients in 𝐺256 to ensure multiple confusions

(Algorithm 1), and a table (WB) of the same size for system

action control (Algorithm 2).

Algorithm 1: Chaotic vectors design

Begin

 For i=1 to 13nm

 𝑊𝐶(𝑖, 1) = 𝑚𝑜𝑑(𝐸(𝑚𝑖𝑛(𝑠(𝑖), 𝑡(𝑖)) ∗ 1011, 254) +

1)

 𝑊𝐶(𝑖, 2) = 𝑚𝑜𝑑 (𝐸 (
2∗𝑠(𝑖)+3∗𝑡(𝑖)

5
∗ 1012, 253) + 2)

 𝑊𝐶(𝑖, 3) = 𝑚𝑜𝑑 (𝐸 (
2∗𝑠(𝑖)+𝑡(𝑖)

3
∗ 1013, 252) + 3)

 endFor

end

Algorithm 2: Control table design

Begin

 For i=1 to 13nm

 If 𝑊𝐶(𝑖, 1) ≥ 𝑊𝐶(𝑖, 2) then

 𝑊𝐵(𝑖, 1) = 0

 Else

 𝑊𝐵(𝑖, 1) = 1

 EndIf

 If 𝑊𝐶(𝑖, 2) ≥ 𝑊𝐶(𝑖, 3) then

 𝑊𝐵(𝑖, 2) = 0

 Else

 𝑊𝐵(𝑖, 2) = 1

 EndIf

 If 𝑊𝐶(𝑖, 3) ≥ 𝑊𝐶(𝑖, 1) then

 𝑊𝐵(𝑖, 3) = 0

 Else

 𝑊𝐵(𝑖, 3) = 1

 EndIf

 endFor

end

2.2 Population construction

2.2.1 Image vectorization

Before starting the encryption process, an extraction of the

3RGB color channels is performed, followed by vectorization

(Wr), (Wg), and (Wb), each of size (nm), and then

concatenation to obtain a vector (W) of size (3nm). This

process is illustrated in Figure 2 and described by Algorithm

3.

Figure 2. Image vectorization

Algorithm 3: Vectorization process

Begin

 For i=1 to nm

 𝑊(𝑖) = 𝑊𝑟(𝑖)
 𝑊(𝑖 + 𝑛𝑚) = 𝑊𝑔(𝑖)

16

 𝑊(𝑖 + 2𝑛𝑚) = 𝑊𝑏(𝑖)
 endFor

end

2.2.2 Pseudo random transformation into binary

The vector (W) of size (3nm) will be converted into a binary

vector (XB) of size (24nm) using 4 conversion tables (Figure

3). The choice of the conversion table is controlled by the

control table (WB). The binary conversion process is

described by Algorithm 4. An example of conversion is

illustrated by Figure 4.

After the pseudo random binary conversion, the vector (XB)

of size (24nm) will be resized into a matrix (MB) of size (4n,

6m), this process is illustrated in Figure 5.

Figure 3. Coversion tables

Figure 4. Binary conversion example

Figure 5. Resizing process

Algorithm 4: Binary conversion

Begin

 For i=1 to 3nm

 𝑥 = 𝑊(𝑖) 𝑑𝑖𝑣 16

 y= 𝑊(𝑖) 𝑚𝑜𝑑 16

 𝛼 = 𝑥 𝑑𝑖𝑣 4

 𝛽 = 𝑥 𝑚𝑜𝑑 4

 𝛿 = 𝑦 𝑑𝑖𝑣 4

 𝛾 = 𝑦 𝑚𝑜𝑑 4

 If WB(i,1)==0 and WB(i,2)==0 then

 TC=TC1

 Elif WB(i,1)==0 and WB(i,2)==1 then

 TC=TC2

 Elif WB(i,1)==1 and WB(i,2)==0 then

 TC=TC3

 Else

 TC=TC4

 EndIf

 XB(8i − 7) = 𝑇𝐶(𝛼, 0)
 XB(8i − 6) = 𝑇𝐶(𝛼, 1)
 XB(8i − 5) = 𝑇𝐶(𝛽, 0)
 XB(8i − 4) = 𝑇𝐶(𝛽, 1)
 XB(8i − 3) = 𝑇𝐶(𝛿, 0)
 XB(8i − 2) = 𝑇𝐶(𝛿, 1)
 XB(8i − 1) = 𝑇𝐶(𝛾, 0)
 XB(8i) = 𝑇𝐶(𝛾, 1)
 end For

end

2.2.3 Fitness function definition

The matrix (MB) will be considered as a population, where

each row represents an individual. A fitness function will be

applied to assess the population's integrity for future

categorization into two groups: strong population and weak

population. This evaluation function is defined by the

Hamming distance between the original image (MB) and the

pseudo-random image (CB) defined by Eq. (3). An example of

hamming distance calculation is given in Figure 6.

