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In this paper, a new medical image encryption technique based on genetic algorithms 

acting at the bit level will be developed. Initially, a transformation to a binary matrix 

notation of the original image is applied, followed by an evaluation function determined 

by the Hamming distance between the obtained image and another pseudo-random image 

generated from chaotic maps used. This discrimination function divides the image, viewed 

as a population where each row represents an individual, into two categories: a strong 

population and a weak population. An enhanced Feistel round will be implemented by 

introducing a chaotic mating between the two categories based on a circular shift for the 

right bloc and a pseudo-random permutation for the left bloc. Next, a genetic crossover 

adapted for image encryption will be performed with another pseudo-random vector under 

the control of a crossover table. To ensure the robustness of our approach, a genetic 

mutation will be applied at the end of the encryption. A multitude of images of different 

sizes and formats have been tested using our approach, with encouraging results. 
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1. INTRODUCTION

In today's digital age, the security of sensitive data, 

especially medical images, is of paramount importance. 

Safeguarding the integrity and the confidentiality of images is 

crucial in a digital world where the exchange and the storage 

of visual information are commonplace. Images may contain 

private, confidential, or strategic data, and unauthorized 

exposure can lead to several consequences for individuals and 

organizations. To address this growing concern, numerous 

image encryption methods have been developed, yet some still 

exhibit vulnerabilities to sophisticated attacks. 

With advancements in mathematics, cryptography swiftly 

made its way into the realm of security. The emergence of 

standards such as Hill [1-4], Vigenère [5-8], DES [9], Feistel 

[10-13], AES [14, 15], and others has been observed. The 

development of chaos theory and the availability of multiple 

chaotic maps facilitate the creation of encryption algorithms. 

Furthermore, by following Shannon's guidelines [16] and 

incorporating feedback in the encryption mode, a strong 

resilience is conferred upon the new cryptographic systems. 

With the rapid advancement of chaos theory, we are 

witnessing several improvements in these classical techniques. 

Additionally, some of the currently highly recommended 

solutions are genetic algorithms. In fact, genetic algorithms are 

among the most frequently used optimization methods, with 

numerous applications in various scientific fields [17-20]. The 

genetic algorithm, first proposed by John Holland in 1975, is 

one of the most renowned evolutionary algorithms, inspired by 

the evolutionary process of living species. The genetic 

algorithm is widely used to solve a variety of optimization 

problems, starting with the initial random generation of 

individuals, followed by selection for reproduction of the new 

tribes, according to the value of their evaluation function. In 

other words, the best-performing individuals have the 

opportunity to be selected for the reproduction of future 

generations. The selected individuals will be subjected to 

genetic operators such as mutation, crossover, insertion and 

reversion (Figure 1). With this in mind, most researchers have 

developed encryption methods based on adaptation of genetic 

algorithm to image encryption. Ghazvini et al. [21] proposed 

an image encryption method based on genetic and chaos 

algorithms. The method consists of three main steps: a 

confusion phase using the Chen map, a second phase 

performed by the logistic-sine map, and the final phase 

involves selecting the encrypted image that yields the highest 

entropy and the lowest correlation. Mahmud et al. [22] had 

developed a novel cryptosystem based on the hybridization of 

Ribonucleic Acid (RNA) and Genetic Algorithm (GA). 

Initially, the logistic map and RNA codons are used to create 

initial populations for GA. Finally, GA optimizes the images 

using the fitness function based on entropy to find the 

optimized encrypted image. Ferdush et al. [23] proposed a new 

hybrid encryption system using PSO and GA with a chaotic 

map. An image is initially encrypted using a chaotic function, 

then PSO and GA are applied to select the best encrypted 

image that exhibits the highest entropy and the lowest 

correlation coefficient between adjacent pixels. 

Our contribution in this work is to develop a robust 

encryption system based on genetic algorithms using chaos 
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and an enhanced Feistel scheme employing a circular shift for 

the right bloc and a pseudo-random permutation for the left 

bloc. Followed by the two most widely used genetic operators 

in cryptography, namely crossover and genetic mutation 

adapted to image encryption. 

 

 
 

Figure 1. Genetic algorithm process 

 

 

2. PROPOSED METHOD 

 

Based on chaos [24], this new technology describes the 

construction of a genetic algorithm operating at the bit level. 

The implementation of this new system is based on the 

following axes: 

 

2.1 Chaotic sequences development 

 

The choice of chaotic maps is crucial for an encryption 

system. Therefore, our algorithm utilizes the two most used 

chaotic maps in cryptography, the logistic map, and the 

skewed tent map. This choice is due to the ease of 

implementation of both maps and their high sensitivity to 

initial conditions. 

 

2.1.1 The logistics map 

The logistic map is a recurrent sequence defined by Eq. (1). 

 

{
   𝑠0 ∈ [0,5 1]     , 𝑟 ∈ [3,75  4]

   𝑠𝑛+1 = 𝑟𝑠𝑛(1 − 𝑠𝑛)
 (1) 

 

𝑠0 is the initial value and 𝑟 is the control parameter. 

The Lyapunov exponent λ of the logistic map is λ= log(2)>0, 

which proves that this sequence is highly sensitive to initial 

conditions. 

 

2.1.2 The skew tente map 

The Skew tent map is defined by Eq. (2). 

