
Smart Controller Integrated with MQTT Broker Based on Machina Learning Techniques

Wial Hanon1* , Mahdi Abed Salman2

1 Information Technology, Software Department, University of Babylon, Hilla 51001, Iraq
2 College of Science for Women, Department of Computer Science, University of Babylon, Hilla 51001, Iraq

Corresponding Author Email: wailh@uobabylon.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570109 ABSTRACT

Received: 28 October 2023

Revised: 16 January 2024

Accepted: 26 January 2024

Available online: 29 February 2024

Massive amounts of heterogeneous data are produced by Internet of Things (IoT) devices

utilized in daily life and numerous fields, and these data streams need to be stored,

processed, analyzed, and transmitted to the cloud. It usually suffers from missing values

and anomalies; system services also suffer from congestion due to slow processors,

resulting in low throughput, a high response time, slow decision-making, and data loss,

resulting in low quality of service and the deterioration of the system's performance. In

this study, propose to integrate the smart controller (SC) with the Message Queuing

Telemetry Transport (MQTT) broker and services in the fog node to make decisions

automatically to prevent congestion in the system's services and speed up the processing.

The IoT stream is inspected in the services for anomalies using one-class support vector

machines (OCSVM). Then, using the integrating technique of principal component

analysis (PCA) and the k-nearest neighbors (KNN) algorithm in the SC, obtain the best

prediction of the efficient number of services that must be deployed in the system. The

operating model proposed showed significantly stable system performance in terms of

throughput, latency, response time, the amount of data loss, and preventing congestion.

Keywords:

Message Queuing Telemetry Transport

(MQTT), smart controller, spawn, latency,

throughput, screen table, data loss, PCA, k-

nearest neighbors regression (KNNR)

1. INTRODUCTION

This era witnesses growth in number of IoT devices with

multiple uses in daily life, such in smart homes, health care,

and wearable devices, production quality, and other fields of

life [1]. Data from a smart city or health care are two examples

of the many sources and formats of the vast volumes of data

[2]. Data sizes have become widely distributed and need

effective techniques for resource management in storage,

processing, and analysis [3], such as cloud computing [4, 5].

However, collecting and sending raw data to the remote cloud

suffers from high latency because of network congestion, and

low processing throughput.

The researchers suggested using the publication of topics

and geographical location at the edge of the cloud (cloud

computing gateway) to increase the deployment of IoT devices

with quality of service and throughput. The use of the edge

with IoT applications suffers from challenges represented by

heterogeneous data sources, a lack of resources for large

processors, and low bandwidth [6]. Among the obstacles of

production and processing in the cloud and overcoming all

edge/cloud computing challenges is the fog computing

technology which has emerged as a compromise solution to

alleviate these problems [7, 8]. Moreover, investment in the

fog computing environment provides the resources required

for the applications of IoT and reduces latency [3], and

improves service quality [9].

The broker works in a dynamic publishing and subscription

model inside a fog node that may support useful and flexible

features such as anonymity, multiple publishers and

subscribers, synchronization, and finally, no system failure if

one of the subscribers is not connected to the Internet [10-12].

It provides a fast response time, enhances the performance of

fog computing, and reduces lost messages [13].

Problems that occur in services due to congestion, data loss,

slow processing, and decreased system performance, are a

motivation for using the proposed model that integrates the

broker and SC with a group of services. In addition, a dynamic

solution must be found that can evaluate the performance of

the system’s services at any time without the need for human

intervention.

This paper proposes integrating a smart controller module

that makes dynamic decisions for add (spawn) or remove (kill)

the services automatically with an MQTT broker in a fog node.

In the same context, the SC is a service that assists improving

the performance of the system by monitoring and collecting

information on all measurement services. The latency,

throughput, and data loss due to overload and the high

processing time of data are measures used in the SC to

evaluation measures by applying the PCA and KNN

algorithms. For reliability, machine learning algorithms (One-

Class-SVM) [14] are used in these services for preprocessing

data streams to detect anomalies.