𝐻(𝑀𝐵(𝑖, :), 𝐶𝐵(𝑖, :)) = ∑𝑀𝐵(𝑖, 𝑗)⨁𝐶𝐵(𝑖, 𝑗)

6𝑚

𝑗=1

 (3)

2.2.4 Construction of the categories

Figure 6. Hamming distance calculation

(a) row extension

(b) row sorting

17

(c) tribe generation

Figure 7. Construction of the tow categories

Before partitioning the population, each row of the matrix

(MB) will be augmented by 16 bits to store the identifier

corresponding to its row number (Figure 7(a)). After that A

descending sort of each row of (MBE) is established with

respect to the weight vector (VH) to separate the population

into 2 categories (Figure 7(b)). Finaly the matrix (MBE) will

be subdivided into two sub-matrices (MG) and (MD) each of

size (2n, 6m+16) (Figure 7(c)).

3. ENCRYPTION PROCESS

Our encryption technique consists of coupling the rows of

(MG) and (MD) matrices using an enhanced Feistel laps

followed by a crossover and mutation operations.

3.1 Feistel laps

The two matrices (MG) and (MD) will undergo coupling

through an enhanced Feistel TF circuit defined by Eq. (4).

𝑇𝐹(𝐺, 𝐷) = (𝐺′, 𝐷′) = {
𝐺′ = ℎ𝑖(𝐷)

𝐷′ = 𝐺 ⊕ 𝑓𝑖(𝐷)
 (4)

where, ℎ𝑖 is a binary permutation constructed by the binary

vector (𝑊𝐵(: , 3)) and 𝑓𝑖 is a circular shift function

determined by the coefficient WC (i, 3). The coupling process

is described by Algorithm 5.

Algorithm 5: Coupling process

1. Begin

2. 𝐺 = 𝑀𝐺(1, :)
3. 𝐷 = 𝑀𝐷(1, :)
4. 𝑋𝐺 = 𝐺 ⊕ 𝑉𝐼G

5. 𝑋𝐷 = 𝐷 ⊕ 𝑉𝐼D

6. 𝐺′ = ℎ𝑖(𝑋𝐷)
7. 𝐷′ = 𝑋𝐺 ⊕ 𝑓𝑖(𝑋𝐷)
8. 𝐺𝑀(1, :) = 𝐺′
9. 𝐷𝑀(1, :) = 𝐷′
10. For i=2 to 2n

11. 𝐺 = 𝑀𝐺(𝑖, :)
12. 𝐷 = 𝑀𝐷(𝑖, :)
13. 𝑋𝐺 = 𝐺 ⊕ 𝐺′
14. 𝑋𝐷 = 𝐷⊕ 𝐷′
15. 𝐺′ = ℎ𝑖(𝑋𝐷)
16. 𝐷′ = 𝑋𝐺 ⊕ 𝑓𝑖(𝑋𝐷)
17. 𝐺𝑀(𝑖, :) = 𝐺′
18. 𝐷𝑀(𝑖, :) = 𝐷′

19. end For

20. end

Using VIG and VID are obtained by applying the XOR

operation on all the rows of the MG matrix and MD natrix,

excluding the first row. The enhanced Feistel round is

illustrated in Figure 8.

At the end of the Feistel round. The two matrices (GM) and

(DM) of size (2n, 6m+16) are combined into a single matrix

(M') of size (2n, 12m+32). This matrix will be transformed

into a vector (BX) of size (24 nm+64n).

Figure 8. Feistel lap

3.2 Genetic crossover

The second encryption phase involves a genetic crossover

adapted for image encryption. For this reason, a pseudo-

random transformation at the DNA level is necessary. This

operation is described by the following steps:

3.2.1 Transition to 𝐺4

Transition to 𝐺4 the binary vector (BX) of size (24nm+64

n) will be converted into a vector (BY) of size (12nm+32n)

taking values in 𝐺4 using Algorithm 6.

Algorithm 6: Transition to 𝑮𝟒

1. Begin

2. For i=1 to 12nm+32n

3. 𝐵𝑌(𝑖) = 2 ∗ 𝐵𝑋(2 ∗ 𝑖 − 1) + 𝐵𝑋(2 ∗ 𝑖)
4. end For

5. end

3.2.2 Transition to DNA notation

The transition to DNA notation involves writing the vector

(BY) into (YB) vector using the symbols {A, C, T, G}. For

this, we will use two conversion tables T1 and T2 defined in

Figure 9. The choice of the conversion table is determined by

the control vector (WB(:, 3)). The process of converting to

DNA notation is illustrated by Algorithm 7.

Figure 9. DNA conversion table

Algorithm 7: Conversion to DNA notation

1. Begin

2. For i=1 to 12nm+32n

3. 𝑥 = 𝐵𝑌(𝑖)
4. If WB(i,3)=0 then

5. 𝑌𝐵(i) = 𝑇1(𝑥)

18

6. Else

7. YB(i) = 𝑇2(𝑥)
8. endFor

9. end

3.2.3 Genetic crossover function

The vector (YB) will be genetically crossed with a

pseudorandom vector (R) of size (12nm+32n) defined by

Algorithm 8.

Algorithm 8: Generation of the vector R

1. Begin

2. For i=1 to 12nm+32n

3. If s(i)<=0.25 then

4. R(i)=“A”

5. Eilf s(i)<=0.5 then

6. R(i)=“C”

7. Eilf s(i)<=0.75 then

8. R(i)=“T”

9. Else

10. R(i)=“G”

11. end For

12. end

The genetic crossover operation is controlled by a crossover

table TC of size (12nm+32n, 3) where each column is defined

as follows:

• The first column: a permutation P obtained by sorting the

12nm+32n values of the sequence s, indicating the index of the

pixel to be processed.

