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In practical engineering, the prevalence of uniform flow-induced noise poses significant 

challenges. Traditional models, notably Lighthill's acoustic analogy, have primarily focused 

on the acoustic pressure distribution, neglecting the integral role of acoustic velocity. This 

study introduces a novel four-dimensional (4D) acoustic wave equation model derived from 

the Navier-Stokes equations for fluid mechanics. This model uniquely incorporates acoustic 

pressure alongside three directional acoustic velocities as fundamental acoustic variables, 

offering a comprehensive framework for noise prediction. By integrating these variables, a 

4D Ffowcs Williams-Hawkings (FW-H) equation is formulated, encapsulating the 

complexities of an arbitrary smooth permeable surface surrounding the noise-generating 

structure. Furthermore, this research innovates by establishing a time-domain integral 

formula for the 4D FW-H equation, incorporating a time-domain Green's function that 

accounts for the influence of uniform flow. Through numerical simulations involving 

stationary and rotating point sources within a uniformly moving medium, the efficacy of the 

proposed method is demonstrated. The method exhibits exceptional accuracy in capturing 

far-field 4D acoustic signals, aligned with analytical solutions, and reveals the characteristic 

Doppler effect in the acoustic fields of rotating monopole and dipole sources. A detailed 

investigation into the noise distribution within spatio-temporal fields under varying incident 

velocities, wave numbers, and propagation distances is conducted. Findings indicate a 

pronounced convective effect on the acoustic vector signal within a moving medium, with 

near-field 4D acoustic variables exhibiting nonlinear relationships with incoming flow 

velocity, wave number, and propagation distance, whereas far-field variables adhere to 

linear propagation patterns. This study diverges from conventional methodologies by 

considering the uniform flow's impact and devising an acoustic model capable of swiftly 

and accurately determining sound pressure and acoustic velocity. The developed acoustic 

calculation model offers valuable reference data for noise reduction and engineering 

structure optimization. 
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1. INTRODUCTION

Environmental pollution problems, such as noise pollution, 

are prevalent in transportation, industrial production, and other 

fields. Therefore, it is necessary to conduct a comprehensive 

study of the noise propagation mechanism to determine the 

safe distance for noise control or to implement effective noise 

reduction. One of the most representative research methods is 

the acoustic analogy proposed by Lighthill [1], which 

considers turbulent flow as the source of noise production, and 

noise propagation conforms to the linear acoustic theory. It is 

clear that separating the flow calculations from the noise 

propagation calculations can greatly improve the efficiency of 

the calculations. Williams and Hawkings [2] proposed the 

FW-H equations and elaborated on the source of noise in detail. 

They confirmed that the sound source of the flow can be 

classified into monopole, dipole, and quadrupole sources. The 

categorization of sound sources is a useful tool for explaining 

the mechanism of noise propagation, and this method offers 

high computational efficiency and low complexity. Farassat [3] 

proposed the time-domain F1 and F1A formulas in integral 

form based on this research idea, which is widely used in 

practical engineering. 

All of the methods mentioned above start with the 

conservation form of the Navier-Stokes equations, but they 

can only calculate the acoustic pressure to study noise 

distribution. In fact, noise propagation is essentially a 

transformation of fluid flow energy. Sound intensity, 

expressed by acoustic pressure and acoustic velocity, is a more 

representative measure to reveal the radiation and propagation 

paths of noise energy. Therefore, the classical acoustic 

analogy method is incomplete [4]. Meanwhile, the study of 

acoustic velocities contributes to accurate calculations of 

acoustic scattering from large structures, such as the fuselage 

or wing [5, 6]. The acoustic scattering caused by the large 

boundary can significantly alter the acoustic pressure 
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amplitude and the distribution of the incident wave [7]. To 

meet the impermeable boundary conditions, it is necessary to 

calculate the acoustic velocity [8, 9]. Therefore, using only 

acoustic pressure to conduct research on noise prediction is 

insufficient. 

