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The segmentation of white matter abnormalities is crucial for the early diagnosis of cerebral 

diseases, which aids in minimizing the resultant physical and cognitive deficits. Automated 

segmentation methods are instrumental for the precise and early identification of white 

matter hyperintensities (WMH) from magnetic resonance (MR) images. In this 

investigation, datasets comprising ischemic stroke and WMH cases, imaged with the FLAIR 

(fluid-attenuated inversion recovery) MR sequence, were utilized due to their enhanced 

visibility of hyperintensities. For segmentation, the Mask R-CNN model, a sophisticated 

deep learning architecture, was finely adjusted to bolster its performance. Concurrently, the 

U-Net model, renowned for its efficacy in medical image segmentation, was employed. A

comprehensive comparison of the two models' performance was conducted. Results

demonstrate that the Mask R-CNN model achieved dice similarity coefficient (DSC) scores

of 0.93 for the stroke dataset and 0.83 for the WMH dataset. The U-Net model yielded DSC

scores of 0.92 and 0.82 for the respective datasets. These findings indicate an improvement

over preceding studies in WMH segmentation accuracy utilizing the Mask R-CNN

approach. It is concluded that automated WMH segmentation on MR images serves as a

robust decision-support tool for clinicians during preliminary evaluations, although it should

be noted that definitive disease detection necessitates the corroboration of clinical findings.

Keywords: 

white matter hyperintensities (WMH), 

computer-aided detection, hyper-parameter 

optimization, deep learning, Mask R-CNN, 

U-Net, automatic segmentation

1. INTRODUCTION

While numerous diseases impact human health, those 

affecting the brain—our central command and controller of the 

nervous system—are notably challenging to detect, diagnose, 

and treat. Research estimates that approximately one-third of 

the global population may experience neurological and mental 

disorders at some point in their lives, with hundreds of 

specialized diagnostic criteria developed to navigate their 

complex nature [1-3]. The identification of neurodegenerative 

diseases, particularly in early stages, remains a daunting task 

[4]. 

The brain, the central nervous system's pivotal structure, is 

integral to bodily function. Consequently, brain pathologies 

can have widespread effects on the body or individual organs. 

A comprehensive study by the World Health Organization 

(WHO) in 2019, leveraging data from various sources 

including United Nations member countries, WHO-associated 

institutions, the Global Burden of Disease scientific study, and 

other scholarly works, offered insights into global mortality 

causes. Cardiovascular diseases (CVDs) emerged as the 

leading cause of death, with strokes being the second most 

common cause, accounting for 11% of all deaths and 

approximately six million fatalities annually. Alzheimer’s 

disease and other dementias ranked as the seventh leading 

cause of death, responsible for around 1.6 million deaths, or 

3% of the total, with the mortality rate from these conditions 

in women tripling over the past two decades. In the same WHO 

report, stroke was identified as the third leading cause of 

mental and physical disability [5]. 

A Europe-centric study highlighted that such illnesses 

represent 35% of Europe's total disease cost burden, 

amounting to an annual expenditure of €800 billion; 60% of 

this cost is attributed to healthcare and non-medical expenses 

[6]. Therefore, the early diagnosis and appropriate treatment 

of brain-related diseases are paramount [7]. While computed 

tomography (CT) scans were historically prevalent in 

diagnosing neurodegenerative diseases, magnetic resonance 

imaging (MRI) has now taken precedence as the most widely 

utilized initial examination technique. The preference for MRI 

stems from its capacity for three-dimensional imaging and its 

ability to more readily discern contrast differences in the 

brain's soft tissues, without the associated risks of X-rays 

found in CT scans [8]. 

Technological advancements have facilitated the detection 

of early-stage tumors and other neurodegenerative conditions 

through MR scanners, leading to higher-quality images and 

reduced acquisition times. MR images can be captured in 

various sequences, with T1-weighted (T1-w) and T2-weighted 

(T2-w) sequences being the most prevalent. T1-w sequences 

are primarily employed in anatomical assessments, while T2-

w sequences assist in evaluating signal intensity variations 

critical for identifying pathological states [9, 10]. Pathologies 

in MR scans are often evidenced by alterations in white matter 
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hyperintensities (WMH) or white matter disease—areas 

indicative of abnormal development within the regions 

housing axonal extensions of nerve cells [11]. 

Abnormal developments in brain white matter (WM) 

manifest as hypointense on T1-weighted (T1-w) images and 

hyperintense on T2-weighted (T2-w) images. While T2-w 

sequences are typically employed to detect pathological 

changes, T1-w sequences are also useful in revealing the 

anatomical structures of such changes [12]. On T2-w images, 

brain fats and fluids may appear hyperintense, similar to 

lesions, posing a challenge in distinguishing between the two. 

Therefore, T2 Fluid Attenuated Inversion Recovery (FLAIR) 

scans are often preferred, as they allow for more accurate 

detection of hyperintense developments by significantly 

suppressing fluid signals, thus enabling clearer identification 

of pathologies. 

White matter hyperintensities (WMHs) can be indicative of 

severe health issues, such as Parkinson’s disease, Alzheimer's 

disease, multiple sclerosis (MS), vasculitis, dementia, 

migraine, and stroke [13-18]. However, not all WMHs are 

harbingers of disease; they can also arise from benign 

processes like aging or lifestyle factors such as smoking, high 

blood pressure, high cholesterol, and diabetes [19-24]. 

Hyperintense lesions can even be observed in individuals 

considered healthy, as evidenced by MRIs obtained for 

unrelated medical evaluations. Consequently, it is crucial to 

promptly discern the characteristics—such as location, 

number, and size—of these hyperintense developments. Such 

differentiation is essential for the early diagnosis of serious 

conditions, to avoid misdiagnosis and unnecessary treatment, 

and to reduce uncertainty in clinical settings. 

Diagnosing diseases based on hyperintense lesions can vary 

in complexity among individuals, with some cases being 

straightforward and others difficult to interpret [25, 26]. The 

fact that there are over 50 disease categories associated with 

hyperintense lesions further complicates the diagnostic 

process for physicians [27]. Moreover, constraints such as the 

voluminous nature of MR series, the high daily workload of 

radiologists, limited time, lack of around-the-clock availability, 

and reduced access to radiologists in remote areas compound 

these challenges. Radiologists under such pressure may not 

scrutinize images with the necessary detail, sometimes leading 

to error rates as high as 30% due to factors like fatigue and 

decreased concentration [28]. 

To alleviate these issues, the development of computer-

aided automatic decision-support systems is imperative. Such 

systems can lessen the burden on physicians and bolster their 

diagnostic accuracy. However, detection of hyperintense 

developments is not definitive for disease diagnosis. Clinical 

evaluations by physicians and patient symptoms are equally 

critical. Hence, efforts to identify hyperintense lesions should 

be viewed as a supportive tool, augmenting the diagnostic 

acumen of medical professionals. Timely and accurate 

assessment of these lesions can streamline the diagnostic and 

therapeutic process, thereby enhancing the likelihood of 

successful treatment outcomes. For example, research on 

Alzheimer's disease, a type of dementia, has revealed an 

increase in WMH burden that can precede clinical diagnosis 

by approximately 6-10 years [14, 29]. Similarly, dementia, 

characterized by elevated WMHs, and stroke, a major cause of 

mortality and lasting brain damage, show a significant 

correlation with increased WMHs [30]. The prevalence of 

dementia, amplified by modern living conditions, is projected 

to rise to 65.7 million by 2030 and 115.4 million by 2050 [31, 

32]. 

Previous research has established the feasibility of 

employing deep learning techniques for the detection and 

segmentation of WMHs. Despite these advancements, current 

methodologies exhibit certain limitations, such as suboptimal 

segmentation performance on smaller WMH lesions, an 

absence of hyperparameter optimization, particularly in Mask 

R-CNN models, and a dearth of comprehensive comparative 

studies across various datasets. Furthermore, prior 

segmentation performance levels have not sufficiently 

streamlined the workload for physicians and experts. 

Additionally, most existing applications of Mask R-CNN have 

been tested on datasets comprising predominantly large 

lesions, like tumors, while datasets with smaller-sized 

pathologies, such as WMH, strokes, and multiple sclerosis 

(MS), have not been as extensively researched. 

Our study posits that deep learning networks can be adeptly 

employed to enhance segmentation performance for 

minuscule lesions, as small as 1-2 pixels. This application aims 

to support decision-making processes, thereby reducing the 

potential for preliminary diagnostic errors by radiologists and 

contributing to the alleviation of rising public health costs. 

In our research, the Mask R-CNN deep learning model, 

renowned for its segmentation prowess, has been adapted to 

improve the automated segmentation performance of WMH. 

We also conduct a comparative performance analysis with the 

U-Net model, which is extensively utilized in medical image 

segmentation and is noted for its effective results. 