The integrating algorithms of the PCA and KNN regression

(KNNR) allow effective features selection, handling of

multicollinearity, improved generalization, and computational

efficiency. By leveraging the strengths of both techniques, the

performance and efficiency of the regression model can be

enhanced. Unsupervised machine learning algorithms like

PCA try to minimize the dimensionality (number of features)

Journal Européen des Systèmes Automatisés
Vol. 57, No. 1, February, 2024, pp. 87-94

Journal homepage: http://iieta.org/journals/jesa

87

https://orcid.org/0000-0003-1144-9316
https://orcid.org/0000-0002-7805-6800
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.570109&domain=pdf

of a dataset while keeping as much information as they can.

To do this, a new set of features termed components that are

composites of the original features and are uncorrelated with

one another are discovered. Additionally, they are restricted so

that the first component explains the maximum amount of data

variability, the second component explains the next highest

amount, and so on [15, 16].

K-nearest neighbors regression is a supervised learning

algorithm that can be used for regression tasks. It predicts the

target value of a new sample by considering the values of its

k-nearest neighbors in the training dataset. The KNN

algorithm is used in the SC to predict the best measures that

lead to making decisions automatically in real time [17, 18].

The major contributions of this paper include:

(1) Propose SC integrated with a broker and services in the

fog environment. SC collected information about services in

the screen table.

(2) Building the SC model to make decisions to add (spawn)

or remove (kill) the services according to the current

information received from the services.

(3) Building model to find best measurements using KNN

with best features selection from PCA and best K.

(4) Improving system performance included low latency,

reduced data loss, high throughput, and reduced overload by

running a group of services automatically.

The remainder of the paper is organized as follows: Section

2 presents related works. Section 3 describes the methodology

of the research. The results and discussion are presented in

Section 4. The comparison with previous works in Section 5,

and finally, the Section 6 represents the conclusion.

2. RELATED WORKS

In this section, we review previous studies that dealt with

the process of sending data to the cloud over the edge gateway

or the fog gateway for improving service quality and

productivity in terms of the transition time between IOT

devices (data sources) and services or applications. It is noted

that most researchers used the fog computing environment and

its distinctive services without thinking about using the broker.

In addition, there is no clear guide on how to use or control

multiple instances of highly required services.

The researchers [19] suggested a solution to improve the

quality of service in terms of service availability against

failures and cost efficiency by choosing the optimal location

for the cloud data center and providing service in cases of

failure in the data center networks by formulating a linear

program to achieve the optimal design of the joint. It integrates

a preconfigure protection cycle to provide failover protection

in just one link. For failure redirection, data center network

replication is used. It did not take into account the processing

of the increasing amounts of data from the Internet of Things,

but rather the cost and protection.

The researchers [20] suggested scheduling jobs to improve

the quality of service, as it was found that the jobs that were

scheduled were not related to the quantities of jobs needed by

the Internet of Things, so they could not be taken into

consideration. Because the study relies on DCN networks,

which suffer from poor processing of the increasing number of

requests by IoT consumers in real time.

The researchers [21] used the IoT Gateway as an edge

between cloud computing and IoT devices. The data can

undergo some preprocessing close to the edge, which is the

source of its output. It is feasible to take part in data allocation

and transfer, but only as a cloud computing representative. As

a result, when the data flow increases, it has poor performance,

limited processing throughput, and security issues.

In the smart home [22], the gateway collects data from home

sensors and transfers it to the sleep care service for the IoTs

where the sensor is compatible with the smart home gateway

to improve the quality of service. Thus, the collected results

from the service are sent to the cloud for storage and analysis.

Ijaz et al. [23] used the gateway that works as a fog node to

collect data from different sensors in the field of health care

and redirect it to the working mediator node for further

processing. Thus, the gateway sends the data to the

intermediary (not the service or the end-user) which will

redirect it to the centers for disease control (CDC). This means

that there is an unnecessary delay or jump represented by the

collection gateway that leads to low transfer throughput.

