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Massive amounts of heterogeneous data are produced by Internet of Things (IoT) devices 

utilized in daily life and numerous fields, and these data streams need to be stored, 

processed, analyzed, and transmitted to the cloud. It usually suffers from missing values 

and anomalies; system services also suffer from congestion due to slow processors, 

resulting in low throughput, a high response time, slow decision-making, and data loss, 

resulting in low quality of service and the deterioration of the system's performance. In 

this study, propose to integrate the smart controller (SC) with the Message Queuing 

Telemetry Transport (MQTT) broker and services in the fog node to make decisions 

automatically to prevent congestion in the system's services and speed up the processing. 

The IoT stream is inspected in the services for anomalies using one-class support vector 

machines (OCSVM). Then, using the integrating technique of principal component 

analysis (PCA) and the k-nearest neighbors (KNN) algorithm in the SC, obtain the best 

prediction of the efficient number of services that must be deployed in the system. The 

operating model proposed showed significantly stable system performance in terms of 

throughput, latency, response time, the amount of data loss, and preventing congestion. 
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1. INTRODUCTION

This era witnesses growth in number of IoT devices with 

multiple uses in daily life, such in smart homes, health care, 

and wearable devices, production quality, and other fields of 

life [1]. Data from a smart city or health care are two examples 

of the many sources and formats of the vast volumes of data 

[2]. Data sizes have become widely distributed and need 

effective techniques for resource management in storage, 

processing, and analysis [3], such as cloud computing [4, 5]. 

However, collecting and sending raw data to the remote cloud 

suffers from high latency because of network congestion, and 

low processing throughput. 

The researchers suggested using the publication of topics 

and geographical location at the edge of the cloud (cloud 

computing gateway) to increase the deployment of IoT devices 

with quality of service and throughput. The use of the edge 

with IoT applications suffers from challenges represented by 

heterogeneous data sources, a lack of resources for large 

processors, and low bandwidth [6]. Among the obstacles of 

production and processing in the cloud and overcoming all 

edge/cloud computing challenges is the fog computing 

technology which has emerged as a compromise solution to 

alleviate these problems [7, 8]. Moreover, investment in the 

fog computing environment provides the resources required 

for the applications of IoT and reduces latency [3], and 

improves service quality [9]. 

The broker works in a dynamic publishing and subscription 

model inside a fog node that may support useful and flexible 

features such as anonymity, multiple publishers and 

subscribers, synchronization, and finally, no system failure if 

one of the subscribers is not connected to the Internet [10-12]. 

It provides a fast response time, enhances the performance of 

fog computing, and reduces lost messages [13]. 

Problems that occur in services due to congestion, data loss, 

slow processing, and decreased system performance, are a 

motivation for using the proposed model that integrates the 

broker and SC with a group of services. In addition, a dynamic 

solution must be found that can evaluate the performance of 

the system’s services at any time without the need for human 

intervention. 

This paper proposes integrating a smart controller module 

that makes dynamic decisions for add (spawn) or remove (kill) 

the services automatically with an MQTT broker in a fog node. 

In the same context, the SC is a service that assists improving 

the performance of the system by monitoring and collecting 

information on all measurement services. The latency, 

throughput, and data loss due to overload and the high 

processing time of data are measures used in the SC to 

evaluation measures by applying the PCA and KNN 

algorithms. For reliability, machine learning algorithms (One-

Class-SVM) [14] are used in these services for preprocessing 

data streams to detect anomalies. 

The integrating algorithms of the PCA and KNN regression 

(KNNR) allow effective features selection, handling of 

multicollinearity, improved generalization, and computational 

efficiency. By leveraging the strengths of both techniques, the 

performance and efficiency of the regression model can be 

enhanced. Unsupervised machine learning algorithms like 

PCA try to minimize the dimensionality (number of features) 
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of a dataset while keeping as much information as they can. 