The contributions of this study are manifold: 

1. Enhanced performance has been achieved in the 

detection and segmentation of WMH in MR scans. 

We utilized U-Net and various Mask R-CNN deep 

learning models—with finely-tuned hyper-

parameters—and conducted a comprehensive 

comparison with related literature. 

2. Optimal hyperparameter values for WMH 

segmentation have been ascertained, leading to the 

development of multiple tailored Mask R-CNN 

models. Comparative insights into training and test 

durations, along with the performance outcomes, are 

provided. The efficacy of sample segmentation with 

a constrained dataset and limited hardware resources, 

via optimized hyper-parameter values, is 

demonstrated. 

3. This study utilized two distinct publicly-available 

datasets for ischemic strokes and WMH, containing 

FLAIR MR sequence images. We assessed data 

augmentation techniques to enhance the training set 

and applied image pre-processing strategies to 

improve segmentation outcomes. 

4. It was found that instance segmentation with Mask 

R-CNN could surpass previous segmentation 

performance benchmarks in WMH segmentation. 

The network's training efficiency and generalization 

capacity are evidenced through the analysis of 

training and validation loss functions. 

5. Lastly, a thorough assessment of previous studies is 

presented, offering a comprehensive review of WMH 

segmentation on MR scans. 

This research not only furthers the development of deep 

learning networks and high-performance decision support 

systems but also presents promising findings for the medical 

imaging field. 
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2. RELATED WORKS 

 
Hyperintense developments in the brain have been 

recognized as precursors and biomarkers for various diseases, 

prompting a multitude of studies aimed at their detection, 

delineation, and classification. Initially, these studies often 

relied on manual or semi-automatic segmentation by experts. 

However, with the advancement of computer technologies and 

the increased capabilities of hardware, automatic 

segmentation methods have largely supplanted manual and 

semi-automatic approaches. The advent of high-performance 

CPUs and GPUs has significantly expedited this transition. 

In their comprehensive study, Admiraal-Behloul et al. [33] 

conducted experiments on an extensive elderly population, 

providing fully automated segmentation of datasets 

comprising proton density-weighted (PD), T2-w, and FLAIR 

MR images using a fuzzy inference artificial intelligence 

technique. They categorized WMH lesions into three sizes—

small, medium, and large—and assigned voxels into three 

fuzzy classes: bright, medium bright, and dark. The lesion 

segmentation performance, evaluated using the Dice 

Similarity Coefficient (DSC), yielded 0.70 for small lesions, 

0.75 for medium-sized lesions, 0.82 for large lesions, with an 

average of 0.75. A notable limitation identified was the time-

consuming nature of the decision process for images input into 

the system. 

Machine learning methods have been predominantly 

utilized in recent studies for the fully automatic detection and 

segmentation of WMH, with various approaches compared for 

their effectiveness. Anbeek et al. [34] presented a method 

involving the k-nearest neighbors (k-NN) classification 

technique on T1-w and FLAIR MR images. Their approach 

differentiated between periventricular white matter 

hyperintensities and deep WMH using manual segmentation, 

with lesions classified by size. The k-NN-based method, 

coupled with pre-processing, achieved a DSC average of 0.80, 

with 0.50 for small lesions, 0.75 for medium lesions, and 0.85 

for large lesions. However, the segmentation performance was 

found to be dependent on the chosen threshold value for the 

dataset. 

Lao et al. [35] improved upon Anbeek’s method [34] by 

developing a classification model using a support vector 

machine (SVM), with a focus on feature vector selection. Yet, 

this did not overcome the limitations associated with manual 

classification and thresholding. Dyrby et al. [36] employed an 

artificial neural network technique to segment age-related 

changes in the white matter region of MR images from 362 

non-dementia patients across 11 centers. The DSC mean 

values for lesion segmentation performance were 0.45 for 

small lesions, 0.62 for medium, and 0.65 for large lesions, with 

the approach limited in terms of performance and training 

duration. 

Kawata et al. [37] aimed to elucidate the correlation 

between the severity of subcortical vascular dementia and the 

area ratio of WMH. They found DSC average performance 

values of 0.72 using a threshold leveling technique, 0.76 with 

region growing, and 0.78 with an automatic selection method. 

Klöppel et al. [38] compared machine learning methods like 

k-NN and SVM for the automatic detection of WMH in a 

dataset created with T1-w and FLAIR images, also applying 

threshold-based approaches for gray matter delineation. 

Leite et al. [39] explored texture-based classifiers for WMH 

classification using MR images, concluding that the SVM 

classifier successfully distinguished normal white matter from 

WMH. Griffanti et al. [40] detected hyperintense occurrences 

in two datasets totaling 583 MR images in T1-w and FLAIR 

sequences. They differentiated two classes—WMH and non-

WMH—using a k-NN-based fully automatic algorithm with 

binary masks. Dadar et al. [41] compared ten different 

classification techniques for identifying WMH using diverse 

datasets containing MR images of patients with small vessel 

disease and Alzheimer’s disease. They found that while Naive 

Bayes yielded the lowest classification performance, k-NN 

and random forest (RF) algorithms achieved the best results. 

Lastly, Park et al. [42] proposed a framework named DEWS 

for the segmentation of WMH and deep WMH, which are 

observed to increase rapidly in migraine patients. Their 

pipeline involved three stages: extraction of WMH from MR 

images, detection, and false positive reduction. Jiang et al. [43] 

used a cluster-based method called the unidentified bright 

objects detector for fully automatic extraction of WMH 

regions and sizing. They then utilized the k-NN algorithm to 

confirm whether the extracted clusters were WMH. 

The rapid advancement of deep learning networks has 

significantly enhanced the use and efficacy of automatic 

segmentation methods. Guerrero et al. [44] introduced a 

convolutional neural network (CNN) for the detection of 

WMHs and stroke lesions, finding that the DeepMedic method 

surpassed both the lesion prediction and lesion growth 

algorithms in terms of performance. In a different study, Diniz 

et al. [28] combined CNNs with SLIC0 clustering methods for 

WMH detection and proposed a four-step process utilizing 

magnetic resonance (MR) images: image acquisition, pre-

processing, segmentation, and classification. Li et al. [45] 

employed a deep fully convolutional network (Deep-FCN) to 

automatically segment the WMH Segmentation Challenge 

dataset, which included WMHs and FLAIR MR images. Their 

Deep-FCN model achieved top-ranking results in the WMH 

Segmentation Challenge. 

Further contributions to this field include Maier et al. [46], 

who developed an approach for segmenting ischemic stroke 

lesions, a prevalent cerebrovascular condition. They evaluated 

various methods from 16 research groups on the Ischemic 

Stroke Lesion Segmentation (ISLES) 2015 dataset—

comprising MR images in different sequences—at the 

MICCAI 2015 conference. 

Studies have also explored Alzheimer’s disease detection as 

a means to diagnose WMH progression. Rachmadi et al. [47] 

utilized the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) dataset, which includes FLAIR and T1-w MR images, 

to identify WMH developments commonly encountered in 

routine MR imaging, with or without a mild vascular origin. 

Hong et al. [48] implemented a segmentation method for 

WMH in migraine patients, focusing on T2-w and FLAIR MR 

scans of 148 non-elderly individuals to exclude age-related 

WMH effects. However, according to the dice similarity 

coefficient (DSC), the segmentation performance was 

relatively low at 0.56. 

In an innovative approach, Oh et al. [49] introduced a 

generative adversarial network (GAN) model for WMH 

segmentation. This model, alongside the H-Dense U-Net, was 

used to segment positron emission tomography (PET)/CT 

scans of 50 patients. The DSC metric revealed a score of 0.75 

for WMH lesions larger than 60 mL, but the values decreased 

significantly for smaller lesions. This indicated that PET/CT 

imaging for WMH segmentation may not yield optimal results. 

Liang et al. [50] highlighted the success of deep learning-

based methods in WMH segmentation but noted a scarcity of 
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research on the decision-making and lesion localization 

processes. To address this, they presented an anatomical-based 

U-Net method that incorporates anatomical information to aid 

the decision-making process by identifying the anatomical 

locations of lesions post-segmentation. 

Umapathy et al. [51] proposed StackGen-Net, building 

upon the DeepUNET3D structure and utilizing 3D FLAIR 

images reformatted into 2.5D patches. They concluded that the 

method's performance was competitive when compared to 

other high-performing WMH segmentation techniques. Chen 

et al. [52] explored WMH detection using a U-Net with 

multimodal MRI across various public datasets and introduced 

a CNN baseline posterior conditional random fields 

architecture to extract complex input features beyond the 

encoder-decoder capabilities of U-Net. Their method achieved 

DSC scores of 0.61 and 0.79 on the ISLES 2015 SISS stroke 

dataset and the MICCAI 2017 WMH dataset, respectively. 