Related work has focused on addressing the problem of

congestion or delay in transferring data and processors by

approximating the locations of processors without considering

employing more than one tool at the gates or edge of the

network, while in this study we combined a group of tools and

brought them closer to the data source using a fog node and

employed a broker within it. The broker provides speed,

security, and accuracy in transferring and distributing data. In

addition to using SC, which controls the number of services

that process data and adapts it to system states in efficient time.

3. THE PROPOSED INTEGRATION APPROACH

The proposed methodology, referred to in Figure 1, aims to

enhance system performance and reduces overload by making

decisions to spawn or kill services automatically. All services

have been subscribed to the broker based on a specific topic.

These services collect and preprocess data before sending it to

the cloud as clean data. The SC is controlling the processing

speed-up by predicting the number of services that avoid data

congestion on the service. Create an efficient model by

integrating the algorithms PCA and KNN, which has the

ability to select the best principle components for can be to

predict efficiency to numbers of service.

Figure 1. Architecture of the proposed system

3.1 IoT devices

An IoT device is a collection of physical devices that are

referred to as objects in IoT. They are unique in terms of

identity, connected to the Internet, and allow remote sensing

and monitoring capabilities. Internet of Things devices

generate big data from various geographic locations. IoT

88

devices can sense temperature, humidity, blood pressure, body

temperature, sleep care, etc. Data messages are published to

the IB according to the topic specified in the IoT devices. IoT

devices can be discovered dynamically in the network by

another device or the network itself. It can also describe itself

and its characteristics to other devices or user applications.

3.2 Intelligent broker (IB)

On a fog node, an MQTT broker based on the

publish/subscribe model is used to provide appropriate

interaction among connected services and IoT devices. An

intelligent broker notifies the services of the existence of data

on a specific topic when it becomes available for delivery, and

thus the services can receive the data for which they have

subscribed to the intelligent broker. The services receive the

data stream for preprocessing, such as collecting the data,

verifying it for any problems, and sending it for cleaning and

correction. One of the important capabilities of this intelligent

broker is its ability to distribute data streams to more than one

subscribed service while ensuring that the data is not

duplicated in other subscribers' services. Also, it is ensuring

that the system does not fail or stop in the event of a service

failure, as is the case with edge or fog servers.

3.3 Collector service

A group of running services that use ML algorithms to

preprocess data and have subscribed to IB according to the

interesting topics. They receive, collect, and preprocess data

in blocks and republish clean data back to the IB for the benefit

of consumer services, cloud, or applications. Any service can

be added to the system by the administrator. Figure 2 shows

the architecture for a service, called collector service

developed with IB and consumer services. The collector

service task is to collect data in the blocks and verify the

messing value and anomaly in each block. Finally, the

correction of the data in the block and republish clean data.

Figure 2. Architecture for a collector service

3.4 Smart controller model (SC)

The SC is a service within the fog node. Its purpose is to

monitor and collect information in the screen table for a given

service of a particular type and make a decision whether to

remove one service or add a new one according to the

information collected about the performance of that service.

The screen table consists of the information sent from services

and is used to evaluate the system's performance containing a

timestamp to represent the time of receiving information from

the service. The # counter of running services is given the job

of latency. When the latency increases for a particular service,

the SC adds a service and increments the counter for that

service type. The SC publishes control messages in the IB to

the service.

3.4.1 Implementing the SC

The SC collects information periodically from the currently

running services (collector service), including the response

time, latency, and execution time. The SC monitors these

measures and may decide to spawn or kill a service

automatically. The measures are saved in the screen table with

details of transmission such as topic name, topic ID, and

timestamp. In addition, it is collected in the jobs during

specific periods (∆T). In the ∆T, calculate the average latency,

average response time, and throughput for each job based on

the topic name. In its initial state, the system has one service

working for each topic name. For example, in our experiment,

the topic name is temperature (Temp). The decision to spawn

or kill is made by comparing the current number of services

with the predicted number of services (ℰ) by integrating PCA

and KNN and create new model for predicted.

3.4.2 Smart controller behavior

Figure 3. SC architecture

89

The SC's overall behaviour starts where the preprocessors

left off with services. The SC receives the measures published

by the IB. In the experiment, the value of ∆T=20 was chosen,

where four values (5, 10, 20, and 30) were tested, and the

stability of latency, response time, and throughput was

observed at this value more than at the previous values.