Research into acoustic velocities initially focused on 

stationary media; the acoustic pressure gradient is commonly 

transformed into acoustic velocity through the use of the 

linearized Euler equation. Therefore, most of the research 

work has focused on solving the pressure gradient. Farassat 

and Brentner [10] obtained a time-domain semi-analytical 

formula for the acoustic pressure gradient by directly solving 

the gradient of the FW-H integral equation. Lee et al. [11] then 

deduced the time-domain analytical formula G1A based on 

Farassat's research. Ghorbaniasl et al. [12] integrated the FW-

H integral equation with respect to time and calculated the 

gradient to directly obtain the time-domain semi-analytical 

formulas V1 and V1A for the acoustic velocity. In contrast to 

the previously described method, Mao et al. [13] rederived the 

formulas V1 and V1A for the acoustic velocity by rearranging 

the fluid continuity equation and the momentum equation. He 

et al. [14] extracted the complete load source term from the 

volumetric source term and obtained the improved integral 

formula, which accurately calculates the acoustic velocity. The 

research work above only presents a fundamental method for 

calculating acoustic velocities in stationary media. 

Aeroacoustic noise generated by airframes, wings, and 

rotors in a uniform flow is a well-known issue. There are 

typically two methods for considering the influence of a 

uniformly moving medium. One method involves 

transforming the solution for a uniform medium into the 

solution for a stationary medium by using the Lorentz 

transformation [15, 16]. However, this approach alters the 

surface boundary conditions and increases computational 

complexity [16]. Another method to obtain the integral 

formula of acoustic pressure is by using Green's function to 

consider the effect of a uniformly moving medium. Bi et al. 

[17] developed the time-domain acoustic pressure integral 

formulas for a homogeneous medium, while Ghorbaniasl et al. 

[18] derived the acoustic pressure integral formula in the 

frequency-domain for a homogeneous medium. Unfortunately, 

these formulas are mathematically complex and 

computationally intensive, making it difficult to calculate 

acoustic velocity in a uniform flow. The development of 

concise and efficient acoustic velocity formulas has become 

an urgent problem. Mao et al. [19] followed the FW-H 

equation and developed a semi-analytical formulation of 

acoustic velocity in a homogeneous medium. Mao's method 

has an issue with imprecise acoustic velocity prediction due to 

the omission of certain load source terms. 

However, the aforementioned methods only study either 

acoustic pressure or acoustic velocity. A complete acoustic 

prediction method accurately calculating both acoustic 

pressure and acoustic velocity is helpful to study acoustic 

energy transmission and scattering effects from large 

structures. Kambe [20] was the first to introduce the flow field 

and electromagnetic field analogy to study the vortex sound 

theory, and the presented formulation of wave equations with 

entropy and acoustic velocity as integral variables is 

innovative. Based on Kambe's work, Dunn [4] developed a 4D 

Lighthill acoustic analogy for stationary media by considering 

the acoustic pressure and acoustic velocity in three directions 

as four acoustic variables. This approach resulted in a simple 

integral solution, which was further improved by 

incorporating a permeable boundary. However, Dunn's 

method can only predict acoustic noise in uniformly moving 

flow. Meanwhile, incomplete extraction of load sources may 

lead to numerical errors in noise calculation results. 

This paper establishes a 4D acoustic analogy of a uniformly 

moving medium and obtains analytical formulas for the 4D 

acoustic vectors. Taking a fan blade or airfoil, for example, 

Figure 1 illustrates the propagation of acoustic vectors in a 

uniformly moving medium. The flow field pulsates under the 

influence of the incoming flow, with noise sources primarily 

comprising surface and volume sources. The far-field acoustic 

pressure and velocity can be calculated by determining the 

surface and volume sources. The paper is divided into four 

sections. A 4D acoustic analogy is presented in Section 2, and 

an analytical integral formula for the 4D acoustic vector is 

obtained by incorporating a time-domain Green's function that 

takes into account the effect of uniform mean flow. Section 3 

validates the proposed method by carrying out numerical 

predictions for stationary and moving sources and comparing 

them with analytical solutions. The study analyzes in detail the 

evolution characteristics of acoustic vector signals with time 

and spatial location. Finally, Section 4 summarizes the entire 

work. 

 

 
 

Figure 1. The mechanism of noise production and 

propagation in a uniform mean flow 

 

 

2. FORMULATIONS 

 

The local flow parameters are assumed to be decomposed 

into two parts: the uniform incoming flow and the unsteady 

disturbances: 

 

p p p    
  = + = + = +u u u， ，  (1) 

 

where, ρ∞, p∞, and u∞ denote the density, pressure, and velocity 

of the uniform incoming flow, respectively; ρʹ, pʹ, and uʹ 

denote the perturbation variables. 