Liu et al. [53] developed a CNN-based deep learning 

architecture for WMH detection on FLAIR and diffusion-

weighted imaging (DWI) MR images in a cohort of 208 

patients with acute ischemic stroke. They recorded the highest 

DSC score of 0.61 using three distinct U-Net models and 

suggested that their method could effectively assess WMH 

burden in stroke patients. Lastly, Mohammed et al. [54] 

combined deep learning and machine learning approaches for 

WMH detection and disease classification related to Dementia 

and Alzheimer's. They utilized AlexNet and ResNet50 for 

deep learning, followed by a SVM for the decision phase. 

While their method proved successful for diagnosis, 

segmentation performance was not the focus of their study. 

In a recent inquiry, Bangyal et al. [55] employed a 

convolutional neural network (CNN) for the diagnosis of 

Alzheimer's disease and contrasted its efficacy with that of 

machine learning-based approaches. However, the 

segmentation capabilities of the method were not the focus of 

their investigation. 

This section provides an overview of the methods proposed 

for the detection and segmentation of white matter 

hyperintensities (WMH). Initially, the application of deep 

learning techniques in WMH analysis was quite rudimentary. 

Predominantly traditional methods such as support vector 

machines (SVM), k-nearest neighbors (k-NN), random forests, 

naive Bayes, Statistical Parametric Mapping (SPM), decision 

trees, logistic regression, linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA), local and global 

thresholding, and morphological operations were employed in 

studies predating 2015. The proliferation of deep learning 

methods, particularly CNNs, for WMH segmentation and 

detection is attributable to advancements in computer 

technology. 

A recurrent challenge identified in earlier studies is the need 

for highly accurate WMH lesion detection. To address this, the 

current study seeks to enhance WMH segmentation by 

utilizing deep learning techniques such as U-Net and Mask R-

CNN. Leveraging transfer learning with pre-trained network 

architectures, our study mitigates the typically lengthy training 

durations. Through meticulous fine-tuning, we have optimized 

hyperparameters, notably 'Regions of Interest Per Image' (RoIs 

Per Image) and 'Region Proposal Network Anchor Per Image' 

(RPN_Anchor_Per_Image), which has expedited the 

network's training process. Furthermore, the training is 

stratified into two stages to bolster the detection of small-pixel 

lesions. The first stage achieves a broad learning scope, while 

the second stage refines the search areas to enhance the 

detection performance of smaller lesions. 

 

 

3. MATERIALS AND METHODS 

 

 
 

Figure 1. The overview of the proposed deep learning framework in this study for WMH segmentation 
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Since there are many diseases that cause hyperintense 

lesions, the classification of detected WMH regions is a very 

comprehensive study. In order to classify all diseases with a 

single dataset in WMH, a very large dataset, a computer with 

powerful hardware components such as GPU, and a deep 

learning model suitable for high-accuracy detection are needed. 

The overview of the proposed framework for WMH 

segmentation is shown in Figure 1. As can be seen from the 

framework, two different datasets were used for WMH 

detection and segmentation: the WMH Segmentation 

Challenge dataset and the ISLES 2015 dataset, which consists 

of MR images of ischemic stroke patients, which is a common 

brain disease that causes WMH. In this study, segmentation 

was achieved by labeling the slices in both datasets as WMH. 

In the first stage of the framework, images were obtained and 

rescaled at a certain size (256x256) as image preprocessing 

techniques. At this stage, the images were subjected to 

normalization and the pixel values were limited to a certain 

value range. After pre-processing and data augmentation 

procedures on the datasets, Mask R-CNN and U-Net deep 

learning networks were used for WMH segmentation using 

ground truth masks delineated by experts. 

In the experimental studies, a computer with a GPU 

component was used as the hardware. The results obtained in 

the study were compared with the performances of deep 

learning networks in WMH segmentation. In the study, Mask 

R-CNN and U-Net were used as a technique for the automatic 

segmentation of WMH lesions. The most important feature of 

the Mask R-CNN network is that it does not evaluate the image 

as a whole, but makes object detection with convolutional 

operations after dividing it into sub-regions. Mask R-CNN 

also provides the classification of objects in the last layer and 

determines their boundaries independently from each other. 

On the other hand, U-Net performs the segmentation process 

using convolution operations with a two-stage model, encoder 

and decoder, based on typical CNN architectures. 

 

3.1 Datasets 

 

In studies with images containing WMH, obtaining and 

preparing datasets that accurately describe the lesion and give 

the correct class label about the lesion is a long process. In 

addition, the dataset should be large enough for generalization 

and should include all the WMH-related situations as much as 

possible. It is known that MRI is used commonly since it 

contains more data for lesion detection in soft tissues. In 

addition, since images in MRI can be obtained in different 

sequences such as T1-w, T2-w, FLAIR, and DWI, 

hyperintense development can be more clearly seen in some of 

these sequences. Hyperintense developments can be observed 

more clearly, especially in T2-w and FLAIR images [56]. In 

order to detect hyperintense lesions more easily, hyperintense 

images obtained from the fluid spaces of the brain, which are 

outside the brain tissue in MR images, make it difficult to 

detect the lesion. In this way, possible false detections are 

prevented by suppressing the liquid. Images labeled by experts 

were used to show the accuracy and validity of the training and 

test results conducted using the selected datasets. In this study, 

WMH Segmentation Challenge and ISLES 2015 Ischemic 

Stroke datasets were used for WMH detection and 

segmentation. The fact that both of these datasets are multi-

center datasets and using MR images from MR imaging 

devices with different characteristics increases the 

generalization ability of the proposed method.  

There are some of the difficulties on the protection of aging-

related degenerative and vascular pathologies, which is 

important for generalizability in personal data. The collecting 

data has difficulties such as various degrees, types of the 

disease, the inconvenience of labeling of the data and the 

limited availability of publicly-available datasets. The most 

important reasons for preferring the datasets used in this study 

are that they are labeled with the consensus of 2 different 

experts, that they enable to minimize the expert labeling errors 

that can reach 30%, they were obtained with MR devices with 

different features in different health centers, and that they are 

open access. In addition, having the opportunity to compare 

with studies made with many different methods within the 

scope of challenges is an important factor that enables the 

selection of datasets. 

ISLES 2015 Challenge dataset was used in the Ischemic 

Stroke Lesion Segmentation (ISLES) 2015 Challenge event 

held within the scope of MICCAI 2015 to improve the 

detection of ischemic stroke disease and enable new 

approaches [46, 57]. This dataset consists of two separate sub-

datasets. The first one is the sub-acute ischemic stroke lesion 

segmentation (SISS) dataset, which was created for the 

automatic detection and volume segmentation of sub-acute 

ischemic stroke lesions from multispectral MR imaging 

sequences acquired in the sub-acute stroke development stage. 

The second one is the dataset consisting of penumbra images 

resulting from an acute ischemic stroke from multispectral MR 

imaging sequences. 

The situation where the electrical function has stopped, but 

permanent tissue damage has not yet occurred and the 

treatment is important is called ischemic penumbra [58]. In 

accordance with our study, the SISS dataset, which is based on 

the detection of hyperintense images and in which all teams 

achieved lower performance as a result of the ISLES 2015 

Challenge, was used with FLAIR images. All MR sequences 

in the dataset were created in Neuroimaging Informatics 

Technology Initiative (NIfTI) file format. The ground truth 

was delineated by experienced experts on the FLAIR MR 

sequence and was saved in the same way in NIfTI format. In 

this study, only sub-acute ischemic stroke lesions data were 

used for WMH segmentation. In this study, only sub-acute 

ischemic stroke lesions were segmented for WMH 

segmentation. Dimensions of the images in the SISS dataset 

are 240 (width) × 240 (height) × 155(slice) × 4 (multimode). 

A total of 1030 images of 28 patients in the SISS dataset of the 

ISLES 2015 were used for experimental studies for WMH 

segmentation. Of these images, 802 (78%) were used for 

training, 168 (16%) were used for validation and 60 (6%) were 

used for testing. Sample images from the ISLES 2015 dataset 

with lesions are given in Figure 2. 

 

 
 

Figure 2. Some sample images from the ISLES 2015 

ischemic stroke dataset with lesion 
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Figure 3. Sample images from the WMH segmentation 

challenge dataset 

 

In 2017, the WMH Segmentation Challenge event was held 

within the scope of MICCAI 2017 in order to compare the 

performances of existing methods for the automatic 

segmentation of WMH of presumed vascular origin and to 

reveal new segmentation approaches. WMH Segmentation 

Challenge dataset was created for the event and made available 

to the participants [59, 60]. 

In the dataset, there are images obtained from 3 different 

hospitals and 5 different MR scanners. In the dataset, 3D T1-

w and 2D FLAIR image sequences were acquired for each 

patient. Ground truth masks were created on FLAIR images 

through manual marking by the expert. 