Calculates latency, throughput, data loss, and data rate. The

difference (diff) represents the result of subtracting each of the

current number of services from ℰ. The spawn services in the

system if the value of the diff is positive, and if it is negative,

it will kill services after the end of the pre-processing

operations in it. Finally, it replaces the screen table values with

the current ones. As see in Figure 3.

3.4.3 Dimensionality reduction

By leveraging the strengths of both techniques, you can

enhance the performance and efficiency of the regression

model. ML uses dimensionality reduction style for various

purposes, one of them being important feature selection from

feature space. It is used to reduce overfitting and increase the

complexity, enhance the ML model performance, rapid the

training for massive data, and create more meaningful features.

To select the best feature, integrate PCA with KNNR, and use

a certain threshold to create a new model based on the

important features that can be used it in KNNR. In this work,

input a set of features and replace them with a smaller set of

principal components (pc). By setting a threshold on the

cumulative variance, the best features can be retained (not too

high or low). The pc is used in the KNNR to predict the best

number of services. The following steps after loading the

dataset can be seen in Figure 4:

Figure 4. Overview for PCA and KNN

(1) Start by normalizing the data until we unify the data

within a specific range.

(2) Constructing the covariance matrix involves

determining the relationship between pairs of variables and the

amount of variance.

(3) Computing the eigenvectors and eigenvalues.

(4) Sorting the eigenvalues in descending order and

selecting the top k eigenvectors corresponding to the highest

eigenvalues.

(5) Transforming the feature matrix using the selected

principal components by multiplying the original feature

matrix by the selected eigenvectors to obtain a reduced-

dimensional feature matrix.

(6) Splitting the dataset into training and testing sets by

dividing the transformed feature matrix and the target variable

into a training set and a testing set of 80% of the data and the

remaining for testing.

(7) Train the KNNR model. Fit the KNNR model using the

training data. Specifying the number of nearest neighbours (k)

and any other relevant parameters, such as distance metrics.

(8) Evaluate the model: Use the trained model to predict the

testing data. Calculate the appropriate regression evaluation

measure, such as mean squared error (MSE).

(9) Selecting the best-performing k and finalizing the model:

Choose the value of k that yields the best regression

performance based on the evaluation metrics. Train the final

KNNR model using this optimal model and best k.

4. EXPERIMENTAL RESULTS AND DISCUSSION

For the sake of feasibility and to measure the quality of the

proposed model, experiments are conducted, it is worked on a

real dataset that contains a set of IoT sensor readings from

(https://www.kaggle.com/datasets) named Intel Berkeley

Research Lab Sensor Data (IBRL). It consists of data amount

2.3 million readings collected from 54 devices with eight

different sensors. The module published the data to the broker.

For the experiment, a sensor's data is published separately by

a dedicated Python module. A service that has been subscribed

to by the IB will receive and collect data and perform

preprocessing such as anomaly detection using OCSVM

algorithm and data correction. Then, the service will publish

certain information to the SC (status messages) for making

decisions in cases of overloading and performance degradation.

In the SC, a compilation of status messages that are

published from a certain type of service running currently that

has subscribed to the IB and the same topic interests among

them. The information is aggregated into a screen table which

can store all the values of the measures in it and will be used

as a reference database. It is used in the future to determine the

appropriate number of services that must be implemented

according to a pre-selected measure or set of standards. From

the information in Table 1, we note that the best results were

obtained using three services for our setting based on latency

and throughput. The best latency is 3.43s, throughput is

5.83job/s and response time is 3.63s.

Table 1. The results obtained from implemented the SC

Services Latency (s)
Throughput

Job/s

Response

Time (s)
Data Lost

1 service 6.76 2.96 6.96 0.88

2 services 3.46 5.78 3.71 0.57

3 services 3.43 5.83 3.63 0.46

4 services 3.58 5.59 3.87 0.14

5 services 4.64 4.31 4.89 0.14

Data loss is reduced to the greatest extent possible. A

reduction of 0.136 percent in data loss on the base value (base

90

value with one service and other values obtained from

increased numbers of services) is achieved. The data loss starts

decreasing with the increase in the number of currently

running services. As presented in Table 1, the best case for

data loss reduction is when four and five services are running,

because of the starvation state in the service. In other words,

there is a long waiting time in the service to receive and

process data, this increase is evident in the latency and

response time.