The continuity and momentum equations satisfied by the 

unsteady perturbation variables can be written as: 
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where, c∞ is the velocity of sound propagation. The Lighthill's 

stress tensor Tij and the material derivative D∞/Dt are given as: 
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where, ij and σij denote the Kronecker delta function and the 

viscous stress tensor, respectively. 

Vectors E and B are introduced as: 
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Combining with the above definition, the equations below 

automatically hold: 
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2.1 The 4D Lighthill’s acoustic analogy for the uniformly 

moving flow 

 

The 4D vectors and variables are firstly defined as: 
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The 4D differential operator and the second order tensor ηαβ 

are respectively represented as: 
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where, i=1,2,3. Xα and Dα are given as: 
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(12) 

where, α,β=0,1,2,3. For any three-dimensional vector e=ei and 

b=bi, there exists a second order antisymmetric tensor Zαβ(e,b), 

which has the following form: 
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Combining with definitions (11) and (12), the 4D 

convective wave operator, and the vectors E and B are given 

as: 
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where, the three-dimensional vectors eγ and bγ are defined as: 
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Similarly, Formulas (2) and (3) can be rewritten in 4D form 

as follows: 
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Here, the third-order tensor Vαβγ is expressed as:  
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and the derivation of Formula (19) is given in the first part 

of the appendix. 

Based on Formulas (6) and (7), the following variables are 

introduced:  
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By applying operator Dα to both sides of Formula (19) and 

combining Formulas (14) and (18), the 4D acoustic analogy 

for uniform mean flow is given as: 
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where, the source term Jβ is expressed as: 
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2.2 The 4D FW-H equation for the uniformly moving flow 

 

Following the research idea of the FW-H equation, the 

objective of this section is to derive a generalized form of the 

4D wave equation (23) in the presence of a permeable surface 

with moving velocity. It is assumed that the unit normal vector 

at the permeable surface directs from the boundary to the flow 

field. In combination with the relevant properties of the 

permeable surfaces given in the second part of the appendix, 

the following differential operator in vector form is defined: 
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Then, DαH(f) and DαH(f) are given as: 
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where, H() and () represent the Heaviside function and the 

Dirac function.  

By introducing the permeable surface f=0, Formula (23) can 

be rewritten as: 
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and because the following equation also holds 
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Combining with Formulas (20), (21) and (27), Formula (29) 

can be simplified as: 
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For convenience, the derivation of Lαβ is given in the third 

part of the appendix. Q and L are respectively the thickness 

source and the loading source proposed in FW-H equation [3]: 
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Substituting Formula (30) into Formula (28) and 

reorganizing, the following equation is obtained: 
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It is important to note that 
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where, V1
αβγ, V2

αβγ and F have the following form: 
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F N 
  = = b n u  (39) 

 

Inserting Formulas (37) into Formula (36), the final form of 

4D FW-H equation for the uniform mean flow is obtained as: 
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where, SC
αβ is expressed as: 
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By analyzing the right side of Formula (40), it can be seen 

that the first two terms are volume sources, but the last term is 

a surface source. 

 

2.3 The 4D time-domain FW-H integral formula for the 

uniform mean flow 

 

The next key problem is to construct the integral solution of 

Formula (40), and the Green’s function considered the 

influence of uniform flow is given: 
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where, symbols x and t represent the observer location and the 

reception time; symbols y and τ represent the sound source 

position and the emission time. Symbols R*, R, and g have the 

following form: 
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r=|x-y| is the distance between source position y and 

observation position x, M∞=u∞/c∞ denotes Mach number of 

uniform mean flow, and α is the uniform flow scaling factor: 
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When the main sound source is enclosed in the permeable 

surface, the contribution of the volume source to the sound 

field is ignored, and the sound field is extrapolated only by 

using the flow information on the permeable surface. 

Combined with the above Green’s function (42), the solution 

of equation (40) is expressed as: 
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where, 
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where, Mi=vi/c∞. Formula (45) is further simplified by 

considering the property of (g): 
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[∙]ret denotes the value at retarded time. Factually, τ is the 

root of g=0, so that τ can be considered as the function of Xα 

and y based on the expression (43): 

 

( ), /X t R c = −y  (48) 

 

Referring to literatures [3, 21], the differential operators in 

Formula (47) are simplified, and the integral solution is 

expressed as: 
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where, the second order tensor Kαγ and the fourth order 

differential operator ∂γ are: 
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And they satisfy: 
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The 4D vector Eγ is further defined as: 
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According to the law of derivatives for composite functions, 

the value of ∂γSC
αβ at the retard time can be expressed as: 
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(54) 

 

where, the dot above the variable denotes the derivative with 

respect to the emission time, and the expressions of Cγ, E1
γ and 

E2
γ are as follows: 
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The detail derivation of Formulas (55)-(57) is given in the 

fourth part of the appendix. 