• The second column: a permutation Q obtained by sorting

the 12nm+32n values of the sequence t, indicating the index

of the factor of R to be used.

• The third column: the QoP permutation indicating the

index of the pixel obtained through genetic crossover.

The process of genetic crossover is illustrated by Algorithm

9.

Algorithm 9: Genetic crossover

1. Begin

2. For i=1 to 12nm+32n

3. 𝑥 = YB(𝑇𝐶(𝑖, 1))
4. If WB(i,1)=0 then

5. 𝑦 = 𝑥 ⊕ 𝑅(𝑇𝐶(𝑖, 2))
6. Else

7. 𝑦 = 𝑥 ⊗ 𝑅(𝑇𝐶(𝑖, 2))
8. 𝑊𝑄(𝑇𝐶(𝑖, 3)) = 𝑦

9. end For

10. end

Figure 10. DNA conversion table

With ⊕ and ⊗ are crossover operators defined at DNA

level defined by Figure 10.

3.3 Genetic mutation

The third encryption phase involves establishing a diffusion

operation ensured by a genetic mutation adapted for medical

image encryption. This step will be described by the following

axes:

3.3.1 Transition to 𝐺4

The vector (WQ) written in DNA notation of size

(12nm+32n) will be reconverted into a vector (QW) with

coefficients in 𝐺4 using conversion tables defined in Figure 11.

The choice of the conversion table is determined by the control

vector (WB(:, 2)). The process of conversion to 𝐺4 is

illustrated by Algorithm 10.

Figure 11. DNA to 𝐺4 tables conversion

Algorithm 10: Transition to 𝑮𝟒

1. Begin

2. For i==1 to 12nm+32n

3. 𝑥 = 𝑊𝑄(𝑖)
4. If WB(i,2)=0 then

5. 𝑄𝑊(i) = 𝑇3(𝑥)
6. Else

7. 𝑄𝑊(i) = 𝑇4(𝑥)
8. end For

9. end

3.3.2 Transition to gray level (𝑮𝟐𝟓𝟔)
The vector (QW) of size (12nm+32n) will be converted into

a vector (QZ) of size (3nm+8n) with values in (𝐺256). This

conversion is illustrated by Algorithm 11.

Algorithm 11: Transition to 𝑮𝟐𝟓𝟔

1. Begin

2. For i=1 to 3nm+8n

3. 𝑄𝑍(𝑖) = 𝑄𝑊(4 ∗ 𝑖 − 3) + 2 ∗ 𝑄𝑊(4 ∗ 𝑖 −
2) + 4 ∗ 𝑄𝑊(4 ∗ 𝑖 − 1) + 8 ∗ 𝑄𝑊(4 ∗ 𝑖)
4. end For

5. end

3.3.3 Initial value calculation

An initial value (WI) will be calculated to initialize the

diffusion process. The calculation of the initial value is shown

in Algorithm 12.

Algorithm 12: Calculation of the initial value

1. Begin

2. WI=0

3. For i=1 to 3nm+8n

4. 𝑊𝐼 = 𝑊𝐼 ⊕ 𝑄𝑍(𝑖)
5. end For

6. end

19

3.3.4 Genetic mutation function

(a) first step

(b) second step

Figure 12. Encryption process

The vector (QZ) of size (3nm+8 n) will undergo a genetic

mutation function, defined by an inversion operation, and

controlled by a mutation table of size (3nm+8n, 3). Each

column of the mutation table is defined as follows:

• The first column: a permutation P obtained by sorting the

3nm+8n values of the sequence s+t, indicating the index of the

pixel to be processed.

• The second column: a permutation Q obtained by sorting

the 3nm+8n values of the sequence t+2s, indicating the index

of the pixel obtained through genetic crossover.

• The third column: is a pseudo-random control vector used

to control genetic mutation. This vector is defined by

Algorithm 13.

The diffusion process is illustrated by Algorithm 14.

Algorithm 13: Generation of the genetic mutation

control vector.

1. Begin

2. For i=1 to 3nm+8n

3. If s(i)<=0.1 then

4. TM(i,3)=0

5. Else

6. TM(i,3)=1

7. end For

8. end

Algorithm 14: Diffusion operation using genetic

mutation.

1. Begin

2. If 𝑇𝑀(1,3)=1 then

3. 𝑍(𝑇𝑀(1,2)) = 𝑊𝐼 ⊕ 255

4. Else

5. 𝑍(𝑇𝑀(1,2)) = 𝑊𝐼
6. For i=2 to 3nm+8n

7. If 𝑇𝑀(𝑖, 3)=1 then

8. 𝑍(𝑇𝑀(𝑖, 2)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑄𝑍(𝑇𝑀(𝑖, 1)) ⊕ 255

9. Else

10. 𝑍(𝑇𝑀(𝑖, 2)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑄𝑍(𝑇𝑀(𝑖, 1))
11. end For

12. end

The vector (Z) constitutes the encrypted image by our

algorithm and the entire encryption process is presented in

Figure 12.