To do this, a new set of features termed components that are 

composites of the original features and are uncorrelated with 

one another are discovered. Additionally, they are restricted so 

that the first component explains the maximum amount of data 

variability, the second component explains the next highest 

amount, and so on [15, 16]. 

K-nearest neighbors regression is a supervised learning 

algorithm that can be used for regression tasks. It predicts the 

target value of a new sample by considering the values of its 

k-nearest neighbors in the training dataset. The KNN 

algorithm is used in the SC to predict the best measures that 

lead to making decisions automatically in real time [17, 18]. 

The major contributions of this paper include: 

(1) Propose SC integrated with a broker and services in the 

fog environment. SC collected information about services in 

the screen table. 

(2) Building the SC model to make decisions to add (spawn) 

or remove (kill) the services according to the current 

information received from the services. 

(3) Building model to find best measurements using KNN 

with best features selection from PCA and best K. 

(4) Improving system performance included low latency, 

reduced data loss, high throughput, and reduced overload by 

running a group of services automatically. 

The remainder of the paper is organized as follows: Section 

2 presents related works. Section 3 describes the methodology 

of the research. The results and discussion are presented in 

Section 4. The comparison with previous works in Section 5, 

and finally, the Section 6 represents the conclusion. 

 

 

2. RELATED WORKS 

 

In this section, we review previous studies that dealt with 

the process of sending data to the cloud over the edge gateway 

or the fog gateway for improving service quality and 

productivity in terms of the transition time between IOT 

devices (data sources) and services or applications. It is noted 

that most researchers used the fog computing environment and 

its distinctive services without thinking about using the broker. 

In addition, there is no clear guide on how to use or control 

multiple instances of highly required services. 

The researchers [19] suggested a solution to improve the 

quality of service in terms of service availability against 

failures  and cost efficiency by choosing the optimal location 

for the cloud data center and providing service in cases of 

failure in the data center networks by formulating a linear 

program to achieve the optimal design of the joint. It integrates 

a preconfigure protection cycle to provide failover protection 

in just one link. For failure redirection, data center network 

replication is used. It did not take into account the processing 

of the increasing amounts of data from the Internet of Things, 

but rather the cost and protection. 

The researchers [20] suggested scheduling jobs to improve 

the quality of service, as it was found that the jobs that were 

scheduled were not related to the quantities of jobs needed by 

the Internet of Things, so they could not be taken into 

consideration. Because the study relies on DCN networks, 

which suffer from poor processing of the increasing number of 

requests by IoT consumers in real time. 

The researchers [21] used the IoT Gateway as an edge 

between cloud computing and IoT devices. The data can 

undergo some preprocessing close to the edge, which is the 

source of its output. It is feasible to take part in data allocation 

and transfer, but only as a cloud computing representative. As 

a result, when the data flow increases, it has poor performance, 

limited processing throughput, and security issues. 

In the smart home [22], the gateway collects data from home 

sensors and transfers it to the sleep care service for the IoTs 

where the sensor is compatible with the smart home gateway 

to improve the quality of service. Thus, the collected results 

from the service are sent to the cloud for storage and analysis. 

Ijaz et al. [23] used the gateway that works as a fog node to 

collect data from different sensors in the field of health care 

and redirect it to the working mediator node for further 

processing. Thus, the gateway sends the data to the 

intermediary (not the service or the end-user) which will 

redirect it to the centers for disease control (CDC). This means 

that there is an unnecessary delay or jump represented by the 

collection gateway that leads to low transfer throughput. 

Related work has focused on addressing the problem of 

congestion or delay in transferring data and processors by 

approximating the locations of processors without considering 

employing more than one tool at the gates or edge of the 

network, while in this study we combined a group of tools and 

brought them closer to the data source using a fog node and 

employed a broker within it. The broker provides speed, 

security, and accuracy in transferring and distributing data. In 

addition to using SC, which controls the number of services 

that process data and adapts it to system states in efficient time. 