By inserting Formulas (52)-(53) into the Formula (49), the 

4D time-domain FW-H integral formula for uniformly moving 

medium is obtained as: 
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3. NUMERICAL IMPLEMENTATION AND 

VERIFICATION 

 

Acoustic analytical formulas are frequently validated using 

monopole and dipolar sources. Similarly, the acoustic 

radiation of monopole and dipole sources is used to verify the 

proposed 4D time-domain integral Eq. (58). In the Cartesian 

coordinate system, the uniform medium is assumed to move in 

the positive direction of the axis x1. The density of the uniform 

medium is ρ∞=1.2kg/m3, and the sound velocity is c∞=340m/s. 

128 samples are evenly distributed over one period to ensure 

that noise signals are accurately captured. A cube with side 

length a=1m is chosen as the permeable surface, and 9600 

square grids are uniformly distributed on the cube surface. The 

observation point is located in the x1-x2 plane, and the angle 

along counter-clockwise from the axis x1 to the direction of the 

observation position is assumed to be the observation angle θ. 

The acoustic pressure and acoustic velocity at the observation 

point are calculated using the 4D FW-H integral Eq. (58), 

where the input data on the permeable surface are calculated 

by the analytical solution. The derivative of the retard time is 

handled with a second-order central difference, and the 

instantaneous acoustic signals at the observation point are 

calculated using the advanced time algorithm [22]. As the 

acoustic calculations only consider the acoustic field 

distribution in the x1-x2 plane, the acoustic velocity along the 

x3 direction satisfies u3ʹ=0. 

 

3.1 The stationary monopole source and dipole source in 

the uniformly moving medium 

 

First, we consider the acoustic noise induced by the 

stationary monopole source located at the origin of the 

coordinates. The velocity potential function is given as: 
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where, A=1m2/s is the amplitude and i=√−1. ω denotes the 

vibrating angular frequency of the point source, and the 

wavenumber is calculated with k=ω/c∞.The acoustic velocity, 

pressure and density are given as: 
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(a) Pressure 

 
(b) Velocity u1ʹ 

 
(c) Velocity u2ʹ 

 

Figure 2. Time evolution of acoustic signal for monopole at 

θ=120̊ with the uniform flow M∞=0.6 
 

As a validation example，the selection of wave number and 

Mach number does not impact the numerical predictions, as 

long as they align with the physical background. Based on 

research work in literatures [19, 21, 23], the wavenumber is 

chosen as k=2, and the time evolution of the acoustic vector 

signal at θ=120̊ for the incoming flow with M∞=0.6 is shown 

in Figure 2. It is demonstrated that the numerical results of the 

acoustic pressure and acoustic velocities are in good 

agreement with the analytical solutions, and they are 

approximately presented as single-period cosine waves. The 

amplitude of the acoustic pressure is much larger than that of 

acoustic velocities, but the amplitude of the acoustic velocity 

u1ʹ is larger than that of the acoustic velocity u2ʹ. That is 

because as the uniform medium moves from left to right along 

the x1 axis, the convective effect of the fluid causes the 

acoustic particles to move faster along the x1 direction. 

Next, the reliability of the presented Formula (58) is further 

examined by calculating the noise distribution of the stationary 

dipole source. Assuming that the axis of the dipole source is 

aligned with the x2 axis, the velocity potential function of the 

stationary dipole source in a uniformly moving medium is: 
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(a) Pressure 

 
(b) Velocity u1ʹ 

 
(c) Velocity u2ʹ 

 

Figure 3. Time evolution of acoustic signals for the dipole at 

θ=120 ̊with the uniform flow M∞=0.6 

 

The relevant parameters for the dipole source are set up the 

same as those for the monopole source. Figure 3 shows the 

time evolution of the acoustic vector signal induced by the 

dipole source at the observation angle θ=120 ̊for the uniformly 

moving medium with M∞=0.6. Numerical results for acoustic 

pressure and acoustic velocities are in good agreement with 

analytical solutions, and they are all approximately presented 

as sine wave distributions. Influenced by incoming flow in the 

horizontal direction, the amplitude variation of the dipole 

source is the same as that of a monopole source, and the 
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amplitude of the acoustic velocity u1ʹ is greater than that of the 

acoustic velocity u2ʹ. Besides, the amplitude of the acoustic 

variables for the stationary dipole is approximately twice as 

large as that of the stationary monopole. This is because the 

stationary dipole source can be considered as the overlapping 

of two monopoles symmetrical along the x1 axis, so the noise 

distribution also has a cumulative effect. 