 One of the most important aims of the study is to reduce

latency, congestion, and processing speed-up. In addition,

there is an improved relationship between the latency and the

number of services currently executing within the period in

which the jobs are collected in the SC. as seen in Figure 5. The

x-axis represent the timestamp, y-axis represent the value of

latency and the number of services over the time.

Latency: The period time required to collect one data job,

starting from the time of the first message sent from the

publisher to the last message received. It depends on the

number of hops, the performance of the broker or server, and

the transport protocols. As near to zero latency as feasible is

preferable.

Throughput is the amount of data a system can process in a

given time, which expressed in job per second (job/s). The

speed at which a particular workload can be finished and

response time-the interval of time between a single interactive

user request and the delivery of the response-are included in

all relevant measures of system throughput. Improving

throughput with the best number of services, we achieved

throughput from 2.96 with one service to 6.64 jobs per second

for three services, which are added to the system automatically

using the SC model as in Figure 6. The x-axis represent the

timestamp, y-axis represent the value of throughput and the

number of services over the time.

Figure 5. Latency and number of services

Figure 6. The throughput with #services

Figure 7. Minimum the MSE by KNN

Figure 8. Best K selection

The KNN algorithm is better in the experiment, especially

after reducing the variance between features in the feature

space using the PCA algorithm. Repeating the experiments, it

is always the best. Therefore, the MSE of the proposed model

by using PCA and KNN appears the best prediction compared

to other algorithms. as seen in Figure 7. The x-axis represent a

set of ML, y-axis represent value of MSE.

In terms of MSE, it appeared that applying the PCA

algorithm to the features for the purpose of selecting the best

model could be used in the algorithms for prediction, and

obtaining the lowest value for MSE is efficient. After some

repeated executions on the best model, the best K is got by

choosing the least MSE and then applying it in the KNNR

algorithm. The best K obtain from applying best model as see

in Figure 8. The x-axis represent the number of K, y-axis

represent value of MSE.

In the end, the experimental results of the proposed model

show stability in the performance of the system when running

three services. The stability of improvement is relative to

measures of latency from 6.76 to 3.43 and throughput from

2.96 to 5.83 that are compared in the SC model and decision-

making to spawn or kill the currently executing service, which

is compiled in a screen table within the SC.

The stability of improvement is relative to measures of

latency from 6.76 to 3.43 and throughput from 2.96 to 5.83

that are compared in the SC model and decision-making to

spawn or kill the currently executing service, which is

compiled in a screen table within the SC.

The best model used to predict numbers of services is the

integration of the PCA and KNN with an MSE of 0.00434

compared with other MLs such as Support Vector Machines

and Random Forest etc. [24]. It can be considered the

properties of the computer affected the results when the

implementation of the model was obtained. But in general,

91

there is an improvement in latency and throughput with the

increase in the number of services to a certain extent, after

which the metrics begin to increase again.

To calculate the value of improvement in performance

measures (response time, latency, and data loss), subtract the

highest value (HV) from the best values (BV) divided by the

highest value (HV), then the final result is multiplied by 100.

As see in the equation bellow:

𝐸𝑛ℎ𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑒𝑟 = (
𝐻𝑉 − 𝐵𝑉

𝐻𝑉
) × 100 (1)

5. ANALYSIS WITH RELATED WORK

In the experimental scenario, the OCSVM accuracy in

anomaly detection is (99.44%) as compared to the result from

other works. The researchers used the Monotone Split and

Conquer (MSC) scheme and splitting data generally into sub-

directions approximated and used accuracy and false positive

rates as the performance indicators of the evaluation algorithm

[25], the researchers used three different network models and

used DA (detection accuracy), TPR (true positive rate), and

PRE (precision) as the performance indicators of the

evaluation algorithm [26]. The accuracy is (93% and 99.05%)

respectively using the same data set (IBRL).