 

{
 
 

 
 
𝑡0[0 1]𝑣 ∈ [0,5 1]

𝑡𝑛+1 = {

𝑡𝑛
𝑣
          𝑖𝑓  0 ≺ 𝑡𝑛 ≺ 𝑣

1 − 𝑡𝑛
1 − 𝑣

  𝑖𝑓 𝑣 ≺ 𝑡𝑛

 (2) 

 

𝑡0 is the initial value and v is the control parameter. 

The combination of these two chaotic maps will be used to 

generate all the parameters necessary for the proper 

functioning and operation of our new technique. 

 

2.1.3 Chaotic table design 

Our approach requires the use of a pseudo-random table 

(WC) of size (13nm, 3) constructed from the chaotic maps 

used with coefficients in 𝐺256 to ensure multiple confusions 

(Algorithm 1), and a table (WB) of the same size for system 

action control (Algorithm 2). 

 

Algorithm 1: Chaotic vectors design 

Begin 

     For i=1 to 13nm 

          𝑊𝐶(𝑖, 1) = 𝑚𝑜𝑑(𝐸(𝑚𝑖𝑛(𝑠(𝑖), 𝑡(𝑖)) ∗ 1011, 254) +

1) 

          𝑊𝐶(𝑖, 2) = 𝑚𝑜𝑑 (𝐸 (
2∗𝑠(𝑖)+3∗𝑡(𝑖)

5
∗ 1012, 253) + 2) 

          𝑊𝐶(𝑖, 3) = 𝑚𝑜𝑑 (𝐸 (
2∗𝑠(𝑖)+𝑡(𝑖)

3
∗ 1013, 252) + 3) 

     endFor 

end 

 

Algorithm 2: Control table design  

Begin 

     For i=1 to 13nm 

         If 𝑊𝐶(𝑖, 1) ≥ 𝑊𝐶(𝑖, 2) then 

                𝑊𝐵(𝑖, 1) = 0 

         Else 

                𝑊𝐵(𝑖, 1) = 1 

          EndIf 

          If 𝑊𝐶(𝑖, 2) ≥ 𝑊𝐶(𝑖, 3) then 

                𝑊𝐵(𝑖, 2) = 0 

         Else 

                𝑊𝐵(𝑖, 2) = 1 

         EndIf 

         If 𝑊𝐶(𝑖, 3) ≥ 𝑊𝐶(𝑖, 1) then 

                𝑊𝐵(𝑖, 3) = 0 

         Else 

                𝑊𝐵(𝑖, 3) = 1 

         EndIf 

     endFor 

end 

 

2.2 Population construction 

 

2.2.1 Image vectorization 

Before starting the encryption process, an extraction of the 

3RGB color channels is performed, followed by vectorization 

(Wr), (Wg), and (Wb), each of size (nm), and then 

concatenation to obtain a vector (W) of size (3nm). This 

process is illustrated in Figure 2 and described by Algorithm 

3. 

 

 
 

Figure 2. Image vectorization 

 

Algorithm 3: Vectorization process 

Begin 

     For i=1 to nm 

          𝑊(𝑖) = 𝑊𝑟(𝑖) 
          𝑊(𝑖 + 𝑛𝑚) = 𝑊𝑔(𝑖) 
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          𝑊(𝑖 + 2𝑛𝑚) = 𝑊𝑏(𝑖) 
     endFor 

end 

 

2.2.2 Pseudo random transformation into binary 

The vector (W) of size (3nm) will be converted into a binary 

vector (XB) of size (24nm) using 4 conversion tables (Figure 

3). The choice of the conversion table is controlled by the 

control table (WB). The binary conversion process is 

described by Algorithm 4. An example of conversion is 

illustrated by Figure 4. 

After the pseudo random binary conversion, the vector (XB) 

of size (24nm) will be resized into a matrix (MB) of size (4n, 

6m), this process is illustrated in Figure 5. 

 

 
 

Figure 3. Coversion tables 

 

 
 

Figure 4. Binary conversion example 

 

 
 

Figure 5. Resizing process 

 

Algorithm 4: Binary conversion 

Begin 

     For i=1 to 3nm 

          𝑥 = 𝑊(𝑖) 𝑑𝑖𝑣 16 

          y= 𝑊(𝑖) 𝑚𝑜𝑑 16 

          𝛼 = 𝑥 𝑑𝑖𝑣 4 

          𝛽 = 𝑥 𝑚𝑜𝑑 4 

          𝛿 = 𝑦 𝑑𝑖𝑣 4 

          𝛾 = 𝑦 𝑚𝑜𝑑 4 

          If WB(i,1)==0 and WB(i,2)==0 then 

                   TC=TC1 

          Elif WB(i,1)==0 and WB(i,2)==1 then 

                   TC=TC2 

          Elif WB(i,1)==1 and WB(i,2)==0 then 

                  TC=TC3 

          Else 

                   TC=TC4 

          EndIf 

          XB(8i − 7) = 𝑇𝐶(𝛼, 0) 
          XB(8i − 6) = 𝑇𝐶(𝛼, 1) 
          XB(8i − 5) = 𝑇𝐶(𝛽, 0) 
          XB(8i − 4) = 𝑇𝐶(𝛽, 1) 
          XB(8i − 3) = 𝑇𝐶(𝛿, 0) 
          XB(8i − 2) = 𝑇𝐶(𝛿, 1) 
          XB(8i − 1) = 𝑇𝐶(𝛾, 0) 
          XB(8i) = 𝑇𝐶(𝛾, 1) 
     end For 

end 

 

2.2.3 Fitness function definition 

The matrix (MB) will be considered as a population, where 

each row represents an individual. A fitness function will be 

applied to assess the population's integrity for future 

categorization into two groups: strong population and weak 

population. This evaluation function is defined by the 

Hamming distance between the original image (MB) and the 

pseudo-random image (CB) defined by Eq. (3). An example of 

hamming distance calculation is given in Figure 6. 