 

3.2 The rotating monopole source in the uniformly moving 

medium 
 

Second, the distribution of acoustic vector signals for the 

rotating monopole source in a uniformly moving medium is 

studied. Suppose the rotating monopole source is located in the 

x1-x2 plane, and rotates along the x3 axis with a radius 

r0=0.25m. The corresponding velocity potential is: 
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(a) Pressure 

 
(b) Velocity u1ʹ 

 
(c) Velocity u2ʹ 

 

Figure 4. Time evolution of acoustic signal for rotating 

monopole at θ=120̊ with the uniform flow M∞=0.6 

 

The wavenumber is chosen to be the same as that of the 

stationary monopole source. Figure 4 displays the time 

evolution of the acoustic vector signal induced by the rotating 

monopole at the observation angle θ=120 ̊ for the incoming 

flow with M∞=0.6, and numerical results show good 

agreement with analytical solutions. Unlike the stationary 

monopole source case, the amplitude of vector acoustic signals 

jumps randomly and does not behave as a sine or cosine wave 

with the same amplitude in each period. To further examine 

the directivity distribution of the acoustic field, we arrange 120 

observation points uniformly on a circle with a given radius 

r0=12.5m in the x1-x2 plane.  

 

 
(a) Pressure pʹrms 

 
(b) Velocity uʹ1rms 

 
(c) Velocity uʹ2rms 

 

Figure 5. Directivities of RMS for rotating monopole with 

the uniform flow M∞=0.6 

 

512 samples were continuously collected to calculate the 

noise distribution, and Figure 5 shows that the directivity 

distributions of the root mean square (RMS) for the acoustic 

variables are all in good agreement with those of the analytical 
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solutions. The acoustic pressure is distributed symmetrically 

along the x1 axis not spatially symmetrically like a monopole. 

The distribution characteristics of acoustic velocities are 

similar to the pressure, and the acoustic velocity u1ʹ shows an 

asymmetric horizontal distribution with a cucurbit-shaped 

pattern along the x1 axis, but the acoustic velocity u2ʹ shows a 

standard vertical dipole distribution symmetrically along the 

x1 axis. The physical phenomenon described is caused by the 

homogeneous medium along the x1 axis. Therefore, all 

acoustic signals are naturally symmetrical about the horizontal 

axis. 

The calculations above are all based on a fixed wavenumber. 

However, it is important to consider the variation of acoustic 

signal intensity with wavenumber. Additionally, different 

incoming velocities can lead to dramatic variations in the 

acoustic field. The following discussion will focus on the 

impact of the incoming Mach number and wavelength on noise 

propagation. Along the direction of the observation angle 

θ=120̊, there are 200 points uniformly arranged within the 

interval r0[10a,200a]. The wavenumber is chosen as k=2, 

Figure 6 shows the sound pressure level (SPL) and the sound 

velocity level (SVL) of rotating monopole source with 

distance at different Mach numbers. The SPL and SVL were 

calculated with the following formulas [23]: 
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where, pref=210-5Pa, uref=510-5m/s. 

 

 
(a) SPL 

 
(b) SVL 

 

Figure 6. Variations of SPL and SVL for rotating monopole 

source with different Mach number 

Figure 6 demonstrates that the amplitude of SPL and SVL 

decays rapidly with distance. The higher the Mach number, the 

faster the amplitude of SPL and SVL increases at a given 

distance. It can be concluded that the acoustic variables of a 

rotating monopole source are non-linear with respect to Mach 

number and propagation distance, particularly for the distance 

r0<100a. However, the SPL and SVL at different Mach 

numbers are almost parallel oblique lines for the distance 

r0>130a. This indicates that the far-field acoustic variables are 

unaffected by incoming flow and decay linearly with distance, 

which is consistent with linear acoustic theory. 