The average enhancement of latency is 91.65%, response

time is 97.34%, throughput is 49.2%, and reducing data loss is

84.49%. ML techniques used in the SC let decision-making be

rapid and suitable for. In addition, they are used in services to

enhance the reliability of a system. The best performance is

observed for well-pre-processed data in the services,

underscoring the significance of appropriate data-

preprocessing methods.

Other works that propose fog computing do not take into

account the various aspects of the model. Several previous

works [27-31] do not take advantage of resources near the

edge of the network. Rather, data is sent to cloud centers for

the purpose of processing, analysis, and decision-making.

These models provide much higher latency as all the

computation takes place on the cloud and therefore have

higher data transfer times [32].

In addition, the results, as seen in Table 2, are obtained from

the implementation of the SC model. The results are compared

with previous studies in terms of response time and latency.

Notice: The unit for results is the second for each block that

contained 2,500 messages, which are presented in Table 1.

After converting to milliseconds for latency and response time,

the results become as those in Table 2. For integrated IB and

SC, the average latency becomes 1.37ms, and response time

becomes 1.54ms.

Table 2. Compared results from this work with related works

Ref.
Latency

(ms)
Response Time

(ms)
Accuracy

[3] 48.56 - -
[22] 8.83 - -
[32] 20.45 - -
[33] - 109 -
[34] - 39.5 -
[26] - - 99.05%
[25] - - 93%

This work (IB+SC) 1.37 1.54 99.44%

6. CONCLUSION

Some systems' services, such as health care, weather, and

smart homes, suffer from congestion and data heterogeneity,

leading to a degradation in the overall system's performance.

Thus, it leads to inaccurate results or system failure at the end.

An SC monitors the overload of system services and makes

decisions dynamically. SC shows high stability in system

performance by controlling the number of active services

relative to the data arrival rate. An improvement in the

system's performance is measured by latency, throughput, data

rate, response time, and the amount of data loss. According to

the results of the study, it is observed that monitoring and

avoiding congestion has a noticeable impact on the

performance of the system's services. Based on the results

obtained, OCSVM shows superior performance as the most

effective in terms of anomaly detection in the data stream

published from IoT devices to the services. The accuracy of

anomaly detection is 99.44%.

The fog node hosts system components due to the

advantages of fog computing. The quality of service is

enhanced due to enhanced system measurements and rapid

making decisions automatically.

REFERENCES

[1] Pham, V.N., Nguyen, V., Nguyen, T.D., Huh, E.N.

(2019). Efficient edge-cloud publish/subscribe broker

overlay networks to support latency-sensitive wide-scale

IoT applications. Symmetry, 12(1): 3.

https://doi.org/10.3390/sym12010003

[2] Baucas, M.J., Spachos, P. (2020). Fog and IoT-based

remote patient monitoring architecture using speech

recognition. In 2020 IEEE Symposium on Computers

and Communications (ISCC), Rennes, France, pp. 1-6.

https://doi.org/10.1109/ISCC50000.2020.9219649

[3] Pham, V.N., Lee, G.W., Nguyen, V., Huh, E.N. (2021).

Efficient solution for large-scale IoT applications with

proactive edge-cloud publish/subscribe brokers

clustering. Sensors, 21(24): 8232.

https://doi.org/10.3390/s21248232

[4] Al-Joboury, I.M., Al-Hemiary, E.H. (2018).

Performance analysis of internet of things protocols

based fog/cloud over high traffic. Journal of

Fundamental and Applied Sciences, 10(6S): 176-181.

http://doi.org/10.4314/jfas.v10i6s.113

[5] Dutta, V., Choras, M., Pawlicki, M., Kozik, R. (2020).