 

𝐻(𝑀𝐵(𝑖, : ), 𝐶𝐵(𝑖, : )) = ∑𝑀𝐵(𝑖, 𝑗)⨁𝐶𝐵(𝑖, 𝑗)

6𝑚

𝑗=1

 (3) 

 

2.2.4 Construction of the categories 

 

 
 

Figure 6. Hamming distance calculation 

 

 
(a) row extension 

 

 
(b) row sorting 
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(c) tribe generation 

 

Figure 7. Construction of the tow categories 

 

Before partitioning the population, each row of the matrix 

(MB) will be augmented by 16 bits to store the identifier 

corresponding to its row number (Figure 7(a)). After that A 

descending sort of each row of (MBE) is established with 

respect to the weight vector (VH) to separate the population 

into 2 categories (Figure 7(b)). Finaly the matrix (MBE) will 

be subdivided into two sub-matrices (MG) and (MD) each of 

size (2n, 6m+16) (Figure 7(c)). 

 

 

3. ENCRYPTION PROCESS 

 

Our encryption technique consists of coupling the rows of 

(MG) and (MD) matrices using an enhanced Feistel laps 

followed by a crossover and mutation operations. 

 

3.1 Feistel laps 

 

The two matrices (MG) and (MD) will undergo coupling 

through an enhanced Feistel TF circuit defined by Eq. (4). 

 

𝑇𝐹(𝐺, 𝐷) = (𝐺′, 𝐷′) = {
𝐺′ = ℎ𝑖(𝐷)

𝐷′ = 𝐺 ⊕ 𝑓𝑖(𝐷)
 (4) 

 

where, ℎ𝑖  is a binary permutation constructed by the binary 

vector (𝑊𝐵(: , 3))  and 𝑓𝑖  is a circular shift function 

determined by the coefficient WC (i, 3). The coupling process 

is described by Algorithm 5. 

 

Algorithm 5: Coupling process 

1. Begin 

2.       𝐺 = 𝑀𝐺(1, : ) 
3.       𝐷 = 𝑀𝐷(1, : ) 
4.       𝑋𝐺 = 𝐺 ⊕ 𝑉𝐼G 

5.       𝑋𝐷 = 𝐷 ⊕ 𝑉𝐼D 

6.       𝐺′ = ℎ𝑖(𝑋𝐷) 
7.       𝐷′ = 𝑋𝐺 ⊕ 𝑓𝑖(𝑋𝐷) 
8.       𝐺𝑀(1, : ) = 𝐺′ 
9.       𝐷𝑀(1, : ) = 𝐷′ 
10.       For i=2 to 2n 

11.              𝐺 = 𝑀𝐺(𝑖, : ) 
12.              𝐷 = 𝑀𝐷(𝑖, : ) 
13.              𝑋𝐺 = 𝐺 ⊕ 𝐺′ 
14.              𝑋𝐷 = 𝐷⊕ 𝐷′ 
15.              𝐺′ = ℎ𝑖(𝑋𝐷) 
16.              𝐷′ = 𝑋𝐺 ⊕ 𝑓𝑖(𝑋𝐷) 
17.              𝐺𝑀(𝑖, : ) = 𝐺′ 
18.              𝐷𝑀(𝑖, : ) = 𝐷′ 

19.       end For 

20. end 

Using VIG and VID are obtained by applying the XOR 

operation on all the rows of the MG matrix and MD natrix, 

excluding the first row. The enhanced Feistel round is 

illustrated in Figure 8. 

At the end of the Feistel round. The two matrices (GM) and 

(DM) of size (2n, 6m+16) are combined into a single matrix 

(M') of size (2n, 12m+32). This matrix will be transformed 

into a vector (BX) of size (24 nm+64n). 

 

 
 

Figure 8. Feistel lap 

 

3.2 Genetic crossover 

 

The second encryption phase involves a genetic crossover 

adapted for image encryption. For this reason, a pseudo-

random transformation at the DNA level is necessary. This 

operation is described by the following steps: 

 

3.2.1 Transition to 𝐺4 

Transition to 𝐺4 the binary vector (BX) of size (24nm+64 

n) will be converted into a vector (BY) of size (12nm+32n) 

taking values in 𝐺4 using Algorithm 6. 

 

Algorithm 6: Transition to 𝑮𝟒 

1. Begin 

2.       For i=1 to 12nm+32n  

3.              𝐵𝑌(𝑖) = 2 ∗ 𝐵𝑋(2 ∗ 𝑖 − 1) + 𝐵𝑋(2 ∗ 𝑖) 
4.       end For 

5. end 

 

3.2.2 Transition to DNA notation 

The transition to DNA notation involves writing the vector 

(BY) into (YB) vector using the symbols {A, C, T, G}. For 

this, we will use two conversion tables T1 and T2 defined in 

Figure 9. The choice of the conversion table is determined by 

the control vector (WB(:, 3)). The process of converting to 

DNA notation is illustrated by Algorithm 7. 