In order to specifically study the attenuation law of the noise 

signal, Table 1 presents the SPL amplitude of the noise signal 

at different incoming flow Mach numbers for wave number 

k=2 and r0>130a. Table 1 shows that the SPL demonstrates a 

linear correlation with the increase in Mach number and a 

decrease with propagation distance. When the propagation 

distance satisfies r0>130a, the SPL is affected by both the 

propagation distance and the Mach number. This relationship 

can be expressed through the following equation: 

 

0SPL 0.054 92.08 S( )r M= − + +  

 

where, S(M∞)=0.69e4.2M∞ represents the change in SPL 

resulting from varying incoming Mach numbers. It is 

important to note that as the Mach number increases, so does 

the value of S(M∞). There is a similar physical relationship 

with SVL. 
 

Table 1. The SPL (dB) corresponding to different Mach 

number and propagation distance 

 
M∞ 

r0(m) 
0.0 0.2 0.4 0.6 0.8 

133.5 84.92 86.31 88.90 93.52 104.65 

162 83.24 84.63 87.21 91.83 102.97 

190.5 81.83 83.22 85.80 90.42 101.56 

S(M∞) 0.0 1.39 3.97 8.59 19.72 

 

Next, we continue to study the influence of wavenumber on 

noise propagation. Figure 7 displays the variation of SPL and 

SVL with wavenumber under the incoming flow M∞=0.6. It is 

evident that both SPL and SVL increase uniformly with 

distance under the same wave number. Additionally, both SPL 

and SVL generally exhibit a linearly increasing trend with the 

wave number. Similar to the characteristics displayed in 

Figure 6, the SPL and SVL at different wavenumbers are 

almost parallel oblique lines under r0>130a. The consistency 

between the SPL and the SVL shown in Figures 6-7 also 

strongly confirms the correctness of the proposed method. 

 

 
(a) SPL 
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(b) SVL 

 

Figure 7. Variations of SPL and SVL for rotating monopole 

source under M∞=0.6 with different wavenumber 

 

Similar to Table 1, Table 2 shows the variations of the SPL 

with different wave numbers and propagation distances. It can 

be found that the SPL increases linearly with wave number, 

which is also observed in Figure 7. When the propagation 

distance satisfies r0>130a, the SPL can also be expressed as 

the linear function of r0 and k: 

 

0SPL 0.054 84.7 8.66lnr k= − + +  

 

Table 2. The SPL (dB) corresponding to different 

wavenumber and propagation distance 

 
k 

r0(m) 
0.5 1.0 2.0 4.0 8.0 

133.5 81.58 87.52 93.51 99.53 105.55 

162 79.90 85.84 91.83 97.85 103.86 

190.5 78.49 84.43 90.42 96.44 102.46 

 

To investigate the spatial characteristic distribution of noise 

propagation, Figures 8-10 show the contours of the acoustic 

vector signal under M∞=0.6 and k=2. On one hand, the figures 

illustrate that the wavelength variation of three acoustic 

variables presents a clear Doppler effect at different times. On 

the other hand, the convective effect of the incoming flow also 

contributes to the distribution of the above vector acoustic 

signal. The pressure exhibits monopole characteristics, 

propagating outward in a circular fashion through the space.  

 

 
(a) t=T/2 

 
(b) t=T 

 

Figure 8. Contours of the pressure at different times 

 

 
(a) t=T/2 

 
(b) t=T 

 

Figure 9. Contours of the acoustic velocity uʹ1 at different 

times 

 

Acoustic velocities uʹ1 and uʹ2 exhibit dipole distributions. 

uʹ1 shows a horizontal distribution with a large value on the 

left and a small value on the right, while uʹ2 shows a 

symmetrical distribution along the horizontal axis. The 
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characteristics shown in Figures 8-10 are the same as those in 

Figure 5. The biggest difference is that the amplitude of 

acoustic velocity uʹ2 alternates between positive and negative 

values along the vertical direction, which is a new 

phenomenon not found in previous studies. 

 

 
(a) t=T/2 

 
(b) t=T 

 

Figure 10. Contours of the acoustic velocity uʹ2 at different 

times 

 

3.3 The rotating dipole source in the uniformly moving 

medium 

 

This section focuses on the noise distribution of a rotating 

dipole source. The velocity potential function of a moving 

dipole source in a uniformly moving medium is provided as 
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The relevant physical parameters of the rotating dipole 

source are selected to be the same as those of the rotating 

monopole source. 