Detection of cyberattacks traces in IoT data. Journal of

Universal Computer Science, 26(11): 1422-1434.

https://doi.org/10.3897/jucs.2020.075

[6] Dhelim, S., Ning, H., Aung, N. (2020). ComPath: User

interest mining in heterogeneous signed social networks

for Internet of people. IEEE Internet of Things Journal,

8(8): 7024-7035.

https://doi.org/10.1109/JIOT.2020.3037109

[7] Fei, J., Xiaoping, M. (2019). Fog computing perception

mechanism based on throughput rate constraint in

intelligent Internet of Things. Personal and Ubiquitous

Computing, 23: 563-571.
https://doi.org/10.1007/s00779-019-01200-9

[8] Bonomi, F., Milito, R., Zhu, J., Addepalli, S. (2012). Fog

computing and its role in the internet of things. In

Proceedings of the First Edition of the MCC Workshop

92

on Mobile Cloud Computing, Helsinki Finland, pp. 13-

16. https://doi.org/10.1145/2342509.2342513

[9] Sarkar, S., Misra, S. (2016). Theoretical modelling of fog

computing: A green computing paradigm to support IoT

applications. Iet Networks, 5(2): 23-29.

https://doi.org/10.1049/iet-net.2015.0034

[10] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec,

A.M. (2003). The many faces of publish/subscribe. ACM

Computing Surveys (CSUR), 35(2): 114-131.

https://doi.org/10.1145/857076.857078

[11] Hanon, W., Salman, M.A. (2022). Review the

deployment and role of broker in IoT platforms. In 2022

5th International Conference on Engineering

Technology and its Applications (IICETA), Al-Najaf,

Iraq, pp. 308-315.

https://doi.org/10.1109/IICETA54559.2022.9888675

[12] Lampkin, V., Leong, W.T., Olivera, L., Rawat, S.,

Subrahmanyam, N., Xiang, R (2012). Building smarter

planet solutions with MQTT and IBM websphere MQ

telemetry. IBM Redbooks.

[13] Standard, O.A.S.I.S. (2014). MQTT version 3.1.1.

OASIS Standard. https://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/.

[14] Kumar, B., Sinha, A., Chakrabarti, S., Vyas, O.P. (2021).

A fast learning algorithm for one-class slab support

vector machines. Knowledge-Based Systems, 228:

107267. https://doi.org/10.1016/j.knosys.2021.107267

[15] Zhai, H. (2022). Improving KNN Algorithm efficiency

based on PCA and KD-tree. In 2022 International

Conference on Machine Learning and Knowledge

Engineering (MLKE), pp. 83-87.

https://doi.org/10.1109/MLKE55170.2022.00021

[16] Topolski, M. (2020). The modified principal component

analysis feature extraction method for the task of

diagnosing chronic lymphocytic leukemia type B-CLL.

Journal of Universal Computer Science, 26(6): 734-746.

https://doi.org/10.3897/jucs.2020.039

[17] Aziz, R.M., Baluch, M.F., Patel, S., Kumar, P. (2022). A

machine learning based approach to detect the Ethereum

fraud transactions with limited attributes. Karbala

International Journal of Modern Science, 8(2): 139-151.

https://doi.org/10.33640/2405-609X.3229

[18] Obayes, H.K., Al-Shareefi, F. (2023). Secure heart

disease classification system based on three pass

protocol and machine learning. Iraqi Journal for

Computer Science and Mathematics, 4(2): 72-82.

https://doi.org/10.52866/ijcsm.2023.02.02.003

[19] Xiao, J., Wen, H., Wu, B., Jiang, X., Ho, P.H., Zhang, L.

(2013). Joint design on DCN placement and survivable

cloud service provision over all-optical mesh networks.

IEEE Transactions on Communications, 62(1): 235-245.

https://doi.org/10.1109/TCOMM.2013.121313.130240

[20] Chandio, A.A., Bilal, K., Tziritas, N., Yu, Z., Jiang, Q.,

Khan, S.U., Xu, C.Z. (2014). A comparative study on

resource allocation and energy efficient job scheduling

strategies in large-scale parallel computing systems.