 

 
 

Figure 9. DNA conversion table 

 

Algorithm 7: Conversion to DNA notation 

1. Begin 

2.       For i=1 to 12nm+32n 

3.               𝑥 = 𝐵𝑌(𝑖) 
4.               If WB(i,3)=0 then 

5.                       𝑌𝐵(i) = 𝑇1(𝑥) 
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6.               Else 

7.                       YB(i) = 𝑇2(𝑥) 
8.       endFor 

9. end 

 

3.2.3 Genetic crossover function 

The vector (YB) will be genetically crossed with a 

pseudorandom vector (R) of size (12nm+32n) defined by 

Algorithm 8. 

 

Algorithm 8: Generation of the vector R 

1. Begin 

2.       For i=1 to 12nm+32n 

3.               If s(i)<=0.25 then 

4.                       R(i)=“A” 

5.               Eilf s(i)<=0.5 then 

6.                       R(i)=“C” 

7.               Eilf s(i)<=0.75 then 

8.                       R(i)=“T” 

9.              Else 

10.                       R(i)=“G” 

11.       end For 

12. end 

 

The genetic crossover operation is controlled by a crossover 

table TC of size (12nm+32n, 3) where each column is defined 

as follows: 

• The first column: a permutation P obtained by sorting the 

12nm+32n values of the sequence s, indicating the index of the 

pixel to be processed. 

• The second column: a permutation Q obtained by sorting 

the 12nm+32n values of the sequence t, indicating the index 

of the factor of R to be used. 

• The third column: the QoP permutation indicating the 

index of the pixel obtained through genetic crossover. 

The process of genetic crossover is illustrated by Algorithm 

9. 

 

Algorithm 9: Genetic crossover 

1. Begin 

2.       For i=1 to 12nm+32n 

3.              𝑥 = YB(𝑇𝐶(𝑖, 1)) 
4.              If WB(i,1)=0 then 

5.                      𝑦 = 𝑥 ⊕ 𝑅(𝑇𝐶(𝑖, 2)) 
6.              Else 

7.                      𝑦 = 𝑥 ⊗ 𝑅(𝑇𝐶(𝑖, 2)) 
8.              𝑊𝑄(𝑇𝐶(𝑖, 3)) = 𝑦 

9.       end For 

10. end 

 

 
 

Figure 10. DNA conversion table 

With ⊕  and ⊗  are crossover operators defined at DNA 

level defined by Figure 10. 

 

3.3 Genetic mutation 

 

The third encryption phase involves establishing a diffusion 

operation ensured by a genetic mutation adapted for medical 

image encryption. This step will be described by the following 

axes: 

 

3.3.1 Transition to 𝐺4 

The vector (WQ) written in DNA notation of size 

(12nm+32n) will be reconverted into a vector (QW) with 

coefficients in 𝐺4 using conversion tables defined in Figure 11. 

The choice of the conversion table is determined by the control 

vector (WB(:, 2)). The process of conversion to 𝐺4  is 

illustrated by Algorithm 10. 

 

 
 

Figure 11. DNA to 𝐺4 tables conversion 

 

Algorithm 10: Transition to 𝑮𝟒  

1. Begin 

2.       For i==1 to 12nm+32n 

3.               𝑥 = 𝑊𝑄(𝑖) 
4.               If WB(i,2)=0 then 

5.                       𝑄𝑊(i) = 𝑇3(𝑥) 
6.               Else 

7.                       𝑄𝑊(i) = 𝑇4(𝑥) 
8.       end For 

9. end 

 

3.3.2 Transition to gray level (𝑮𝟐𝟓𝟔) 
The vector (QW) of size (12nm+32n) will be converted into 

a vector (QZ) of size (3nm+8n) with values in (𝐺256). This 

conversion is illustrated by Algorithm 11. 

 

Algorithm 11: Transition to 𝑮𝟐𝟓𝟔 

1. Begin 

2.       For i=1 to 3nm+8n 

3.            𝑄𝑍(𝑖) = 𝑄𝑊(4 ∗ 𝑖 − 3) + 2 ∗ 𝑄𝑊(4 ∗ 𝑖 −
2) + 4 ∗ 𝑄𝑊(4 ∗ 𝑖 − 1) + 8 ∗ 𝑄𝑊(4 ∗ 𝑖) 
4.       end For 

5. end 

 

3.3.3 Initial value calculation 

An initial value (WI) will be calculated to initialize the 

diffusion process. The calculation of the initial value is shown 

in Algorithm 12. 

 

Algorithm 12: Calculation of the initial value 

1. Begin 

2.       WI=0 

3.       For i=1 to 3nm+8n 

4.              𝑊𝐼 = 𝑊𝐼 ⊕ 𝑄𝑍(𝑖) 
5.       end For 

6. end 

19



 

3.3.4 Genetic mutation function 

 

 
(a) first step 

 

 
(b) second step 

 

Figure 12. Encryption process 

 

The vector (QZ) of size (3nm+8 n) will undergo a genetic 

mutation function, defined by an inversion operation, and 

controlled by a mutation table of size (3nm+8n, 3). Each 

column of the mutation table is defined as follows: 

• The first column: a permutation P obtained by sorting the 

3nm+8n values of the sequence s+t, indicating the index of the 

pixel to be processed. 

• The second column: a permutation Q obtained by sorting 

the 3nm+8n values of the sequence t+2s, indicating the index 

of the pixel obtained through genetic crossover. 

• The third column: is a pseudo-random control vector used 

to control genetic mutation. This vector is defined by 

Algorithm 13. 

The diffusion process is illustrated by Algorithm 14. 