In this study, a total of 60 MR sequences from the WMH 

Challenge dataset were used in experimental studies. From a 

total of 735 images, 572 (78%) were used for training, 119 (6%) 

were used for validation and 44 (6%) were used for testing. 

Sample images from the WMH Segmentation Challenge 

dataset are given in Figure 3. 

Summary information about the WMH Segmentation 

Challenge and ISLES 2015 Ischemic Stroke datasets used for 

WMH segmentation in this study is given in Table 1. 

 

Table 1. Summary of the WMH segmentation challenge and 

ISLES 2015 ischemic stroke datasets 

 
 WMH 

Segmentation 

Challenge 

ISLES 2015 

Ischemic Stroke 

(For SISS Dataset) 

Challenge MICCAI 2017 ISLES 2015 

(MICCAI 2015) 

WMH type WMH Stroke 

MR Sequences 3D T1-w and 2D 

FLAIR 

FLAIR, T2 TSE 

(Turbo Spin Echo), 

T1 TFE (Fast Spin 

Echo) /TSE, DWI 

Number of 

cases/images 

60 (training), 110 

(test) images 

28 (training), 36 

(test) cases 

Number of centers 3 2 

Number of scanners 5 (1.5 T and 3 T) 2 (3 T) 

Number of experts 2 2 

Number of images 

(slices) 

735 (training = 

572, validation = 

119, test = 44) 

1030 (training = 

802, validation = 

168, test = 60) 

 

3.2 Image pre-processing 

 

Correct detection of lesions or lesion-like developments in 

WMH is of great importance for early diagnosis and 

determination of appropriate treatment methods. It is very 

important to get successful results that the labeling process is 

done correctly in the dataset. For this reason, labels have to be 

performed by one or more experienced experts. In this study, 

there are ground truth masks delineated by experts in both 

datasets. This validation data was generated by masking 

selected areas on the MR images. In both of the datasets, each 

of the MR image sequences is saved as a single file in NIfTI 

format. In the ISLES 2015 dataset, two classes such as 

background and stroke lesions were delineated by experts. In 

the WMH dataset, three classes were labeled such as 

background, WMH, and other pathology by experts. Since the 

main purpose here is WMH segmentation, other pathologies 

were roughly marked to mask [59]. Based on this, images 

labeled as “other pathology” reduce segmentation accuracy in 

experimental studies, both the marking is made roughly and 

the object labeled with other pathology is very few. For this 

reason, experimental studies were organized by considering 

only WMH labeling in the study. 

In order to segment WMH by the Mask R-CNN and U-Net 

techniques, the masking data needs to be converted to a 

coordinate system. The coordinates of each WMH region in 

the masking images were extracted separately using edge 

detection algorithms. The coordinate data along with the 

image and lesion, the class name of the objects, and the area 

covered by the objects were saved in a special format (coco, 

xml, json, via_json) and the labeling process was completed. 

Sample images from the WMH Segmentation Challenge and 

ISLES 2015 datasets and the ground truth masks labeled by 

the expert are given in Figure 4. Figure 4 (b) and Figure 4 (f) 

show the ground truth masks of the images in Figure 4(a) and 

Figure 4(e) in the WMH Segmentation Challenge dataset, 

respectively. Likewise, Figure 4(d) and Figure 4(h) are 

presented for the ground truth masks of the images in Figure 

4(c) and Figure 4(g), respectively, in the ISLES 2015 dataset. 

 

 
 

Figure 4. Sample images from the WMH segmentation 

challenge (a and e) and ISLES 2015 (c and g) datasets and 

the ground truth masks (b, d, f and h) 

 

The scans in both publicly-available datasets used in this 

study include MR slices from different MR scanners. Since the 

scanners are different, the distribution scale of the intensity 

values of the images formatted as NIfTI is also different (for 

example, between 0 and 2220). For this reason, the linear 

normalization denoted in Eq. (1). was used to set all the images 

used in this study to a certain intensity range. Thus, the pixel 

values of all images were normalized to the gray-level values 

in the 0-255 range. Here, X represents the value of a pixel in 

the image, Xmax denotes the pixel with the maximum intensity 

value in the image, Xmin indicates the value of the pixel with 

the minimum intensity value in the image, and Xnormalized shows 

the normalized pixel value. 
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Xnormalized =  
X − Xmin

Xmax − Xmin

∗ 255  (1) 

 

3.3 Data augmentation 

 

In studies with deep learning algorithms, it is known that the 

large data set used for training and the high inclusiveness of 

the object types to be detected enable the network to show 

higher performance. Although the network learns when the 

number of images in the dataset is low, a situation called 

overfitting may occur. To get rid of this situation, the network 

needs to be trained with a lot of data. The minimum number of 

data required for high performance varies according to the 

difficulty level of the problem. For some simple problems, a 

data set of 400-500 images may be sufficient, while for more 

difficult problems, 10 times this data or much more may be 

required. In order to perform learning process for CNN the 

matrix containing the pixel properties of the input image is 

multiplied by another matrix called the convolution kernel. As 

a result of these multiplication operations, features of the 

image are extracted. As the number of images for the training 

of the network increases, the learned feature also increases, 

which increases the probability of the images to be recognized 

by the network. Since ISLES 2015 Stroke and WMH 

Segmentation Challenge datasets alone are not sufficient for 

performance, data augmentation for both is required. For this 

reason, data augmentation is necessary in order to get rid of 

the overfitting problem of the model obtained as a result of the 

training and to achieve high performance of the network. In 

our study, the library named “imgaug” was used for data 

augmentation [61]. In this study, rotation (rotate, flip left to 

right, flip up to down), contrast adjusting (linear contrast, 

gamma contrast), sharpening (Filtersharpen), smoothing 

(MedianBlur) processes were applied on the images for data 

augmentation, as seen in Table 2. The most appropriate one of 

the 17 data augmentation processes seen in Table 2 was 

applied for each image. Some of the applied data augmentation 

processes are given in Figure 5. 

 

Table 2. The data augmentation functions and their parameters applied for images 

 
  Rotation Contrast Adjusting Smoothing Sharpening 

Augmentation 

Number 

Flipud 

(Up to Down) 

Fliplr  

(Left to 

Right) 

Rotate  

(90, 180, 

270) 

Linear Contrast  

(alpha=0.4, 1.6) 

Gamma 

Contrast  

(gamma=0.5, 

2.0) 

Median Blur Filter 

Sharpen 

1 1.00 - - 0.95 - - - 

2 - 1.00 - 1.30 - - - 

3 - - 90.00 1.20 - - - 

4 - - 180.00 1.05 - - - 

5 - - 270.00 1.45 - - - 

6 - 1.00 - 1.25 - - - 

7 1.00 - - 1.15 - - - 

8 - - - 1.35 - - - 

9 - - 270.00 1.35 - - - 

10 1.00 - - 1.20 - - - 

11 1.00 - - 1.10 - - - 

12 - - - 1.35 - - - 

13 - 1.00 180.00 - - 1.00 - 

14 - - - - 1.50 - - 

15 - - 270.00 - 0.70 - - 

16 - 1.00 - 0.80 - - 1.00 

17 - - 90.00 - - 1.00 1.00 

 
 

Figure 5. The effect of several data augmentation functions 

for the MR images in datasets 

 

 

3.4 Deep learning techniques 

 

Deep learning techniques have paved the way for significant 

increases in WMH classification, accuracy, and segmentation 

performance. Moreover, new methods were added to the 

approach called regional convolutional neural networks (R-

CNN), Fast R-CNN, Faster R-CNN, and most recently Mask 

R-CNN, which have made great progress in image 

segmentation. With Mask R-CNN and recently developed 

similar methods, a new stage has been passed in the field of 

image segmentation, and objects belonging to the same class 

on the image can be defined as separate objects by switching 

from the semantic segmentation method to the instance 

segmentation method. U-Net and Mask R-CNN are two 

important techniques that pave the way for the development of 

automatic methods for the segmentation of WMH. Since the 

U-Net network is easier to implement and the training time is 

shorter, it has started to be widely used in medical image 

analysis.  
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Mask R-CNN, on the other hand, is very successful in image 

segmentation, but has a multi-layered and complex structure. 

For this reason, it requires high computing capability and the 

difficulty of making changes in the network structure. Since 

the implementation of the Mask R-CNN network is relatively 

more complex and imposes higher experiment requirements 

on the hardware conditions, its application on medical images 

is negligible. However, it is predicted that the Mask R-CNN 

network may be used more frequently in the near future for the 

detection of objects in 3D from MR images due to its features 

such as determining the classes of objects on the MR images, 

marking their boundaries, and having a separate identifier for 

each object. 