4. DECRYPTION PROCESS

Our algorithm is a symmetric encryption algorithm. By

applying the inverse encryption functions, in reverse order and

using the same encryption key, we can restore the original

image.

4.1 The inverse of the genetic mutation

The inverse function of genetic mutation is described by

Algorithm 15.

Algorithm 15: Reverse of genetic mutation

1. Begin

2. For i=3nm+8n to 2

3. If 𝑇𝑀(𝑖, 3)=1 then

4. 𝑄𝑍(𝑇𝑀(𝑖, 1)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑍(𝑇𝑀(𝑖, 2)) ⊕ 255

5. Else

6. 𝑄𝑍(𝑇𝑀(𝑖, 1)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑍(𝑇𝑀(𝑖, 2))
7. End If

8. end For

9. 𝑄𝑍(𝑇𝑀(1,1)) = 𝑍(𝑇𝑀(1,2))
10. For i =1 to 3nm+8n

11. If i !=𝑇𝑀(1,1) then

12. 𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1)) ⊕
𝑄𝑍(𝑖)
13. end IF

14. End For

20

15. If 𝑇𝑀(1,3)==1 then

16. 𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1)) ⊕ 255

17. Else

18. 𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1))
19. End If

20. end

4.2 The inverse of the genetic crossover

The genetic crossover operation acts on the image at the

DNA level, a transition from the vector (QZ) to notation is

necessary. First, the vector will be converted to the vector

(QW) of size (12nm+32n) with coefficients in 𝐺4 . This

conversion is described by Algorithm 16.

Algorithm 16: Transition to 𝑮𝟒

1. Begin

2. For i=1 to 3nm+8n

3. 𝑥 = 𝑄𝑍(𝑖) 𝑚𝑜𝑑 16

4. 𝑦 = 𝑄𝑍(𝑖) 𝑑𝑖𝑣 16

5. 𝑄𝑊(4𝑖 − 3) = 𝑥 𝑚𝑜𝑑 4

6. 𝑄𝑊(4𝑖 − 2) = 𝑥 𝑑𝑖𝑣 4

7. 𝑄𝑊(4𝑖 − 1) = 𝑦 𝑚𝑜𝑑 4

8. 𝑄𝑊(4𝑖) = 𝑦 𝑑𝑖𝑣 4

9. end For

10. end

The vector (QW) will be converted to the vector (WQ) in

DNA notation using inverse conversion tables: TI3 (inverse of

T3) and TI4 (inverse of T4) described in Figure 13. The

conversion process is illustrated by Algorithm 17.

Figure 13. 𝐺4 to DNA tables conversion

Algorithm 17: Transition to DNA notation

1. Begin

2. For i=1 to 12nm+32n

3. 𝑥 = 𝑄𝑊(𝑖)
4. If WB(i)=0 then

5. 𝑊𝑄(i) = 𝑇𝐼3(𝑥)
6. Else

7. 𝑊𝑄(i) = 𝑇𝐼4(𝑥)
8. end For

9. end

The inverse genetic crossover process is illustrated by

Algorithm 18.

Algorithm 18: The inverse of genetic crossover

1. Begin

2. For i=12nm+32n to 1

3. 𝑥 = 𝑊𝑄(𝑇𝐶(𝑖, 1))
4. If TC(i,4)=0 then

5. 𝑦 = 𝑥 ⊕ 𝑅(𝑇𝐶(𝑖, 2))
6. Else

7. 𝑦 = 𝑥 ⊗ 𝑅(𝑇𝐶(𝑖, 2))
8. 𝑌𝐵(𝑇𝐶(𝑖, 3)) = 𝑦

9. end For

10. End

4.3 Feistel lap inverse

Before applying the inverse Feistel network, a conversion

to the binary level is crucial. For this, the vector (YB) will be

converted to a vector (BY) with values in 𝐺4 using the inverse

tables TI1 (inverse of T1) and TI2 (inverse of T2) described in

Figure 14. The conversion process is illustrated by Algorithm

19.

Figure 14. 𝐺4 to DNA tables conversion

Algorithm 19: Transition to G4

1. Begin

2. For i=1 to 12nm+32n

3. 𝑥 = 𝑌𝐵(𝑖)
4. If WB(i,2)=0 then

5. 𝐵𝑌(i) = 𝑇𝐼1(𝑥)
6. Else

7. 𝐵𝑌(i) = 𝑇𝐼2(𝑥)
8. end For

9. end

The vector (BY) will then be converted to a binary vector

(BX) using Algorithm 20. After that, the vector (BX) will be

resized into a matrix (M’) of size (2n, 12m+32). This matrix

will be subdivided into two sub-matrices (GM) and (DM) each

of size (2n, 6 m+16). The inverse Feistel network is applied to

each row of (GM) and (DM). This process is described by

Algorithm 21.