 

 

3. THE PROPOSED INTEGRATION APPROACH 

 

The proposed methodology, referred to in Figure 1, aims to 

enhance system performance and reduces overload by making 

decisions to spawn or kill services automatically. All services 

have been subscribed to the broker based on a specific topic. 

These services collect and preprocess data before sending it to 

the cloud as clean data. The SC is controlling the processing 

speed-up by predicting the number of services that avoid data 

congestion on the service. Create an efficient model by 

integrating the algorithms PCA and KNN, which has the 

ability to select the best principle components for can be to 

predict efficiency to numbers of service. 

 

 
 

Figure 1. Architecture of the proposed system 

 

3.1 IoT devices 

 

An IoT device is a collection of physical devices that are 

referred to as objects in IoT. They are unique in terms of 

identity, connected to the Internet, and allow remote sensing 

and monitoring capabilities. Internet of Things devices 

generate big data from various geographic locations. IoT 
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devices can sense temperature, humidity, blood pressure, body 

temperature, sleep care, etc. Data messages are published to 

the IB according to the topic specified in the IoT devices. IoT 

devices can be discovered dynamically in the network by 

another device or the network itself. It can also describe itself 

and its characteristics to other devices or user applications. 

 

3.2 Intelligent broker (IB) 

 

On a fog node, an MQTT broker based on the 

publish/subscribe model is used to provide appropriate 

interaction among connected services and IoT devices. An 

intelligent broker notifies the services of the existence of data 

on a specific topic when it becomes available for delivery, and 

thus the services can receive the data for which they have 

subscribed to the intelligent broker. The services receive the 

data stream for preprocessing, such as collecting the data, 

verifying it for any problems, and sending it for cleaning and 

correction. One of the important capabilities of this intelligent 

broker is its ability to distribute data streams to more than one 

subscribed service while ensuring that the data is not 

duplicated in other subscribers' services. Also, it is ensuring 

that the system does not fail or stop in the event of a service 

failure, as is the case with edge or fog servers. 

 

3.3 Collector service 

 

A group of running services that use ML algorithms to 

preprocess data and have subscribed to IB according to the 

interesting topics. They receive, collect, and preprocess data 

in blocks and republish clean data back to the IB for the benefit 

of consumer services, cloud, or applications. Any service can 

be added to the system by the administrator. Figure 2 shows 

the architecture for a service, called collector service 

developed with IB and consumer services. The collector 

service task is to collect data in the blocks and verify the 

messing value and anomaly in each block. Finally, the 

correction of the data in the block and republish clean data. 

 

 
 

Figure 2. Architecture for a collector service 

 

3.4 Smart controller model (SC) 

 

The SC is a service within the fog node. Its purpose is to 

monitor and collect information in the screen table for a given 

service of a particular type and make a decision whether to 

remove one service or add a new one according to the 

information collected about the performance of that service. 

The screen table consists of the information sent from services 

and is used to evaluate the system's performance containing a 

timestamp to represent the time of receiving information from 

the service. The # counter of running services is given the job 

of latency. When the latency increases for a particular service, 

the SC adds a service and  increments the counter for that 

service type. The SC publishes control messages in the IB to 

the service. 

 

3.4.1 Implementing the SC 

The SC collects information periodically from the currently 

running services (collector service), including the response 

time, latency, and execution time. The SC monitors these 

measures and may decide to spawn or kill a service 

automatically. The measures are saved in the screen table with 

details of transmission such as topic name, topic ID, and 

timestamp. In addition, it is collected in the jobs during 

specific periods (∆T). In the ∆T, calculate the average latency, 

average response time, and throughput for each job based on 

the topic name. In its initial state, the system has one service 

working for each topic name. For example, in our experiment, 

the topic name is temperature (Temp). The decision to spawn 

or kill is made by comparing the current number of services 

with the predicted number of services (ℰ) by integrating PCA 

and KNN and create new model for predicted. 