 

Algorithm 13: Generation of the genetic mutation 

control vector. 

1. Begin 

2.       For i=1 to 3nm+8n 

3.               If s(i)<=0.1 then 

4.                       TM(i,3)=0 

5.                Else 

6.                       TM(i,3)=1 

7.       end For 

8. end 

 

Algorithm 14: Diffusion operation using genetic 

mutation. 

1. Begin 

2.       If 𝑇𝑀(1,3)=1 then  

3.              𝑍(𝑇𝑀(1,2)) = 𝑊𝐼 ⊕ 255 

4.       Else 

5.              𝑍(𝑇𝑀(1,2)) = 𝑊𝐼 
6.       For i=2 to 3nm+8n 

7.              If 𝑇𝑀(𝑖, 3)=1 then 

8.                    𝑍(𝑇𝑀(𝑖, 2)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑄𝑍(𝑇𝑀(𝑖, 1)) ⊕ 255 

9.              Else 

10.                    𝑍(𝑇𝑀(𝑖, 2)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑄𝑍(𝑇𝑀(𝑖, 1)) 
11.       end For 

12. end 

 

The vector (Z) constitutes the encrypted image by our 

algorithm and the entire encryption process is presented in 

Figure 12. 

 

 

4. DECRYPTION PROCESS 

 

Our algorithm is a symmetric encryption algorithm. By 

applying the inverse encryption functions, in reverse order and 

using the same encryption key, we can restore the original 

image. 

 

4.1 The inverse of the genetic mutation 

 

The inverse function of genetic mutation is described by 

Algorithm 15. 

 

Algorithm 15: Reverse of genetic mutation 

1. Begin 

2.       For i=3nm+8n to 2 

3.              If 𝑇𝑀(𝑖, 3)=1 then 

4.                    𝑄𝑍(𝑇𝑀(𝑖, 1)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑍(𝑇𝑀(𝑖, 2)) ⊕ 255 

5.              Else 

6.                    𝑄𝑍(𝑇𝑀(𝑖, 1)) = 𝑍(𝑇𝑀(𝑖 − 1,2)) ⊕
𝑍(𝑇𝑀(𝑖, 2)) 
7.              End If 

8.       end For 

9.       𝑄𝑍(𝑇𝑀(1,1)) = 𝑍(𝑇𝑀(1,2)) 
10.       For i =1 to 3nm+8n 

11.              If i !=𝑇𝑀(1,1) then 

12.                     𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1)) ⊕
𝑄𝑍(𝑖) 
13.              end IF 

14.       End For 
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15.       If 𝑇𝑀(1,3)==1 then 

16.              𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1)) ⊕ 255 

17.       Else 

18.              𝑄𝑍(𝑇𝑀(1,1)) = 𝑄𝑍(𝑇𝑀(1,1)) 
19.       End If 

20. end 

 

4.2 The inverse of the genetic crossover 

 

The genetic crossover operation acts on the image at the 

DNA level, a transition from the vector (QZ) to notation is 

necessary. First, the vector will be converted to the vector 

(QW) of size (12nm+32n) with coefficients in 𝐺4 . This 

conversion is described by Algorithm 16. 

 

Algorithm 16: Transition to 𝑮𝟒 

1. Begin 

2.       For i=1 to 3nm+8n 

3.              𝑥 = 𝑄𝑍(𝑖) 𝑚𝑜𝑑 16 

4.              𝑦 = 𝑄𝑍(𝑖) 𝑑𝑖𝑣 16 

5.              𝑄𝑊(4𝑖 − 3) = 𝑥 𝑚𝑜𝑑 4 

6.              𝑄𝑊(4𝑖 − 2) = 𝑥 𝑑𝑖𝑣 4 

7.              𝑄𝑊(4𝑖 − 1) = 𝑦 𝑚𝑜𝑑 4 

8.              𝑄𝑊(4𝑖) = 𝑦 𝑑𝑖𝑣 4 

9.       end For 

10. end 

 

The vector (QW) will be converted to the vector (WQ) in 

DNA notation using inverse conversion tables: TI3 (inverse of 

T3) and TI4 (inverse of T4) described in Figure 13. The 

conversion process is illustrated by Algorithm 17. 
 

 
 

Figure 13. 𝐺4 to DNA tables conversion 

 

Algorithm 17: Transition to DNA notation 

1. Begin 

2.       For i=1 to 12nm+32n 

3.               𝑥 = 𝑄𝑊(𝑖) 
4.               If WB(i)=0 then 

5.                       𝑊𝑄(i) = 𝑇𝐼3(𝑥) 
6.               Else 

7.                       𝑊𝑄(i) = 𝑇𝐼4(𝑥) 
8.       end For 

9. end 

 

The inverse genetic crossover process is illustrated by 

Algorithm 18. 

 

Algorithm 18: The inverse of genetic crossover 

1. Begin 

2.       For i=12nm+32n to 1 

3.              𝑥 = 𝑊𝑄(𝑇𝐶(𝑖, 1)) 
4.              If TC(i,4)=0 then 

5.                      𝑦 = 𝑥 ⊕ 𝑅(𝑇𝐶(𝑖, 2)) 
6.              Else 

7.                      𝑦 = 𝑥 ⊗ 𝑅(𝑇𝐶(𝑖, 2)) 
8.              𝑌𝐵(𝑇𝐶(𝑖, 3)) = 𝑦 

9.       end For 

10. End 

 

4.3 Feistel lap inverse 

 

Before applying the inverse Feistel network, a conversion 

to the binary level is crucial. For this, the vector (YB) will be 

converted to a vector (BY) with values in 𝐺4 using the inverse 

tables TI1 (inverse of T1) and TI2 (inverse of T2) described in 

Figure 14. The conversion process is illustrated by Algorithm 

19. 