Algorithm 20: Binary transition

1. Begin

2. For i=1 to 12nm+32n

3. 𝐵𝑋(2 ∗ 𝑖 − 1) = 𝐵𝑌(𝑖) 𝑑𝑖𝑣 2

4. 𝐵𝑋(2 ∗ 𝑖) = 𝐵𝑌(𝑖) 𝑚𝑜𝑑 2

5. end For

6. end

Algorithm 21: Feistel lap inverse

1. Begin

2. For i=2n to 2

3. 𝐺′ = 𝑀𝐺′(𝑖, :)
4. 𝐷′ = 𝑀𝐷′(𝑖, :)
5. X𝐷 = ℎ𝑖

−1(𝐺′)
6. 𝑋𝐺 = 𝐷′⊕ 𝑓𝑖(𝑋𝐷)
7. 𝐺 = 𝑋𝐺⨁ 𝑀𝐺′(𝑖 − 1, :)
8. 𝐷 = 𝑋𝐷⨁ 𝑀𝐷′(𝑖 − 1, :)
9. 𝑀𝐺(𝑖, :) = 𝑋𝐺

10. 𝑀𝐷(𝑖, :) = 𝑋𝐷

11. end For

21

21. 𝐷′ = 𝐷𝑀(1, :)
22. 𝐺′ = 𝐺𝑀(1, :)
23. 𝑋𝐷 = ℎ𝑖

−1(𝐺′)
24. 𝑋𝐺 = 𝐷′⊕𝑓𝑖(𝑋𝐷)
25. 𝐷 = 𝑋𝐷 ⊕ 𝑉𝐼D

26. 𝐺 = 𝑋𝐺 ⊕ 𝑉𝐼G

27. 𝑀𝐺(1, :) = 𝐺

28. 𝑀𝐷(1, :) = 𝐷

29. end

The two matrices (MG) and (MD) will be combined into a

single matrix (MBE) of size (4n, 6 m+16).

4.4 Reconstruction of the clear image

The matrix (MBE) will be sorted based on the last 16 bits of

each row, and then extraction of the matrix (MB) from (MBE)

by removing the last 16 columns to construct the decrypted

image. The binary matrix (MB) of size (4n, 6m) will be

transformed into a vector (XB) of size (24nm). The vector (XB)

will be converted to grayscale to recover the encrypted image

(W) using Algorithm 22.

Algorithm 22: Transition to 𝑮𝟐𝟓𝟔

1. Begin

2. For i=1 to 3nm

3. 𝛽1 = 𝑋𝐵(8 ∗ 𝑖 − 7)
4. 𝛽2 = 𝑋𝐵(8 ∗ 𝑖 − 6)
5. 𝛽3 = 𝑋𝐵(8 ∗ 𝑖 − 5)
6. 𝛽4 = 𝑋𝐵(8 ∗ 𝑖 − 4)
7. 𝛽5 = 𝑋𝐵(8 ∗ 𝑖 − 3)
8. 𝛽6 = 𝑋𝐵(8 ∗ 𝑖 − 2)
9. 𝛽7 = 𝑋𝐵(8 ∗ 𝑖 − 1)
10. 𝛽8 = 𝑋𝐵(8 ∗ 𝑖)
11. If 𝑊𝐵(𝑖, 1) = 0 and 𝑊𝐵(𝑖, 2) = 0 then

12. 𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼1(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼1(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼1(𝛽5, 𝛽6) + 𝑇𝐶𝐼1(𝛽7, 𝛽8)
13. Elif 𝑊𝐵(𝑖, 1) = 0 and 𝑊𝐵(𝑖, 2) = 1

then

14. 𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼2(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼2(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼2(𝛽5, 𝛽6) + 𝑇𝐶𝐼2(𝛽7, 𝛽8)
15. Elif 𝑊𝐵(𝑖, 1) = 1 and 𝑊𝐵(𝑖, 2) = 0

then

16. 𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼3(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼3(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼3(𝛽5, 𝛽6) + 𝑇𝐶𝐼3(𝛽7, 𝛽8)
17. Else

18. 𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼4(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼4(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼4(𝛽5, 𝛽6) + 𝑇𝐶𝐼4(𝛽7, 𝛽8)
19. end For

20. end

The tables TCI1, TCI2, TCI3, and TCI4 are the inverse

conversion tables described in Figure 15. The vector (W)

represents the decrypted image.

Figure 15. Binary tables conversion

5. SIMULATION RESULTS

To evaluate the performance of our encryption system, we

randomly select many reference images and then subject them

to our encryption method. In this section, all experiments are

conducted using the Python programming language on a

personal computer based on i5, with 8GB of RAM and a

500GB hard drive, running Ubuntu 20.04.

5.1 Brutal attacks

Brutal attacks consist of reconstructing the encryption keys

in a random manner by exploring all the key-space values.

5.1.1 Key-space analysis

To ensure the robustness of a good image encryption

algorithm, the key space should have at least 2100 possibilities.

If the key space is not sufficiently large, the algorithm could

be vulnerable to brute-force attacks. In this algorithm, the key

space encompasses the initial condition and control parameters

of the chaotic maps. The secret key of our system consists of:

• 𝑠0 = 0.79878796, 𝑟 = 0.755654 logistique map.

• 𝑡0 = 0.6789654, 𝑣 = 0.98788755 skew tente map.

In our case, we consider the precision to be of the order of

1016. Therefore, the total key space reaches 1064. Thus, our

algorithm is capable of resisting brute-force attacks due to the

sufficiently large size of its key space.

5.1.2 Secret key’s sensitivity analysis

The high sensitivity of our encryption key is manifested by

an amplified reaction following a slight modification of a

single parameter, resulting in a significant difference from the

original image. This assertion is visually confirmed by Figure

16.