 

3.4.2 Smart controller behavior 

 

 
 

Figure 3. SC architecture 

89



 

The SC's overall behaviour starts where the preprocessors 

left off with services. The SC receives the measures published 

by the IB. In the experiment, the value of ∆T=20 was chosen, 

where four values (5, 10, 20, and 30) were tested, and the 

stability of latency, response time, and throughput was 

observed at this value more than at the previous values. 

Calculates latency, throughput, data loss, and data rate. The 

difference (diff) represents the result of subtracting each of the 

current number of services from ℰ. The spawn services in the 

system if the value of the diff is positive, and if it is negative, 

it will kill services after the end of the pre-processing 

operations in it. Finally, it replaces the screen table values with 

the current ones. As see in Figure 3. 

 

3.4.3 Dimensionality reduction 

By leveraging the strengths of both techniques, you can 

enhance the performance and efficiency of the regression 

model. ML uses dimensionality reduction style for various 

purposes, one of them being important feature selection from 

feature space. It is used to reduce overfitting and increase the 

complexity, enhance the ML model performance, rapid the 

training for massive data, and create more meaningful features. 

To select the best feature, integrate PCA with KNNR, and use 

a certain threshold to create a new model based on the 

important features that can be used it in KNNR. In this work, 

input a set of features and replace them with a smaller set of 

principal components (pc). By setting a threshold on the 

cumulative variance, the best features can be retained (not too 

high or low). The pc is used in the KNNR to predict the best 

number of services. The following steps after loading the 

dataset can be seen in Figure 4: 

 

 
 

Figure 4. Overview for PCA and KNN 

 

(1) Start by normalizing the data until we unify the data 

within a specific range. 

(2) Constructing the covariance matrix involves 

determining the relationship between pairs of variables and the 

amount of variance. 

(3) Computing the eigenvectors and eigenvalues. 

(4) Sorting the eigenvalues in descending order and 

selecting the top k eigenvectors corresponding to the highest 

eigenvalues. 

(5) Transforming the feature matrix using the selected 

principal components by multiplying the original feature 

matrix by the selected eigenvectors to obtain a reduced-

dimensional feature matrix. 

(6) Splitting the dataset into training and testing sets by 

dividing the transformed feature matrix and the target variable 

into a training set and a testing set of 80% of the data and the 

remaining for testing. 

(7) Train the KNNR model. Fit the KNNR model using the 

training data. Specifying the number of nearest neighbours (k) 

and any other relevant parameters, such as distance metrics. 

(8) Evaluate the model: Use the trained model to predict the 

testing data. Calculate the appropriate regression evaluation 

measure, such as mean squared error (MSE). 

(9) Selecting the best-performing k and finalizing the model: 

Choose the value of k that yields the best regression 

performance based on the evaluation metrics. Train the final 

KNNR model using this optimal model and best k. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

For the sake of feasibility and to measure the quality of the 

proposed model, experiments are conducted, it is worked on a 

real dataset that contains a set of IoT sensor readings from 

(https://www.kaggle.com/datasets) named Intel Berkeley 

Research Lab Sensor Data (IBRL). It consists of data amount 

2.3 million readings collected from 54 devices with eight 

different sensors. The module published the data to the broker. 

For the experiment, a sensor's data is published separately by 

a dedicated Python module. A service that has been subscribed 

to by the IB will receive and collect data and perform 

preprocessing such as anomaly detection using OCSVM 

algorithm and data correction. Then, the service will publish 

certain information to the SC (status messages) for making 

decisions in cases of overloading and performance degradation. 

In the SC, a compilation of status messages that are 

published from a certain type of service running currently that 

has subscribed to the IB and the same topic interests among 

them. The information is aggregated into a screen table which 

can store all the values of the measures in it and will be used 

as a reference database. It is used in the future to determine the 

appropriate number of services that must be implemented 

according to a pre-selected measure or set of standards. From 

the information in Table 1, we note that the best results were 

obtained using three services for our setting based on latency 

and throughput. The best latency is 3.43s, throughput is 

5.83job/s and response time is 3.63s. 