Figure 11 illustrates the distribution of acoustic variables 

over time at θ=120 ̊and M∞=0.6. The numerical solutions for 

acoustic pressure and velocity in two directions are in good 

agreement with the analytical solutions. The amplitude of 

acoustic variables for the rotating dipole is almost twice as 

large as that of the rotating monopole shown in Figure 4.  

 

 
(a) Prssure 

 
(b) Velocity uʹ1 

 
(c) Velocity uʹ2 

 

Figure 11. Time evolution of acoustic variables at θ=120̊ and 

M∞=0.6 

 

 
(a) Pressure pʹrms 
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(b) Velocity uʹ1rms

(c) Velocity uʹ2rms

Figure 12. Directivities of RMS for acoustic variables at 

M∞=0.6 

Additionally, the pressure directivity, as shown in Figure 12, 

is also in good agreement with the analytical solution. The 

pressure and the acoustic velocity uʹ2 exhibit a dipole 

distribution, while the acoustic velocity uʹ1 exhibits a 

quadrupole distribution with larger values on the left and 

smaller values on the right. As the medium travels in the 

horizontal positive direction, the amplitude of the sound 

pressure and acoustic velocity uʹ1 on the left is significantly 

larger than that on the right, while the vertical acoustic velocity 

is almost unaffected. As a result, the acoustic velocity uʹ2 still 

exhibits a dipole distribution that is symmetric along the 

horizontal axis. 

(a) SPL

(b) SVL

Figure 13. Variations of SPL and SVL with distance at 

different Mach numbers 

(a) SPL

(b) SVL

Figure 14. Variations of SPL and SVL with distance at 

different wavenumber 

(a) t=T/2
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(b) t=T 

 

Figure 15. Contours of the sound pressure distribution at 

different time 

 

 
(a) t=T/2 

 
(b) t=T 

 

Figure 16. Contours of the acoustic velocity distribution 

along x1 direction at different time 

 

 
(a) t=T/2 

 
(b) t=T 

 

Figure 17. Contours of the acoustic velocity distribution 

along x2 direction at different time 

 

Furthermore, this study examines the noise distribution in 

relation to incoming velocity and wavenumber. Similar to the 

rotating monopole source, there are 200 points uniformly 

arranged within the interval r0[10a,200a] along the direction 

of observation angle θ=120.̊ Figure 13 displays the variations 

of SPL and SVL with the propagation distance for different 

Mach numbers at a wavenumber of k=2. Both SPL and SVL 

decrease rapidly with distance at the same Mach number. 

Furthermore, the results of SPL and SVL are completely 

consistent, which also confirms the accuracy of the proposed 

method. Figure 14 shows the variations of SPL and SVL with 

distance under different wave numbers at M∞=0.6. For the 

same propagation distance, SPL and SVL increase uniformly 

with the wave number. Similarly, SPL and SVL decrease 

linearly with propagation distance when the distance satisfies 

r0>130a, which accords with the linear law of far-field noise 

propagation. 

Next, we continue to study the spatial distribution of the 

rotating dipole sound field at different times, selecting a 

wavenumber of k=2. Figures 15-17 show the spatial 

distributions of acoustic pressure and acoustic velocity at the 

incoming Mach number M∞=0.6. As can be seen from these 

figures, the sound field exhibits an obvious Doppler effect at 

different moments. In particular, Figure 15 shows that the 

acoustic pressure distribution exhibits dipole characteristics, 
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while Figure 16 shows the quadrupole characteristics in 

acoustic velocity uʹ1, and Figure 17 shows the dipole 

characteristics in acoustic velocity uʹ2. At moments T/2 and T, 

both the acoustic pressure and the acoustic velocities spatially 

simultaneously exhibit alternating negative and positive 

values. Meanwhile, the convection effect of the medium also 

has a large impact on the sound field, the waves in the left 

propagation region appear to be compressed, while those on 

the right appear to be expanding. This is in contrast to the noise 

distribution of the monopole source discussed in Section 3.2. 