In this study, a comparative analysis of U-Net and Mask R-

CNN deep learning models for automatic segmentation of 

WMH is performed. In the study, the WMH Segmentation 

Challenge dataset [59], created from FLAIR MR images 

obtained from three different MR devices and released in a 

challenge held in 2017, is used. In addition, the ISLES 2015 

Challenge dataset [46], which consists of Ischemic Stroke 

disease images that contain hyperintense developments and 

can be diagnosed by WMH developments, is used in 

experimental studies.  

Although there are images obtained in different sequences 

in both datasets, studies have been carried out on FLAIR MR 

images where hyperintense developments can be observed 

well. Each image in the datasets was marked by experts as 

ground truth, which is used as a reference to measure the 

accuracy of the designed detection system. 

Two different deep-learning techniques are used for WMH 

detection and segmentation in this study. The first of these is 

the U-Net, which emerged in 2015 and has a CNN-based 

architecture [62]. U-Net has gained rapidly increasing 

popularity in the segmentation of biomedical images since it 

was developed for the segmentation of biomedical images. U-

Net can also segment images efficiently with smaller dataset 

sizes and can provide fast training and experimental results. In 

image segmentation using U-Net, semantic segmentation is 

applied, unlike the classical object classification and 

localization methods. U-Net enables the detection of each 

object belonging to one or more different classes on the image 

as a separate cluster. Each cluster represents a different object 

class and object boundaries can be marked using masking by 

detecting the components of the objects on a pixel basis. The 

second one is the Mask Region-Based Convolutional Neural 

Networks (Mask R-CNN), which is one of the convolutional 

neural networks (CNN) that has emerged recently and has 

been increasing in popularity in recent years [63]. In 

experimental studies, the optimum values of hyperparameters 

for WMH segmentation were determined and different Mask 

R-CNN models were created with fine-tuning. Although Mask 

R-CNN consists of convolutional operations such as U-Net, it 

has a larger and more advanced network structure. Mask R-

CNN network performs image segmentation with high 

accuracy and it requires larger datasets and more powerful 

hardware components compared to the U-Net network. 

However, Mask R-CNN provides a more improved detection 

than semantic segmentation. Mask R-CNN does not only 

provide the classification of the image objects as belonging to 

a particular class. In addition, each object is masked separately. 

The method called instance segmentation, where the 

boundaries of the object and localization are determined, is 

also used in Mask R-CNN. 

 

3.4.1 Mask R-CNN 

Mask R-CNN is a deep learning network based on 

convolutional neural networks and uses the instance 

segmentation method known as the ability to estimate the 

boundaries of each detected object separately. Instance 

segmentation does not classify all objects belonging to the 

same class with a single label as in the widely used semantic 

segmentation method, but assigns a separate label to each 

object. In order to cope with this, segmentation is performed 

on the basis of pixels, and this is the biggest difficulty in the 

implementation of the method. For instance, segmentation 

contains more information about lesions, and it can help 

physicians more in disease detection. In Mask R-CNN 

architecture, in the first layer, convolution processes that 

enable to extract the features of the input image, called as 

backbone architecture with feature pyramid network (FPN), 

are applied. In the second layer, the region proposal network 

(RPN), which enables the extraction of regions of interest (RoI) 

to perform detection in the input image, is performed. In the 

third and last layer, detection/localization/masking processes 

are performed and so, each object is detected and classified 

separately. 

The basics of Mask R-CNN were laid in 2014 for the first 

time by adding the region proposal to the CNN architecture 

and obtaining the R-CNN method [64]. In 2015, this problem 

was solved thanks to the selective search (SS) structure, which 

caused the bottleneck in the R-CNN network and worked 2000 

times for each image, only once. In this way, the Fast R-CNN 

model has emerged, in which a speed increase of 9 times in the 

training phase and 213 times in the test phase is achieved [65]. 

In 2016, the region proposal network (RPN) recommendation 

was used instead of selective search, which is another 

bottleneck construct. In this way, the Faster R-CNN model, in 

which the training speed is increased 10 times compared to the 

Fast R-CNN model, has emerged [66]. Finally, in 2018, the 

Mask R-CNN model, which allows segmentation on a pixel 

basis, was created thanks to the masking layer added to the 

output of the Faster R-CNN network [63]. 

In our study, the architecture of Mask R-CNN network for 

WMH segmentation is shown in Figure 6. In this architecture, 

MR images and mask data of the slices were given to the 

network input for WMH detection and classification, as shown 

in Figure 6. Then edge and shape features are extracted first 

with convolutional operations in the ResNet101 layer. Thus, a 

feature map is created. In the next step, windows called 

anchors are produced with the RPN dimensions such as 

128×128, 64×64, 32×32 and aspect ratios (0.5, 1.0, 2.0) 

determined in accordance with the dataset. The windows 

proposed by RPN are traversed over the entire feature map by 

sliding window method. Thus, the candidate regions to find 

the object to be detected are detected on the image. In the final 

stage, candidate images are convolutional processed through 

fully connected layers (FCL) and then sent to the multi-

branched prediction layer, which makes classification, 

localization, and mask estimation. An FCL is applied for 

classification prediction, a regression layer for localization, 

and a connected FCL is applied to generate the target mask. 

 

3.4.2 U-Net 

The biggest challenge is the inability to obtain a sufficient 

number of training images in the proposed studies for WMH 

segmentation. Especially in CNN-based deep learning 

algorithms, the number of images needed for training has to be 

even more. However, the need for a high processor and RAM 
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capacity also arises. To overcome these problems, the U-Net 

network, which is a simple but effective CNN compared to 

complex network structures, was developed [48]. Since U-Net 

has a simple network structure, it can perform image 

segmentation with less training images and faster than other 

CNN networks. The segmentation conducted in U-Net is 

semantic segmentation. The network architecture consists of 

two parts. The first part is the contraction path, also called as 

the encoder, which is used to capture the image context. In this 

part, the context features of the image are obtained. Each step 

in this layer uses 3×3 convolution kernels and an activation 

function, usually rectified linear unit (ReLu). In the next step, 

when 2×2 pooling is done, the image matrix size is divided by 

two and the number of features is doubled.  

In addition, the output results from the convolution 

processes in each step is given to the input of the second part 

(decoder) of the parallel network, by copying and cropping, 

with a skip connection. However, at this stage, bottleneck may 

occur because some attributes are lost as a result of 

convolution operations and cannot be passed to the output. A 

simple but effective solution to the bottleneck problem is 

provided by transferring the attributes to the second layer, 

which is the decoder, thanks to the skip connection. In the 

second layer, the images with increased number of features but 

reduced size are processed again using 3x3 convolution kernel 

and activation function at each step, and multiplied by the up-

convolution kernel. Due to the processes conducted in this 

layer called as decoder, both the size of the image is converted 

back to the size of the input, and precise localization is 

provided. U-Net is an end-to-end fully convolutional network 

(FCN) and can accept an image of any size at its input since it 

does not contain a dense layer, except for convolution layers. 

The architecture of the U-Net deep learning technique is 

presented in Figure 7. 

 

 
 

Figure 6. The architecture of Mask R-CNN deep learning technique for WMH segmentation 

 

 
 

Figure 7. Architecture of U-Net deep learning technique for WMH segmentation 

 

 

4. RESULTS 
 

In this study, a computer consisting of an Intel i7 2.2GHz 

8+8 Core CPU, 48 GB RAM memory, and NVIDIA RTX2070 

GPU components were used for all experimental studies. The 

RTX2070 is a 256-bit graphics card with a frequency of 1620 

MHz and containing 8GB of GDDR6 RAM. The graphics card 

has 2304 CUDA cores to perform intensive calculations used 

in deep learning. A single GPU was used during the training. 

While the batch size can be selected as 32 for the U-Net 

network, 2 or 4 values can be selected for Mask R-CNN 

according to the depth of the network. The coding was done 

with python language and Tensorflow 2.5.0 and Keras 

2.5.0rc0 libraries, which are high-level APIs, were used. 

For automatic WMH segmentation, Mask R-CNN and U-

Net deep learning techniques were used on datasets. For the 

Mask R-CNN, the basic matterport model [67] was used and 

improvements were built on it. The Mask R-CNN 

implementation used in the study was designed in a way to be 

used with ResNet50 or ResNet101 network models as a 
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backbone structure. In order to shorten the training time and 

obtain more successful results, the weight coefficients 

obtained from the pre-trained networks (COCO) were used. 

The learning conducted by using the weight coefficients 

obtained from the pre-trained networks obtained as a result of 

the training of datasets consisting of hundreds of thousands of 

images such as common objects in context (COCO) and 

ImageNet is called transfer learning. As a result of the training, 

when the COCO weight coefficients were used, the learning 

was successful. First, the ResNet50 backbone structure was 

used for feature extraction and was successful. Then the larger 

ResNet101 backbone structure was used and better results 

were obtained than the ResNet50 backbone. 