Figure 16. Encryption key sensitivity

5.2 Visual test

The visual test is the first test which aims to detect a certain

resemblance between the original image and the image

encrypted by the new crypto system. In our simulations,

visually the encrypted image is totally different from the

original image and does not reflect any information or

resemblance, this initially ensures the robustness of our system

is illustrated by the result of the Table 1.

5.3 Histogram analysis

The histogram represents the distribution of pixels in an

image. In the case of an encrypted image, the histogram should

be uniformly distributed to prevent attackers from guessing

information about the image. Furthermore, the histogram of

22

the encrypted image should not resemble that of the original

image. Table 2 shows the histograms of some encrypted

images. As can be seen, the histograms of the encrypted

images obtained with our algorithm are uniform.

Table 1. Visual test

Image Name Clair Image Encrypted Image Decrypted Image

Img1

243×411

Img2

1057×1200

Img3

837×821

Img4

512×512

Img5

512×512

5.4 Correlation analysis

In the original image, neighboring pixels demonstrate a

pronounced correlation due to their closely similar values. The

efficacy of the encryption algorithm resides in generating an

encrypted image characterized by minimal correlation among

adjacent pixels. Mathematically, the correlation coefficient

between two neighboring pixels is calculated employing the

Eq. (5).

𝑟 =
𝑐𝑜𝑣(𝑥, 𝑦)

√𝑉(𝑥)√𝑉(𝑦)
 (5)

With:

• "x" and "y" represent adjacent pixels.

•"cov (x, y)": covariance between the random variables x

and y.

•V(x): variance of x.

The Table 3 shows the correlation coefficients of some

images encrypted by our method. All the images have a

correlation close to zero.

5.5 Entropy analysis

Entropy is the measure of the disorder diffused by a source

without memory. The entropy expression is determined by the

Eq. (6).

𝐻(𝑖𝑚𝑔) =∑−𝑝(𝑖𝑚𝑔𝑖) 𝑙𝑜𝑔2(𝑝(𝑖𝑚𝑔𝑖))

255

𝑖=0

 (6)

p(𝑖𝑚𝑔𝑖) , is the probability of occurrence of level (i) in the

image encrypted by our new method.

The maximum value of entropy is 8; the higher the entropy,

the more randomness is present in the encrypted image. The

Table 3 presents the entropy values obtained for different

images encrypted by our algorithm. All the obtained values are

close to the maximum value of 8.

5.6 Differential analysis

Differential attack is based on deducing information about

an image by introducing a slight modification to the plaintext

image and then encrypting both images using the same

algorithm. A comparison between the two encrypted images is

made to determine any correlation between the original image

and its encrypted version. It is expected that a robust algorithm

produces distinctly different encrypted images, even for the

slightest modifications made to the plaintext image. The

parameters used to measure the effectiveness of our method

against differential attacks are: NPCR (Number of Pixel

Change Rate) and UACI (Unified Average Changing

Intensity).

NPCR (Number of Pixel Change Rate) is a measure that

quantifies the percentage of different pixel values between two

encrypted images, when the corresponding plaintext images

differ by only one pixel. A high NPCR value indicates better

resistance of the algorithm against differential attacks. NPCR

can be calculated using Eq. (7).

23

Table 2. Histogram

Image Histogram

Img1

Img2

Img3

Img4

Img5

24

Table 3. Correlation and entropy

Image Vertical Correlation Diagonal Correlation Horizontal Correlation Entropy

Img1

R 0.00194 -0.00264 -0.00064 7.99829

G 0.00162 -0.00201 -9.11e-05 7.99806

B 0.00014 -0.00307 0.00092 7.99811

Img2

R -0.00122 0.00090 0.00098 7.99985

G 0.00031 -7.75e-05 0.00093 7.99983

B -0.00056 0.00050 -0.00043 7.99987

Img3

R 0.00064 -0.00159 8.17e-05 7.99977

G -0.00177 -0.00156 0.00068 7.99971

B -0.00102 0.00112 0.00124 7.99975

Img4

R 0.00020 0.00161 0.00166 7.99930

G -0.00127 -0.00312 -0.00213 7.99930

B 0.00023 0.00233 0.00138 7.99929

Img5

R 0.00125 0.00096 0.00232 7.99935

G 0.00059 0.00178 -0.00224 7.99925

B -0.00464 -0.00014 -0.00173 7.99922

𝑁𝑃𝐶𝑅 = (
1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)

𝑛𝑚

𝑖,𝑗=1

) ∗ 100

𝑤𝑖𝑡ℎ 𝐷(𝑖, 𝑗) = {
1 𝑖𝑓 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0 𝑖𝑓 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)

(7)

The UACI mathematical analysis of an image is given by Eq.

(8).

𝑈𝐴𝐶𝐼 = (
1

255𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 (8)

The avalanche effect refers to the number of bits that change

when a single bit in the original image is modified [24]. The

mathematical representation of the avalanche effect is

expressed by Eq. (9).

𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖
) ∗ 100 (9)

Table 4. Differential parameters

Pictures NPCR UACI EA

Img1 99.61% 33.46% 50.03%

Img2 99.61% 33.47% 50.00%

Img3 99.61% 33.48% 50.00%

Img4 99.60% 33.46% 50.01%

Img5 99.61% 33.46% 50.01%

Table 4 presents some results of the calculation of

differential parameters for images encrypted using our method.