 

 

4. CONCLUSION 

 

When calculating acoustic energy, it is important to 

consider the completeness of the acoustic variables and the 

influence of the incoming flow. In this paper, the Navier-

Stokes equations of fluid mechanics are used to reorganize the 

continuity and momentum equations into 4D convective wave 

equations with variables of acoustic pressure and acoustic 

velocity. Then, a time-domain 4D FW-H integral formula is 

suggested for uniformly mean flow along with a permeable 

boundary. This can solve the acoustic pressure and acoustic 

velocity at the same time, taking into account the convective 

effect. The main conclusions are as follows: 

(1) The numerical solutions for acoustic pressure and 

acoustic velocity obtained by the proposed method are in good 

agreement with the analytical solutions for monopole sources 

and dipole sources. This fully demonstrates that the proposed 

method can accurately capture the characteristic distributions 

and propagation laws of acoustic pressure and velocity in a 

uniform mean flow. The 4D FW-H integral formula can be 

applied to calculate vector acoustic noise for moving sources 

and noise reception problems for moving observers. 

The method proposed in this study uses the permeable 

surface as the sound source extraction surface, which is a 

practical and straightforward approach. 

(2) The Doppler effect and convective effect of the rotating 

point source changes the linear and uniform distribution of the 

acoustic field, especially in the near-field region. As shown in 

Figures 6-7, SPL and SVL decrease as the acoustic 

propagation distance increases at different incoming Mach 

numbers. There is a sharp decrease in the near-field region, 

followed by a linear propagation pattern in the far-field region. 

The oscillation frequency of the point source, the wavenumber, 

has a similar impact on acoustic propagation as the incoming 

Mach number. However, the acoustic signals are amplified 

linearly and uniformly with an increase in wavenumber and 

more rapidly with an increase in Mach number. As shown in 

Tables 1-2, when the distance satisfies r0>130a, one 

quantitative relationship exists between SPL and Mach 

number M∞ as SPL=-0.054r0+92.08+0.69e4.2M∞, another 

quantitative relationship exists between SPL and wavenumber 

k as SPL=-0.054r0+84.7+8.66lnk. This indicates that the 

magnitude of the uniform mean flow has a significant impact 

on both the intensity and distribution of the acoustic signals. 

(3) Unlike earlier studies, the 4D FW-H formula can 

directly figure out the acoustic pressure and velocity by using 

smooth permeable surfaces around the object. This is a general 

model that can be used for any complex structure. Therefore, 

the distribution and transmission mechanisms of acoustic 

intensity expressed with acoustic pressure and acoustic 

velocity are easy to study. However, in practical engineering 

applications, if the selected permeable surface cannot contain 

all the nonlinear regions, the vortex wave perturbation on the 

permeable integral surface will be input as real acoustic source 

data, which will generate pseudoacoustic phenomena and 

result in inaccurate sound field calculations. In the future, 

researchers will try to come up with a similar pseudoacoustic 

suppression method using the 4D acoustic analogy described 

in this paper. For example, they could look at how to figure 

out the contribution of quadrupole sources outside permeable 

surfaces with extra surface sources, how to break down 

acoustic and vortex waves, and so on. Additionally, research 

will be conducted on predicting aerodynamic noise for 

practical problems. 
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APPENDIX 

 

1. The derivation of 4D momentum equations 

 

Combined with the definitions of Eqs. (10) and (12) 
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Based on the Eq. (A2), the Eq.  (A1) is further simplified 
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Applying the Eq. (15) to the Eq. (A3), it is further obtained 
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where the third order tensor 𝑉𝛼𝛽𝛾 is defined as 
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2. Relevant properties of permeable surface f=0 

 

As given in the literature [3], the inner and outer regions of 

the permeable surface are defined respectively as f<0 and f>0. 

Let the unit outer normal vector of the permeable surface be 

n=f, satisfying the following relation 
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f
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
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 (A6) 

 

H() is the Heaviside step function 
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and satisfy 
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According to the law of derivatives for composite functions 
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where, () is the Dirac function. Using Eqs. (A8) and (A9) 

yields 
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3. The specific form of Lαβ 
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Here, the three dimensional vectors A1, A2 and L defined as 
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4. The derivation of Cγ, E1
γ and E2

γ 
 

For the term Cγ  
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The retarded time τ can be considered as the function of the 

variables Xα and y, and τ(Xα,y) satisfies 
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Find derivations on the Eq. (16) with respect to t 
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It can be expressed as 
 

1

1 Rt M


=

 −
 (A18) 

Taking the spatial derivative of Eq. (A16) yields 
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It is further expressed as 
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Substituting Eqs. (A18) and (A20) into the Eq. (A15) 
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The term E1
γ satisfies 
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For the term E2
γ 
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Using the definition of MR 
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Among them, the expression for *

j iR x   is 
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Combining Eqs. (A24) and (A25), the Eq. (A23) is reduced 

to 
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