The Mask R-CNN structure contains many hyperparameters. 

Due to the unpredictability of the different effects of each of 

the many hyperparameters on training, the most appropriate 

values can only be determined by testing. This can make our 

work even more difficult, especially in solving difficult 

problems with limited hardware possibilities. For this reason, 

the carefully selection of hyperparameters has a very 

important place in the implementation of Mask R-CNN since 

it directly affects the success of training. With the datasets 

used in experimental studies, trainings were carried out with 

different hyperparameter values in order to achieve high 

segmentation performance. Hyperparameters in deep learning 

networks do not have a definite value and may vary according 

to criteria such as the size of the used dataset, the hardware 

capacity and the difficulty level of the problem. Optimum 

values for hyperparameters used in deep learning architectures 

are mostly determined empirically, but they can also be 

determined heuristically. 

In this study, the most appropriate values for 

hyperparameters were determined empirically, taking into 

account previous studies. For example, the 

RPN_Anchor_Scales parameter used for the proposal of the 

region to be created per image has to be selected according to 

the image sizes and the object sizes to be detected. In addition, 

it is known that smaller RPN values have to be selected for the 

detection of smaller objects in the images [66]. For this reason, 

large RPN scales (16, 32, 64, 128, 256) were used for larger 

objects in the first stage of the training. In the second stage of 

the training, for the detection of smaller objects, 8x8 size RPN 

scales were added instead of 256×256, and smaller scaled tiles 

(8, 16, 32, 64, 128) were used and had a positive effect on the 

performance.  

Another hyper-parameter, the Train_ROIs_Per_Image 

hyper-parameter, which determines the number of regions of 

interest per image, has a quadratic effect on the computational 

load in the convolution phase. As a result of training using 

64×64 and 128×128 values for Train_ROIs_Per_Image, it has 

been seen that the positive effect on training is low compared 

to the processing load caused by choosing this value as too 

large if there are not many objects on the image, and it has 

been concluded that reducing this value significantly reduces 

the training time. Another hyper-parameter that affects 

training time and object segmentation performance is the 

number of tile suggestions per image, 

RPN_Train_Anchors_Per_Image. This value was chosen as 

512 in the Mask R-CNN article. While the duration of the 

trainings made by choosing 64 or 128 in experimental studies 

was shortened, there was no significant decrease in 

performance. In addition, studies [63, 65, 66] were taken as 

reference when determining weight decay, batch size, learning 

rate and momentum parameters.  

The other critical hyperparameter is the learning rate (LR) 

coefficient, which determines how much learning can be done 

as a result of the operations performed in each layer. If LR is 

chosen too high, it causes the weight coefficients to explode, 

and if it is chosen too small, it causes under-fitting, which is 

the case where learning does not occur. During the training, 

the LR value was decreased from 0.001 to 0.0001, and 

therefore early learning was prevented, training continued for 

an extended period of time, and more successful results were 

obtained. For the detection of large-sized objects on the image, 

the size of the anchor used for the region of interest has to be 

larger, and the anchor size has to be chosen smaller for small 

objects. Since there were both large and small sized objects in 

the WMH images in our study, first large-scaled anchors (16, 

32, 64, 128, 256) were used and then in fine-tuning process, 

small-scaled anchors (8, 16, 32, 64, 128) were used to increase 

performance. In addition, the ROIs hyperparameter, which 

determines the number of regions of interest (RoIs) per image, 

has a quadratic effect on the computational load in the 

convolution phase. If there are not many objects on the image, 

the positive effect on training is much lower compared to the 

processing load caused by selecting this value. For this reason, 

the training time was significantly reduced by using 64×64 and 

128×128 values for Train ROIs Per Image. Another 

hyperparameter affecting the training time and object 

detection performance is the RPN Train Anchors Per Image 

value, which is the number of tile proposals per image. 

Because this value was chosen 64 or 128 values, training time 

was reduced and successful results were obtained. 

The backbone, which consists of network layers where 

convolution operations are conducted from these 

hyperparameters, can be selected according to the difficulty of 

the problem and hardware features. If a small backbone is 

selected for complex problems or a large backbone with many 

layers is selected for simple problems, our network will not 

achieve the expected training performance result. In our study, 

ResNet50 backbone structure and ResNet101 consisting of 

more layers were used for both datasets, and WMH 

segmentation was performed by successfully extracting the 

features of the images using both backbones. 

Since U-Net, is the other technique used for WMH 

segmentation in this study, the technique is simpler than the 

Mask R-CNN technique, and it is easier to implement. While 

Mask R-CNN has about 44.662.942 training parameters with 

ResNet50 and 63.733.406 training parameters with ResNet101, 

only 2.140.065 parameters are trained in the U-Net network. 

However, with U-Net, segmentation can only be done by 

classifying the pixels and background of the objects on the 

image. As in the Mask R-CNN technique, instance 

segmentation cannot be performed in U-Net. While feature 

extraction in U-Net is conducted using convolution operations, 

localization is also provided by transpose convolution 

operations. 

In the experimental studies, 802 images from ISLES 2015 

Ischemic Stroke dataset and 572 images from the WMH 

Segmentation Challenge dataset were selected. These created 

datasets are not large enough for Mask R-CNN training and 

when training was done in this way, the network encountered 

an overfitting problem. Adding a Dropout layer to the network 

and increasing the number of images with data augmentation 

can be widely used to overcome the overfitting problem. In 

this study, the overfitting problem was overcome with data 

augmentation. With data augmentation, ISLES 2015 Ischemic 

Stroke dataset was increased approximately 6 times and the 

10



 

WMH Segmentation Challenge dataset was approximately 10 

times. Thus, the overfitting problem was substantially 

resolved. In addition, Adam optimizer was used for 

optimization in experiments and the sigmoid function was also 

used as the activation function in U-Net deep learning 

technique. 

For the measurement of training performance in U-Net, the 

loss function, which calculates the loss value during the 

training, and the validation loss function, which calculates the 

loss value during the validation phase, are used. Unlike U-Net, 

a multiple loss function is used instead of a single loss function 

during training and validation in Mask R-CNN. The reason for 

this is that classification, bounding box, and mask 

classification are conducted using three different classifiers in 

the output layer. The loss functions of each of these are 

calculated separately. Therefore, the loss function (L) is 

formulated in Mask R-CNN as follows in Eq. (2). 

 

𝐿 = 𝐿𝑟𝑝𝑛_𝑐𝑙𝑎𝑠𝑠 + 𝐿𝑟𝑝𝑛_𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑟𝑐𝑛𝑛_𝑐𝑙𝑎𝑠𝑠 +

𝐿𝑚𝑟𝑐𝑛𝑛_𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑟𝑐𝑛𝑛_𝑚𝑎𝑠𝑘   
(2) 

 

where, 𝐿𝑟𝑝𝑛_𝑐𝑙𝑎𝑠𝑠  and 𝐿𝑟𝑝𝑛_𝑏𝑏𝑜𝑥  represent the class loss and 

bounding box loss values for RPN, respectively, and 

𝐿𝑚𝑟𝑐𝑛𝑛_𝑐𝑙𝑎𝑠𝑠, 𝐿𝑚𝑟𝑐𝑛𝑛_𝑏𝑏𝑜𝑥 and 𝐿𝑚𝑟𝑐𝑛𝑛_𝑚𝑎𝑠𝑘 represent the class 

loss, bounding box loss and mask loss values for Mask R-CNN, 

respectively. 

As a result of the training, the detection and segmentation 

performance of objects was conducted using commonly used 

metrics and compared with the experimental studies in two 

datasets. In segmentation, the performance of the proposed 

method is measured by the similarity of the ground truth mask 

and the segmented image by the proposed method. Dice 

similarity coefficient (DSC), which is one of the frequently 

used metrics for WMH segmentation performance, was used 

in experimental studies. DSC takes a value between 0.0 and 

1.0 [68]. DSC is given in Eq. (3). 

 

DSC (Seggt, Segmask) =
2 |Seggt ∩ Segmask|

|Seggt|+|Segmask|
  (3) 

 

where, 𝑆𝑒𝑔𝑔𝑡  shows the reference segmentation result marked 

by the expert and 𝑆𝑒𝑔𝑚𝑎𝑠𝑘 shows the predicted segmentation. 

Another frequently used metric is Precision (PRC), which 

shows the detection accuracy of the regions with images [69]. 

PRC is shown in Eq. (4), where TP denotes true positives, FP 

denotes false positives. PRC takes also value between 0.0 and 

1.0. 