All calculated NPCR values are greater than the threshold of

99.60%, UACI is greater than 33.46%, and AE is greater than

50%. This demonstrates that our algorithm can resist

differential attacks.

5.7 Encryption time

The encryption time is a crucial benchmark for assessing the

efficiency of an image encryption algorithm. Effectively

encrypting substantial data, such as images, within a

reasonable timeframe has become a challenging aspect of

algorithm development. In our study, we present the

encryption times for images of sizes 256×256 and 512×512 in

(Table 5), along with a comparison to other recent works.

Furthermore, the time complexity of our method for an image

of size (N, M) is O(NM).

Table 5. Encryption time

Encryption

Technique

Images

256x256 512x512

Our algorithm 0.097 0.171

Ref. [25] 0.65 -----

Ref. [26] 8.22 -----

Ref. [27] 0.156 0.406

5.8 Comparison to other techniques

Table 6 shows that our technique gives satisfactory results

compared to other method in the literature. The entropy of the

tow images gives values extremely close to the ideal value of

8 and higher than the values obtained by most other methods.

For the NPCR and UACI, the values of the proposed scheme

are very close to the values of NPCR (99.6%) and UACI

(33.4%) expected. Accordingly, from Table 6, we can

conclude that the suggested method outperforms many

recently published studies in terms of entropy, NPCR and

UACI values.

Table 6. Comparison to other technique

Images Methods Entropy NPCR UACI

Lena

Our Method 7.9993 99.61 33,46

Ref. [22] 7.9976 99.61 33.51

Ref. [28] 7.9992 99.65 33.48

Baboon
Our Method 7.9993 99.61 33,46

Ref. [29] 7.9984 99.60 33.26

6. CONCLUSIONS

Converting the image to be encrypted into binary notation

and applying a discrimination function in our genetic

algorithm resulted in the generation of two tribes of

individuals with different properties. The implementation of a

Feistel round and the integration of a diffusion function in the

first round, for the mating of two individuals, made it possible

to reproduce a new generation, inheriting the genes of each

tribe in order to cope with any unforeseen attack. While

crossover and mutation in the second round reinforced our

encryption system. A wide range of images tested by our

algorithm proved the robustness of our cryptosystem.

Reformulating the fitness function and increasing the number

25

of operations at the DNA level may add further performance

to our system.

REFERENCES

[1] Mfungo, D.E., Fu, X., Wang, X., Xian, Y. (2023).

Enhancing image encryption with the kronecker xor

product, the hill cipher, and the sigmoid logistic map.

Applied Sciences, 13(6): 4034.

https://doi.org/10.3390/app13064034

[2] Qobbi, Y., Jarjar, A., Essaid, M., Benazzi, A. (2022).

New image encryption scheme based on dynamic

substitution and hill cipher. In WITS 2020: Proceedings

of the 6th International Conference on Wireless

Technologies, Embedded, and Intelligent Systems.

Springer Singapore, pp. 797-808.
https://doi.org/10.1007/978-981-33-6893-4_72

[3] Arifin, S., Kurniadi, F.I., Yudistira, I.G.A., Nariswari, R.,

Murnaka, N.P., Muktyas, I.B. (2022). Image encryption

algorithm through hill cipher, shift 128 cipher, and

logistic map using python. In 2022 3rd International

Conference on Artificial Intelligence and Data Sciences

(AiDAS), IEEE, IPOH, Malaysia, pp. 221-226.

https://doi.org/10.1109/AiDAS56890.2022.9918696

[4] Lone, M.A., Qureshi, S. (2023). Encryption scheme for

RGB images using chaos and affine hill cipher technique.

Nonlinear Dynamics, 111(6): 5919-5939.
https://doi.org/10.1007/s11071-022-07995-2

[5] Boussif, M., Aloui, N., Cherif, A. (2020). Securing

DICOM images by a new encryption algorithm using

Arnold transform and Vigenère cipher. IET Image

Processing, 14(6): 1209-1216.

https://doi.org/10.1049/iet-ipr.2019.0042

[6] Mir, U.H., Lone, P.N., Singh, D., Mishra, D.C. (2023). A

public and private key image encryption by modified

approach of Vigener cipher and the chaotic maps. The

Imaging Science Journal, 71(1): 82-96.

https://doi.org/10.1080/13682199.2023.2175436

[7] Abid, A., Jarjar, M., Benazzi, A., Jarjar, A. (2022). Color

image encryption using improved vigenère method

followed by a permutation. In The Proceedings of the

International Conference on Smart City Applications.

Cham: Springer International Publishing, Springer,

Cham, pp. 580-590. https://doi.org/10.1007/978-3-031-

26852-6_54

[8] Bhavana, V., Banushree, J., Bhumika, D., Chaitanya, B.,

BIET, D., Raghu, B. (2021). A crypto system using

vigenere and po-lybius cipher. International Journal of

Engineering Applied Sciences and Technology, 6: 39-42.