 

 
 

Figure 14. 𝐺4 to DNA tables conversion 

 

Algorithm 19: Transition to G4 

1. Begin 

2.       For i=1 to 12nm+32n 

3.               𝑥 = 𝑌𝐵(𝑖) 
4.               If WB(i,2)=0 then 

5.                       𝐵𝑌(i) = 𝑇𝐼1(𝑥) 
6.               Else 

7.                       𝐵𝑌(i) = 𝑇𝐼2(𝑥) 
8.       end For 

9. end 

 

The vector (BY) will then be converted to a binary vector 

(BX) using Algorithm 20. After that, the vector (BX) will be 

resized into a matrix (M’) of size (2n, 12m+32). This matrix 

will be subdivided into two sub-matrices (GM) and (DM) each 

of size (2n, 6 m+16). The inverse Feistel network is applied to 

each row of (GM) and (DM). This process is described by 

Algorithm 21. 

 

Algorithm 20: Binary transition 

1. Begin 

2.       For i=1 to 12nm+32n 

3.              𝐵𝑋(2 ∗ 𝑖 − 1) = 𝐵𝑌(𝑖) 𝑑𝑖𝑣 2 

4.              𝐵𝑋(2 ∗ 𝑖) = 𝐵𝑌(𝑖) 𝑚𝑜𝑑 2 

5.       end For 

6. end 

 

Algorithm 21: Feistel lap inverse  

1. Begin 

2.       For i=2n to 2 

3.              𝐺′ = 𝑀𝐺′(𝑖, : ) 
4.              𝐷′ = 𝑀𝐷′(𝑖, : ) 
5.              X𝐷 = ℎ𝑖

−1(𝐺′) 
6.              𝑋𝐺 = 𝐷′⊕ 𝑓𝑖(𝑋𝐷) 
7.              𝐺 = 𝑋𝐺⨁ 𝑀𝐺′(𝑖 − 1, : ) 
8.              𝐷 = 𝑋𝐷⨁ 𝑀𝐷′(𝑖 − 1, : ) 
9.              𝑀𝐺(𝑖, : ) = 𝑋𝐺 

10.              𝑀𝐷(𝑖, : ) = 𝑋𝐷 

11.       end For 
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21.       𝐷′ = 𝐷𝑀(1, : ) 
22.       𝐺′ = 𝐺𝑀(1, : ) 
23.       𝑋𝐷 = ℎ𝑖

−1(𝐺′) 
24.       𝑋𝐺 = 𝐷′⊕𝑓𝑖(𝑋𝐷) 
25.       𝐷 = 𝑋𝐷 ⊕ 𝑉𝐼D 

26.       𝐺 = 𝑋𝐺 ⊕ 𝑉𝐼G 

27.      𝑀𝐺(1, : ) = 𝐺 

28.      𝑀𝐷(1, : ) = 𝐷 

29. end 

 

The two matrices (MG) and (MD) will be combined into a 

single matrix (MBE) of size (4n, 6 m+16). 

 

4.4 Reconstruction of the clear image 

 

The matrix (MBE) will be sorted based on the last 16 bits of 

each row, and then extraction of the matrix (MB) from (MBE) 

by removing the last 16 columns to construct the decrypted 

image. The binary matrix (MB) of size (4n, 6m) will be 

transformed into a vector (XB) of size (24nm). The vector (XB) 

will be converted to grayscale to recover the encrypted image 

(W) using Algorithm 22. 

 

Algorithm 22: Transition to 𝑮𝟐𝟓𝟔 

1. Begin 

2.       For i=1 to 3nm 

3.              𝛽1 = 𝑋𝐵(8 ∗ 𝑖 − 7) 
4.              𝛽2 = 𝑋𝐵(8 ∗ 𝑖 − 6) 
5.              𝛽3 = 𝑋𝐵(8 ∗ 𝑖 − 5) 
6.              𝛽4 = 𝑋𝐵(8 ∗ 𝑖 − 4) 
7.              𝛽5 = 𝑋𝐵(8 ∗ 𝑖 − 3) 
8.              𝛽6 = 𝑋𝐵(8 ∗ 𝑖 − 2) 
9.              𝛽7 = 𝑋𝐵(8 ∗ 𝑖 − 1) 
10.              𝛽8 = 𝑋𝐵(8 ∗ 𝑖) 
11.              If 𝑊𝐵(𝑖, 1) = 0 and 𝑊𝐵(𝑖, 2) = 0 then 

12.                     𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼1(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼1(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼1(𝛽5, 𝛽6) + 𝑇𝐶𝐼1(𝛽7, 𝛽8) 
13.               Elif 𝑊𝐵(𝑖, 1) = 0  and 𝑊𝐵(𝑖, 2) = 1 

then 

14.                       𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼2(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼2(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼2(𝛽5, 𝛽6) + 𝑇𝐶𝐼2(𝛽7, 𝛽8) 
15.               Elif 𝑊𝐵(𝑖, 1) = 1  and 𝑊𝐵(𝑖, 2) = 0 

then 

16.                       𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼3(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼3(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼3(𝛽5, 𝛽6) + 𝑇𝐶𝐼3(𝛽7, 𝛽8) 
17.               Else 

18.                       𝑊(𝑖) = 64 ∗ 𝑇𝐶𝐼4(𝛽1, 𝛽2) + 16 ∗
𝑇𝐶𝐼4(𝛽3, 𝛽4) + 4 ∗ 𝑇𝐶𝐼4(𝛽5, 𝛽6) + 𝑇𝐶𝐼4(𝛽7, 𝛽8) 
19.       end For 

20. end 

 

The tables TCI1, TCI2, TCI3, and TCI4 are the inverse 

conversion tables described in Figure 15. The vector (W) 

represents the decrypted image. 