 

PRC =
TP

TP+FP
  (4) 

 

The PRC metric can measure the performance of detected 

objects. For this reason, it is insufficient to measure the 

performance effect of undetected objects. PRC is also 

sensitivity for detecting individual lesions [70]. For this reason, 

the Recall (RC) metric shown in Eq. (5). is also used in 

experimental studies. Here, FN represents false negative 

values and TP denotes true positive. RC metric gives the ratio 

between the detected objects and the total number of objects 

that need to be detected. 

 

RC =
TP

TP+FN
  (5) 

 

Although these two metrics provide information about the 

performance of the proposed methods, they alone are 

insufficient for performance. For this reason, the F1 metric, 

which was created by taking the harmonic mean of RC and 

PRC values, was also used [71]. The F1 metric is given in Eq. 

(6). 

 

F1 = 2x
PRC∗RC

PRC+RC
  (6) 

 

4.1 Results for ISLES 2015 stroke challenge dataset 

 

In this study, data augmentation was applied for the dataset 

because the results were not successful enough in the pre-

trainings performed in the experimental studies and the loss 

function could not be observed to improve over time. The 

ISLES 2015 dataset set was increased from 802 images to 

4752 images by applying data augmentation functions 

(between 4 and 7 times) in Table 2. 

The loss and validation loss (val_loss) values in epoch 

during training for Mask R-CNN and U-Net deep learning 

techniques on ISLES 2015 dataset are denoted in Figure 8(a) 

and Figure 8(b), respectively. Here, it is seen that the patterns 

of loss curves formed in the training and validation stages of 

both deep learning techniques are similar and the networks are 

successful. 

 

 

 
 

Figure 8. The loss and validation loss (val_loss) values in 

epoch during training and validation of (a) Mask R-CNN and 

(b) U-Net deep learning techniques on ISLES 2015 dataset 

 

In experimental studies using the stroke dataset with the U-

Net technique, 0.92 segmentation scores on pixel basis 

according to the DSC metric, and 0.89, 0.95 and 0.92 scores 

according to the PRC, RC and F1 metrics were achieved, 

respectively. The results from some of the ISLES 2015 MR 

images for stroke detection are shown in Figure 9. Here, the 

original MR image, ground truth masks of the stroke lesion 

area marked by the expert, and semantic segmentation 

masking of the lesion areas detected with U-Net are given for 

four different MR images. As a result of the experimental 

studies performed by the Mask R-CNN using the stroke 
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dataset, 0.93 DSC score was achieved on pixel basis. In 

addition, as a result of the experiments, 0.97 PRC, 0.98, RC 

and 0.98 F1 scores were achieved. 

 

 
 

Figure 9. U-Net segmentation results in ISLES 2015 dataset 

for some MR images 

 

The results of some images obtained in the experimental 

studies for the stroke dataset are shown in Figure 10. Here, the 

original MR image, masks of the ground truth marked by the 

expert, the segmented stroke area (predicted mask) as a result 

of the Mask R-CNN prediction, overlapping of segmentation 

and ground truth (predicted segmentation) and the zoomed 

image of the stroke lesion area are given for four different MR 

images. In Figure 10, masking in green represents the 

referenced ground truth, and the masking region in red denotes 

the region segmented by the proposed Mask R-CNN technique. 

The orange-colored region shows the overlap of the predicted 

segmentation and the ground truth masks. 

The trainings were conducted by trying data augmentation 

functions and fine-tuned hyperparameter values to achieve 

high performance with the stroke dataset. In experimental 

studies, successful WMH segmentation results were obtained 

with U-Net and 4 different Mask R-CNN networks created 

using different hyperparameters. The properties of 

hyperparameters used for fine-tuning in networks are denoted 

in Table 3, comparatively. 

 

 
 

Figure 10. Mask R-CNN segmentation results in ISLES 

2015 dataset for some MR images 

 

Table 3. General characteristics of deep learning networks and hyperparameters to fine-tuning used in ISLES 2015 dataset for 

training 

 
Parameter Stroke MRCNN #1 Stroke MRCNN #2 Stroke MRCNN #3 Stroke MRCNN #4 U-Net 

Batch size 2 4 2 4 32 

Kernel size 3×3 3×3 3×3 3×3 3×3 

Pooling 3×3 max poling 3×3 max poling 3×3 max poling 3×3 max poling 2×2 max pooling 

Activation function ReLU ReLU ReLU ReLU ReLU 

Classification ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for out 

channel>1) 

Optimizer SGD SGD SGD SGD Adam 

Learning Rate 0.001 (Each epoch 

after the 5th is 

multiplied by 0.99) 

0.001 (Each epoch 

after the 5th is 

multiplied by 0.99) 

0.001 (Each epoch 

after the 5th is 

multiplied by 0.99) 

0.001 (Each epoch 

after the 5th is 

multiplied by 0.99) 

0.001 

Backbone ResNet 101 ResNet 101 ResNet 50 ResNet 50 - 

RPN_Anchor_Scales 16,32,64,128,256 

first stage, 

8,16,32,64,128 

second stage (for 

last 20 epoch) 

16,32,64,128,256 16,32,64,128,256 16,32,64,128,256 - 

Train_ROIs_Per_Image 256 128 256 128 - 

RPN_Train_Anchors_P

er_Image 

256 128 256 128 - 

Detection_Min_Confide

nce 

0.70 first stage, 0.85 

second stage 

0.85 0.85 0.85 - 

Detection_NMS_Thresh

old 

0.70 first stage, 0.80 

second stage 

0.80 0.80 0.80 - 

RPN_NMS_Threshold 0.70 first stage, 0.80 

second stage 

0.80 0.80 0.80 - 
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Table 4. Training times of deep learning techniques for ISLES 2015 stroke dataset in experimental studies 

 

Technique Epoch 

Size 

Step Size  

(per Epoch) 

Training Time 

per Image (Second) 

Test Time 

per Image (Second) 

Total Training Time 

(Minutes) 

Stroke MRCNN #1 70 2378 0.273 0.362 1515.78 

Stroke MRCNN #2 70 1200 0.195 0.352 1092 

Stroke MRCNN #3 70 2378 0.261 0.357 1448.07 

Stroke MRCNN #4 70 1200 0.164 0.346 914.4 

U-Net 120 148 0.017 0.213 165.168 

 

In experimental studies with networks whose properties are 

given in Table 3, the performances of the training and test for 

each network are shown in Table 4 comparatively. If the two 

tables are evaluated together, it is seen that the training time 

gets shorter as the batch size increases. This is due to the fact 

that the number of images processed per unit of time increases 

in direct proportion to the batch size. 

In addition, as the Mask R-CNN networks consist of deep 

CNN layers, the size of the RPN_Train_Anchors_Per_Image 

and Train_ROIs_Per_Image parameters used for object 

localization and the size of the data set increase, the processing 

load and RAM requirement increase. For this reason, due to 

the hardware constraints, the batch size could be set to a 

maximum of 4 in the trainings made with Mask R-CNN for 

the stroke dataset with a single GPU. In the trainings 

performed with the U-Net network in the same training set, the 

batch size could be set to a much larger value such as 32. 

Therefore, the training time of the U-Net network is shorter.  

The average performance results according to different 

measurement metrics are given in Table 5, and the box plot in 

Figure 11 for DSC scores is denoted. It is seen that DSC scores 

vary in a narrow range between 0.89 and 0.93. The highest and 

lowest DSC scores on an image basis were obtained with U-

Net and WMH MRCNN #1 with 0.98 and 0.75, respectively. 

 

Table 5. Segmentation results of deep learning techniques for 

ISLES 2015 stroke dataset according to metrics 

 
Technique PRC RC F1 DSC 

Stroke MRCNN #1 0.99 0.99 0.99 0.93 

Stroke MRCNN #2 0.98 0.98 0.98 0.93 

Stroke MRCNN #3 0.99 0.98 0.98 0.93 

Stroke MRCNN #4 0.97 0.99 0.98 0.93 

U-Net 0.89 0.95 0.92 0.92 

 

 
 

Figure 11. Box plot distribution of the deep learning 

techniques used in the segmentation of stroke lesions 

according to DSC scores 

4.2 Results for WMH segmentation challenge dataset 

 

As in the stroke dataset, data augmentation was applied in 

the WMH dataset. The dataset consisting of 572 images was 

increased between 8 and 12 times and was increased to 6000 

images. In experimental studies using the WMH dataset with 

the Mask R-CNN technique, 0.83 segmentation score was 

achieved on a pixel basis according to the DSC. In addition, 

0.83, 0.73, and 0.78 scores were obtained for PRC, RC, and 

F1, respectively. 

The loss and validation loss (val_loss) values in epoch 

during training for Mask R-CNN and U-Net on WMH dataset 

are denoted in Figure 12(a) and Figure 12(b), respectively. 

Here, although it is seen that the patterns of the loss curves 

formed in the training and validation stages of both deep 

learning techniques are similar and the networks are successful, 

the U-Net deep learning network has become stable in a 

shorter time and the loss values are lower. 