 

Table 1. The results obtained from implemented the SC 

 

Services Latency (s) 
Throughput 

Job/s 

Response 

Time (s) 
Data Lost  

1 service 6.76 2.96 6.96 0.88 

2 services 3.46 5.78 3.71 0.57 

3 services 3.43 5.83 3.63 0.46 

4 services 3.58 5.59 3.87 0.14 

5 services 4.64 4.31 4.89 0.14 

 

Data loss is reduced to the greatest extent possible. A 

reduction of 0.136 percent in data loss on the base value (base 
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value with one service and other values obtained from 

increased numbers of services) is achieved. The data loss starts 

decreasing with the increase in the number of currently 

running services. As presented in Table 1, the best case for 

data loss reduction is when four and five services are running, 

because of the starvation state in the service. In other words, 

there is a long waiting time in the service to receive and 

process data, this increase is evident in the latency and 

response time. 

 One of the most important aims of the study is to reduce 

latency, congestion, and processing speed-up. In addition, 

there is an improved relationship between the latency and the 

number of services currently executing within the period in 

which the jobs are collected in the SC. as seen in Figure 5. The 

x-axis represent the timestamp, y-axis represent the value of 

latency and the number of services over the time. 

Latency: The period time required to collect one data job, 

starting from the time of the first message sent from the 

publisher to the last message received. It depends on the 

number of hops, the performance of the broker or server, and 

the transport protocols. As near to zero latency as feasible is 

preferable. 

Throughput is the amount of data a system can process in a 

given time, which expressed in job per second (job/s). The 

speed at which a particular workload can be finished and 

response time-the interval of time between a single interactive 

user request and the delivery of the response-are included in 

all relevant measures of system throughput. Improving 

throughput with the best number of services, we achieved 

throughput from 2.96 with one service to 6.64 jobs per second 

for three services, which are added to the system automatically 

using the SC model as in Figure 6. The x-axis represent the 

timestamp, y-axis represent the value of throughput and the 

number of services over the time. 

 

 
 

Figure 5. Latency and number of services 

 

 
 

Figure 6. The throughput with #services 

 
 

Figure 7. Minimum the MSE by KNN 

 

 
 

Figure 8. Best K selection 

 

The KNN algorithm is better in the experiment, especially 

after reducing the variance between features in the feature 

space using the PCA algorithm. Repeating the experiments, it 

is always the best. Therefore, the MSE of the proposed model 

by using PCA and KNN appears the best prediction compared 

to other algorithms. as seen in Figure 7. The x-axis represent a 

set of ML, y-axis represent value of MSE. 

In terms of MSE, it appeared that applying the PCA 

algorithm to the features for the purpose of selecting the best 

model could be used in the algorithms for prediction, and 

obtaining the lowest value for MSE is efficient. After some 

repeated executions on the best model, the best K is got by 

choosing the least MSE and then applying it in the KNNR 

algorithm. The best K obtain from applying best model as see 

in Figure 8. The x-axis represent the number of K, y-axis 

represent value of MSE. 

In the end, the experimental results of the proposed model 

show stability in the performance of the system when running 

three services. The stability of improvement is relative to 

measures of latency from 6.76 to 3.43 and throughput from 

2.96 to 5.83 that are compared in the SC model and decision-

making to spawn or kill the currently executing service, which 

is compiled in a screen table within the SC. 

The stability of improvement is relative to measures of 

latency from 6.76 to 3.43 and throughput from 2.96 to 5.83 

that are compared in the SC model and decision-making to 

spawn or kill the currently executing service, which is 

compiled in a screen table within the SC. 