[9] Zhang, X., Wang, L., Cui, G., Niu, Y. (2019). Entropy-

based block scrambling image encryption using DES

structure and chaotic systems. International Journal of

Optics, 2019. https://doi.org/10.1155/2019/3594534

[10] Zhang, X., Zhou, Z., Niu, Y. (2018). An image

encryption method based on the feistel network and

dynamic DNA encoding. IEEE Photonics Journal, 10(4):

1-14. https://doi.org/10.1109/JPHOT.2018.2859257

[11] JarJar, A. (2019). Two Feistel rounds in image

cryptography acting at the nucleotide level exploiting

dna and rna property. SN Applied Sciences, 1(11): 1411.

https://doi.org/10.1007/s42452-019-1305-7

[12] Abid, A., Qobbi, Y., Benazzi, A., Jarjar, M., Jarjar, A.

(2022). Two enhanced Feistel steps for medical image

encryption. In 2022 IEEE 3rd International Conference

on Electronics, Control, Optimization and Computer

Science (ICECOCS), pp. 1-4.

https://doi.org/10.1109/ICECOCS55148.2022.9982938

[13] Hraoui, S., JarJar, A. (2022). Single Feistel lapse acting

on reduced ASCII codes followed by a genetic crossover.

SN Applied Sciences, 4(4): 113.
https://doi.org/10.1007/s42452-022-04972-7

[14] Zhang, Y. (2018). Test and verification of AES used for

image encryption. 3D Research, 9: 1-27.
https://doi.org/10.1007/s13319-017-0154-7

[15] Arab, A., Rostami, M.J., Ghavami, B. (2019). An image

encryption method based on chaos system and AES

algorithm. The Journal of Supercomputing, 75: 6663-

6682. https://doi.org/10.1007/s11227-019-02878-7

[16] Maurer, U.M. (1993). The role of information theory in

cryptography. In Fourth IMA Conference on

Cryptography and Coding, pp. 49-71.

[17] Mirjalili, S., Song Dong, J., Sadiq, A.S., Faris, H. (2020).

Genetic algorithm: Theory, literature review, and

application in image reconstruction. Nature-Inspired

Optimizers: Theories, Literature Reviews and

Applications, 69-85. https://doi.org/10.1007/978-3-030-

12127-3_5

[18] Lambora, A., Gupta, K., Chopra, K. (2019). Genetic

algorithm-A literature review. In 2019 International

Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COMITCon), Faridabad, India, pp.

380-384.

https://doi.org/10.1109/COMITCon.2019.8862255

[19] Katoch, S., Chauhan, S.S., Kumar, V. (2021). A review

on genetic algorithm: Past, present, and future.

Multimedia Tools and Applications, 80: 8091-8126.
https://doi.org/10.1007/s11042-020-10139-6

[20] Gen, M., Lin, L. (2023). Genetic algorithms and their

applications. In Springer Handbook of Engineering

Statistics, London: Springer London, pp. 635-674.
https://doi.org/10.1007/978-1-4471-7503-2_33

[21] Ghazvini, M., Mirzadi, M., Parvar, N. (2020). A

modified method for image encryption based on chaotic

map and genetic algorithm. Multimedia Tools and

Applications, 79: 26927-26950.
https://doi.org/10.1007/s11042-020-09058-3

[22] Mahmud, M., Lee, M., Choi, J.Y. (2020). Evolutionary-

based image encryption using RNA codons truth table.

Optics & Laser Technology, 121: 105818.

https://doi.org/10.1016/j.optlastec.2019.105818

[23] Ferdush, J., Mondol, G., Prapti, A.P., Begum, M., Sheikh,

M.N.A., Galib, S.M. (2021). An enhanced image

encryption technique combining genetic algorithm and

particle swarm optimization with chaotic function.

International Journal of Computers and Applications,

43(9): 960-967.

https://doi.org/10.1080/1206212X.2019.1662170

[24] Zolfaghari, B., Koshiba, T. (2022). Chaotic image

encryption: State-of-the-art, ecosystem, and future

roadmap. Applied System Innovation, 5(3): 57.

https://doi.org/10.3390/asi5030057

[25] Khan, J.S., Ahmad, J. (2019). Chaos based efficient

selective image encryption. Multidimensional Systems

and Signal Processing, 30: 943-961.
https://doi.org/10.1007/s11045-018-0589-x

[26] Ayoup, A.M., Hussein, A.H., Attia, M.A. (2016).

Efficient selective image encryption. Multimedia Tools

26

and Applications, 75: 17171-17186.
https://doi.org/10.1007/s11042-015-2985-7

[27] Laiphrakpam, D.S., Khumanthem, M.S. (2017). Medical

image encryption based on improved ElGamal

encryption technique. Optik, 147: 88-102.

https://doi.org/10.1016/j.ijleo.2017.08.028

[28] Mondal, B., Mandal, T. (2020). A secure image

encryption scheme based on genetic operations and a

new hybrid pseudo random number generator.

Multimedia Tools and Applications, 79(25-26): 17497-

17520. https://doi.org/10.1007/s11042-019-08352-z

[29] Es-Sabry, M., El Akkad, N., Merras, M., Saaidi, A.,

Satori, K. (2022). A new color image encryption

algorithm using multiple chaotic maps with the

intersecting planes method. Scientific African, 16:

e01217. https://doi.org/10.1016/j.sciaf.2022.e01217

27