 

 
 

Figure 15. Binary tables conversion 

5. SIMULATION RESULTS 

 

To evaluate the performance of our encryption system, we 

randomly select many reference images and then subject them 

to our encryption method. In this section, all experiments are 

conducted using the Python programming language on a 

personal computer based on i5, with 8GB of RAM and a 

500GB hard drive, running Ubuntu 20.04. 

 

5.1 Brutal attacks 

 

Brutal attacks consist of reconstructing the encryption keys 

in a random manner by exploring all the key-space values. 

 

5.1.1 Key-space analysis 

To ensure the robustness of a good image encryption 

algorithm, the key space should have at least 2100 possibilities. 

If the key space is not sufficiently large, the algorithm could 

be vulnerable to brute-force attacks. In this algorithm, the key 

space encompasses the initial condition and control parameters 

of the chaotic maps. The secret key of our system consists of: 

• 𝑠0 = 0.79878796, 𝑟 = 0.755654 logistique map. 

• 𝑡0 = 0.6789654, 𝑣 = 0.98788755 skew tente map. 

In our case, we consider the precision to be of the order of 

1016. Therefore, the total key space reaches 1064. Thus, our 

algorithm is capable of resisting brute-force attacks due to the 

sufficiently large size of its key space. 

 

5.1.2 Secret key’s sensitivity analysis 

The high sensitivity of our encryption key is manifested by 

an amplified reaction following a slight modification of a 

single parameter, resulting in a significant difference from the 

original image. This assertion is visually confirmed by Figure 

16. 

 

 
 

Figure 16. Encryption key sensitivity 

 

5.2 Visual test 

 

The visual test is the first test which aims to detect a certain 

resemblance between the original image and the image 

encrypted by the new crypto system. In our simulations, 

visually the encrypted image is totally different from the 

original image and does not reflect any information or 

resemblance, this initially ensures the robustness of our system 

is illustrated by the result of the Table 1. 

 

5.3 Histogram analysis 

 

The histogram represents the distribution of pixels in an 

image. In the case of an encrypted image, the histogram should 

be uniformly distributed to prevent attackers from guessing 

information about the image. Furthermore, the histogram of 
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the encrypted image should not resemble that of the original 

image. Table 2 shows the histograms of some encrypted 

images. As can be seen, the histograms of the encrypted 

images obtained with our algorithm are uniform. 

 

Table 1. Visual test 

 
Image Name Clair Image Encrypted Image Decrypted Image 

Img1 

243×411 

   

Img2 

1057×1200 

   

Img3 

837×821 

   

Img4 

512×512 

   

Img5 

512×512 

   

 

5.4 Correlation analysis 

 

In the original image, neighboring pixels demonstrate a 

pronounced correlation due to their closely similar values. The 

efficacy of the encryption algorithm resides in generating an 

encrypted image characterized by minimal correlation among 

adjacent pixels. Mathematically, the correlation coefficient 

between two neighboring pixels is calculated employing the 

Eq. (5). 

 

𝑟 =
𝑐𝑜𝑣( 𝑥, 𝑦)

√𝑉(𝑥)√𝑉(𝑦)
 (5) 

 

With: 

• "x" and "y" represent adjacent pixels. 

•"cov (x, y)": covariance between the random variables x 

and y. 

•V(x): variance of x. 

The Table 3 shows the correlation coefficients of some 

images encrypted by our method. All the images have a 

correlation close to zero. 

 

5.5 Entropy analysis 

 

Entropy is the measure of the disorder diffused by a source 

without memory. The entropy expression is determined by the 

Eq. (6). 

 

𝐻(𝑖𝑚𝑔) =∑−𝑝(𝑖𝑚𝑔𝑖) 𝑙𝑜𝑔2(𝑝(𝑖𝑚𝑔𝑖))

255

𝑖=0

 (6) 

 

p(𝑖𝑚𝑔𝑖) , is the probability of occurrence of level (i) in the 

image encrypted by our new method. 

The maximum value of entropy is 8; the higher the entropy, 

the more randomness is present in the encrypted image. The 

Table 3 presents the entropy values obtained for different 

images encrypted by our algorithm. All the obtained values are 

close to the maximum value of 8. 

 

5.6 Differential analysis 

 

Differential attack is based on deducing information about 

an image by introducing a slight modification to the plaintext 

image and then encrypting both images using the same 

algorithm. A comparison between the two encrypted images is 

made to determine any correlation between the original image 

and its encrypted version. It is expected that a robust algorithm 

produces distinctly different encrypted images, even for the 

slightest modifications made to the plaintext image. The 

parameters used to measure the effectiveness of our method 

against differential attacks are: NPCR (Number of Pixel 

Change Rate) and UACI (Unified Average Changing 

Intensity). 