Cluster Computing, 17: 1349-1367.
https://doi.org/10.1007/s10586-014-0384-x

[21] de Souza, F.R., de Assunçao, M.D., Caron, E. (2019). A

throughput model for data stream processing on fog

computing. In 2019 International Conference on High

Performance Computing & Simulation (HPCS), Dublin,

Ireland, pp. 969-975.

https://doi.org/10.1109/HPCS48598.2019.9188146

[22] Ahn, J., Lee, B.M. (2020). Smart edge broker for

location-based transfer between services and distributed

data in IoT smart services. Mobile Information Systems,

2020. https://doi.org/10.1155/2020/8896252

[23] Ijaz, M., Li, G., Lin, L., Cheikhrouhou, O., Hamam, H.,

Noor, A. (2021). Integration and applications of fog

computing and cloud computing based on the internet of

things for provision of healthcare services at home.

Electronics, 10(9): 1077.

https://doi.org/10.3390/electronics10091077

[24] Kumar, R.R., Lakshmi, M.S., Ashwak, B.S., Rajeshwari,

K., Zaid, S.M. (2023). Thyroid disease classification

using machine learning algorithms. In E3S Web of

Conferences. EDP Sciences, 391: 01141.

https://doi.org/10.1051/e3sconf/202339101141

[25] Dang, T.B., Le, D.T., Nguyen, T.D., Kim, M., Choo, H.

(2021). Monotone split and conquer for anomaly

detection in IoT sensory data. IEEE Internet of Things

Journal, 8(20): 15468-15485.

https://doi.org/10.1109/JIOT.2021.3073705

[26] Shen, X., Zhu, C., Zang, Y., Niu, S. (2022). A method

for detecting abnormal data of network nodes based on

convolutional neural network. Journal of Computers,

33(3): 49-58.

https://doi.org/10.53106/199115992022063303004

[27] Rajasekaran, M., Yassine, A., Hossain, M.S., Alhamid,

M.F., Guizani, M. (2019). Autonomous monitoring in

healthcare environment: Reward-based energy charging

mechanism for IoMT wireless sensing nodes. Future

Generation Computer Systems, 98: 565-576.

https://doi.org/10.1016/j.future.2019.01.021

[28] Barik, R.K., Priyadarshini, R., Dubey, H., Kumar, V.,

Mankodiya, K. (2018). FogLearn: Leveraging fog-based

machine learning for smart system big data analytics.

Geospatial Intelligence: Concepts, Methodologies, Tools,

and Applications, IGI Global, 3: 1225-1241.

https://doi.org/10.4018/978-1-5225-8054-6.ch052

[29] Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N.,

Hardt, M., Liu, P.J., Liu, X., Marcus, J., et al. (2018).

Scalable and accurate deep learning with electronic

health records. NPJ Digital Medicine, 1(1): 18.
https://doi.org/10.1038/s41746-018-0029-1

[30] Pham, M., Mengistu, Y., Do, H., Sheng, W. (2018).

Delivering home healthcare through a cloud-based smart

home environment (CoSHE). Future Generation

Computer Systems, 81: 129-140.

https://doi.org/10.1016/j.future.2017.10.040

[31] Sahoo, P.K., Mohapatra, S.K., Wu, S.L. (2018). SLA

based healthcare big data analysis and computing in

cloud network. Journal of Parallel and Distributed

Computing, 119: 121-135.

https://doi.org/10.1016/j.jpdc.2018.04.006

[32] Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya,

R.C., Wander, G.S., Buyya, R. (2020). HealthFog: An

ensemble deep learning based smart healthcare system

for automatic diagnosis of heart diseases in integrated

IoT and fog computing environments. Future Generation

Computer Systems, 104: 187-200.

https://doi.org/10.1016/j.future.2019.10.043

[33] Badidi, E., Ragmani, A. (2020). An architecture for QoS-

aware fog service provisioning. Procedia Computer

Science, 170: 411-418.

https://doi.org/10.1016/j.procs.2020.03.083

93

[34] Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa,

K., Kitazawa, A. (2017). FogFlow: Easy programming

of IoT services over cloud and edges for smart cities.

IEEE Internet of Things Journal, 5(2): 696-707.

https://doi.org/10.1109/JIOT.2017.2747214

94