The best model used to predict numbers of services is the 

integration of the PCA and KNN with an MSE of 0.00434 

compared with other MLs such as Support Vector Machines 

and Random Forest etc. [24]. It can be considered the 

properties of the computer affected the results when the 

implementation of the model was obtained. But in general, 
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there is an improvement in latency and throughput with the 

increase in the number of services to a certain extent, after 

which the metrics begin to increase again. 

To calculate the value of improvement in performance 

measures (response time, latency, and data loss), subtract the 

highest value (HV) from the best values (BV) divided by the 

highest value (HV), then the final result is multiplied by 100. 

As see in the equation bellow: 

 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑒𝑟 = (
𝐻𝑉 − 𝐵𝑉

𝐻𝑉
) × 100 (1) 

 

 

5. ANALYSIS WITH RELATED WORK 

 

In the experimental scenario, the OCSVM accuracy in 

anomaly detection is (99.44%) as compared to the result from 

other works. The researchers used the Monotone Split and 

Conquer (MSC) scheme and splitting data generally into sub-

directions approximated and used accuracy and false positive 

rates as the performance indicators of the evaluation algorithm 

[25], the researchers used three different network models and 

used DA (detection accuracy), TPR (true positive rate), and 

PRE (precision) as the performance indicators of the 

evaluation algorithm [26]. The accuracy is (93% and 99.05%) 

respectively using the same data set (IBRL). 

The average enhancement of latency is 91.65%, response 

time is 97.34%, throughput is 49.2%, and reducing data loss is 

84.49%. ML techniques used in the SC let decision-making be 

rapid and suitable for. In addition, they are used in services to 

enhance the reliability of a system. The best performance is 

observed for well-pre-processed data in the services, 

underscoring the significance of appropriate data-

preprocessing methods. 

Other works that propose fog computing do not take into 

account the various aspects of the model. Several previous 

works [27-31] do not take advantage of resources near the 

edge of the network. Rather, data is sent to cloud centers for 

the purpose of processing, analysis, and decision-making. 

These models provide much higher latency as all the 

computation takes place on the cloud and therefore have 

higher data transfer times [32]. 

In addition, the results, as seen in Table 2, are obtained from 

the implementation of the SC model. The results are compared 

with previous studies in terms of response time and latency. 

Notice: The unit for results is the second for each block that 

contained 2,500 messages, which are presented in Table 1. 

After converting to milliseconds for latency and response time, 

the results become as those in Table 2. For integrated IB and 

SC, the average latency becomes 1.37ms, and response time 

becomes 1.54ms. 

 

Table 2. Compared results from this work with related works 

 

Ref. 
Latency 

(ms) 
Response Time 

(ms) 
Accuracy 

[3] 48.56 - - 
[22] 8.83 - - 
[32] 20.45 - - 
[33] - 109 - 
[34] - 39.5 - 
[26] - - 99.05% 
[25] - - 93% 

This work (IB+SC) 1.37 1.54 99.44% 

 

6. CONCLUSION 

 

Some systems' services, such as health care, weather, and 

smart homes, suffer from congestion and data heterogeneity, 

leading to a degradation in the overall system's performance. 

Thus, it leads to inaccurate results or system failure at the end. 

An SC monitors the overload of system services and makes 

decisions dynamically. SC shows high stability in system 

performance by controlling the number of active services 

relative to the data arrival rate. An improvement in the 

system's performance is measured by latency, throughput, data 

rate, response time, and the amount of data loss. According to 

the results of the study, it is observed that monitoring and 

avoiding congestion has a noticeable impact on the 

performance of the system's services. Based on the results 

obtained, OCSVM shows superior performance as the most 

effective in terms of anomaly detection in the data stream 

published from IoT devices to the services. The accuracy of 

anomaly detection is 99.44%. 

The fog node hosts system components due to the 

advantages of fog computing. The quality of service is 

enhanced due to enhanced system measurements and rapid 

making decisions automatically. 
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