NPCR (Number of Pixel Change Rate) is a measure that 

quantifies the percentage of different pixel values between two 

encrypted images, when the corresponding plaintext images 

differ by only one pixel. A high NPCR value indicates better 

resistance of the algorithm against differential attacks. NPCR 

can be calculated using Eq. (7). 
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Table 2. Histogram 

 
Image Histogram 

Img1 

 
 

Img2 

 

Img3 

 
 

Img4 

 

 
 

Img5 
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Table 3. Correlation and entropy 

 
Image Vertical Correlation Diagonal Correlation Horizontal Correlation Entropy 

Img1 

R 0.00194 -0.00264 -0.00064 7.99829 

G 0.00162 -0.00201 -9.11e-05 7.99806 

B 0.00014 -0.00307 0.00092 7.99811 

Img2 

R -0.00122 0.00090 0.00098 7.99985 

G 0.00031 -7.75e-05 0.00093 7.99983 

B -0.00056 0.00050 -0.00043 7.99987 

Img3 

R 0.00064 -0.00159 8.17e-05 7.99977 

G -0.00177 -0.00156 0.00068 7.99971 

B -0.00102 0.00112 0.00124 7.99975 

Img4 

R 0.00020 0.00161 0.00166 7.99930 

G -0.00127 -0.00312 -0.00213 7.99930 

B 0.00023 0.00233 0.00138 7.99929 

Img5 

R 0.00125 0.00096 0.00232 7.99935 

G 0.00059 0.00178 -0.00224 7.99925 

B -0.00464 -0.00014 -0.00173 7.99922 

 

𝑁𝑃𝐶𝑅 = (
1

𝑛𝑚
∑ 𝐷(𝑖, 𝑗)

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 

𝑤𝑖𝑡ℎ 𝐷(𝑖, 𝑗) = {
1  𝑖𝑓    𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0  𝑖𝑓    𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
 

(7) 

 

The UACI mathematical analysis of an image is given by Eq. 

(8). 

 

𝑈𝐴𝐶𝐼 = (
1

255𝑛𝑚
∑ 𝐴𝑏𝑠(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))

𝑛𝑚

𝑖,𝑗=1

) ∗ 100 (8) 

 

The avalanche effect refers to the number of bits that change 

when a single bit in the original image is modified [24]. The 

mathematical representation of the avalanche effect is 

expressed by Eq. (9). 

 

𝐴𝐸 = (
∑ 𝑏𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑖

∑ 𝑏𝑖𝑡 𝑡𝑜𝑡𝑎𝑙𝑖
) ∗ 100 (9) 

 

Table 4. Differential parameters 

 
Pictures NPCR UACI EA 

Img1 99.61% 33.46% 50.03% 

Img2 99.61% 33.47% 50.00% 

Img3 99.61% 33.48% 50.00% 

Img4 99.60% 33.46% 50.01% 

Img5 99.61% 33.46% 50.01% 

 

Table 4 presents some results of the calculation of 

differential parameters for images encrypted using our method. 

All calculated NPCR values are greater than the threshold of 

99.60%, UACI is greater than 33.46%, and AE is greater than 

50%. This demonstrates that our algorithm can resist 

differential attacks. 

 

5.7 Encryption time 

 

The encryption time is a crucial benchmark for assessing the 

efficiency of an image encryption algorithm. Effectively 

encrypting substantial data, such as images, within a 

reasonable timeframe has become a challenging aspect of 

algorithm development. In our study, we present the 

encryption times for images of sizes 256×256 and 512×512 in 

(Table 5), along with a comparison to other recent works. 

Furthermore, the time complexity of our method for an image 

of size (N, M) is O(NM). 

 

Table 5. Encryption time 

 
Encryption 

Technique 

Images 

256x256 512x512 

Our algorithm 0.097 0.171 

Ref. [25] 0.65 ----- 

Ref. [26] 8.22 ----- 

Ref. [27] 0.156 0.406 

 

5.8 Comparison to other techniques 

 

Table 6 shows that our technique gives satisfactory results 

compared to other method in the literature. The entropy of the 

tow images gives values extremely close to the ideal value of 

8 and higher than the values obtained by most other methods. 

For the NPCR and UACI, the values of the proposed scheme 

are very close to the values of NPCR (99.6%) and UACI 

(33.4%) expected. Accordingly, from Table 6, we can 

conclude that the suggested method outperforms many 

recently published studies in terms of entropy, NPCR and 

UACI values. 

 

Table 6. Comparison to other technique 

 
Images Methods Entropy NPCR UACI 

Lena 

Our Method 7.9993 99.61 33,46 

Ref. [22] 7.9976 99.61 33.51 

Ref. [28] 7.9992 99.65 33.48 

Baboon 
Our Method 7.9993 99.61 33,46 

Ref. [29] 7.9984 99.60 33.26 

 

 

6. CONCLUSIONS 

 

Converting the image to be encrypted into binary notation 

and applying a discrimination function in our genetic 

algorithm resulted in the generation of two tribes of 

individuals with different properties. The implementation of a 

Feistel round and the integration of a diffusion function in the 

first round, for the mating of two individuals, made it possible 

to reproduce a new generation, inheriting the genes of each 

tribe in order to cope with any unforeseen attack. While 

crossover and mutation in the second round reinforced our 

encryption system. A wide range of images tested by our 

algorithm proved the robustness of our cryptosystem. 

Reformulating the fitness function and increasing the number 
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of operations at the DNA level may add further performance 

to our system. 
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