In the experimental studies carried out using the U-Net on 

the WMH dataset, 0.82 segmentation score on pixel basis was 

achieved for DSC. In addition, 0.83, 0.83 and 0.82 scores were 

obtained for PRC, RC and F1, respectively. The results of 

some segmented images on WMH dataset with U-Net are 

shown in Figure 13. Here, original MR images (a, b, c, d), 

expert-marked stroke lesion area (ground truth), and semantic 

segmentation masking of U-Net detected lesion areas are 

presented. 

 

 

 
 

Figure 12. The loss and validation loss (val_loss) values in 

epoch during training and validation of (a) Mask R-CNN and 

(b) U-Net deep learning techniques on WMH segmentation 

challenge dataset 
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Figure 13. Some segmented MR images with U-Net 

technique in WMH Segmentation Challenge dataset 

 

Some images of successful WMH segmentation with Mask 

R-CNN deep learning technique in WMH Segmentation 

Challenge dataset are shown in Figure 14. Here, the original 

MR image for four different MR images, WMH region 

(ground truth) masks marked by the expert, WMH region 

segmented with Mask R-CNN (predicted mask), over-lapping 

of Mask R-CNN segmentation and ground truth (predicted 

seg.), zoomed-in view of the WMH segmentation result are 

shown. 

In the trainings performed with the WMH Segmentation 

Challenge dataset, many trainings were conducted with 

various data augmentation techniques and hyperparameter 

values by following the procedures in the other dataset. As a 

result of the experimental studies in the WMH Segmentation 

Challenge dataset, very successful results were obtained with 

U-Net and three different Mask R-CNN networks created 

using different hyperparameters. However, since the WMH 

lesions in the WMH Segmentation Challenge dataset are much 

smaller and more diverse, two-stage training was applied, first 

by segmentation of larger lesions, then segmentation of much 

smaller lesions. The properties of the networks and 

hyperparameters used for automatic segmentation in the 

WMH Segmentation Challenge dataset are given in Table 6, 

comparatively.  

 

 
 

Figure 14. Some segmented MR images with Mask R-CNN 

technique in WMH Segmentation Challenge dataset 

 

Table 6. The networks and hyperparameters to fine-tuning used for automatic segmentation in training of the WMH 

segmentation challenge dataset 

 
Parameter WMH MRCNN #1 WMH MRCNN #2 WMH MRCNN #3 U-Net 

Batch Size 2 4 4 32 

Kernel Size 3×3 3×3 3×3 3×3 

Pooling 3×3 max poling 3×3 max poling 3×3 max poling 2×2 max pooling 

Activation Function ReLU ReLU ReLU ReLU 

Classification ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for mask) 

ReLU+ softmax 

(sigmoid for out 

channel>1) 

Optimizer SGD SGD SGD Adam 

Learning Rate 0.001 (Each epoch 

after the 5th epoch is 

multiplied by 0.98) 

0.001 (Each epoch 

after the 5th epoch is 

multiplied by 0.98) 

0.001 (Each epoch 

after the 5th epoch is 

multiplied by 0.98) 

0.001 

Backbone ResNet 101 ResNet 101 ResNet 50 - 

RPN_Anchor_Scales 8,16,32,64,128 first 

stage, 

4,8,16,32,64 second 

stage (for last 

20epoch) 

8,16,32,64,128 first 

stage, 

4,8,16,32,64 second 

stage (for last 

20epoch) 

8,16,32,64,128 first 

stage, 

4,8,16,32,64 second 

stage (for last 

20epoch) 

- 

Train_ROIs_Per_Image 256 128 128 - 

RPN_Train_Anchors_Per_Image 512 128 128 - 

Detection_Min_Confidence 0.60 0.60 0.60 - 

Detection_NMS_Threshold 0.60 0.60 0.60 - 

RPN_NMS_Threshold 0.70 0.70 0.70 - 
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Table 7. Training and test times of deep learning techniques in WMH segmentation challenge dataset according to the number of 

epochs and step size 

 
Technique Epoch Size Step Size  

(per Epoch) 

Training Time 

per Image 

(Second) 

Test Time 

per Image (Second) 

Total Training Time 

(Minutes) 

WMH MRCNN #1 70 3000 0.282 0.615 3384.34 

WMH MRCNN #2 70 1500 0.193 0.591 2316 

WMH MRCNN #3 70 1500 0.154 0.573 1846.54 

U-Net 70 187 0.017 0.275 206.25 

 

Table 8. Segmentation performance results of deep learning 

techniques in WMH segmentation challenge dataset 

according to metrics 

 
Technique PRC RC F1 DSC 

WMH MRCNN #1 0.83 0.73 0.78 0.83 

WMH MRCNN #2 0.86 0.71 0.78 0.81 

WMH MRCNN #3 0.8 0.77 0.79 0.81 

U-Net 0.83 0.83 0.82 0.82 

 

In Table 7, training and test times are presented 

comparatively according to the number of epochs and step size 

in the experimental studies carried out with the deep learning 

techniques whose properties are given in Table 6 in the WMH 

Segmentation Challenge dataset. From this, it is clearly seen 

that the training time gets shorter as the batch size increases. 

Also, since the WMH Segmentation Challenge dataset is 

larger in size, the training times are longer than the other 

dataset. 

Table 8 presents the results obtained in the experimental 

studies. According to the DSC metric, the most successful 

results were obtained with the WMH MRCNN #1 

configuration. On the other hand, according to the PRC metric, 

the most successful result was achieved in the WMH MRCNN 

#2 configuration. Moreover, according to RC and F1 scores, 

U-Net achieved the most successful result. In addition, the 

results obtained with the U-Net network and the Mask R-CNN 

networks are very close to each other. 

The average segmentation performances according to the 

DSC metric for four different networks used in the 

experimental studies conducted in the WMH Segmentation 

Challenge dataset are shown with the box plots in Figure 15. 

With the U-Net deep learning technique, as in the other dataset, 

it is seen that the DSC scores are in the widest range of 

distribution. On the other hand, the narrowest distribution 

range for DSC was obtained with WMH MRCNN #3. In 

addition, the highest and lowest performance results on the 

basis of images were also obtained with the U-Net deep 

learning model. The average DSC scores are very close to each 

other and the best score was obtained with WMH MRCNN #1 

with 0.83. For DSC scores, the WMH Segmentation Challenge 

dataset has a much wider distribution range than the other 

dataset. In addition, lower scores were obtained for DSC in the 

WMH Segmentation Challenge dataset compared to the other 

dataset. The main reasons for this situation are that the WMH 

dataset contains images of different quality collected from 

three different MR devices, and WMH lesions are smaller than 

stroke lesions and contain very small lesions such as 1-2 pixels. 

Segmentation of lesions in the WMH dataset is less 

successful than in the stroke dataset. The fact that the images 

in the WMH dataset contain a large number of small lesions 

consisting of 1-2 pixels and therefore the labeling errors of the 

experts increase, is due to the fact that the segmentation of 

these lesions is much more difficult. In addition, the use of 

images obtained from three different MR devices in the WMH 

dataset and the low quality of some of the images collected 

from the devices made it difficult to distinguish hyperintense 

developments. 

 

 
 

Figure 15. The average segmentation performances 

according to the DSC metric for four different networks used 

in the experimental studies conducted in the WMH 

segmentation challenge dataset 

 

4.3 Comparative analysis of the result 

 

A comparison of the performance of our study with some 

studies conducted for WMH segmentation is presented in 

Table 9. The DSC metric is used to compare the segmentation 

performances of the related studies. The DSC metric is a 

widely used metric in studies on segmentation because it 

reveals how much the detected segmentation mask and ground 

truth mask overlap on a pixel basis. It is seen that CNN-based 

semantic segmentation techniques are preferred in most of the 

existing studies proposed for WMH segmentation. In this 

study, semantic segmentation with U-Net and sample 

segmentation with Mask R-CNN were used. The Mask R-

CNN which is used relatively less in studies and has a complex 

infrastructure, long training time, and requires more powerful 

hardware, relatively more successful results have been 

obtained compared to the U-Net technique. DSC scores 

showing segmentation performance were used to compare the 

results of the methods. 

Although the results obtained with U-Net in our study are 

close to previous studies, our scores are mostly successful than 

most of them. It is seen that the results obtained with Mask R-

CNN are similarly successful than previous studies. It is seen 

that the two-stage data augmentation and the detection of 

difficult-to-detect images in the dataset and applying more 

data augmentation are beneficial and increase the performance 

especially in the WMH dataset. It has been concluded that FPN, 
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RPN, RoI pooling approaches provided by Mask R-CNN 

network, hyperparameter optimization and the use of pre-

trained networks and transfer learning technique are also 

decisive in the performance. 

In other studies, using the WMH Segmentation Challenge 

dataset, it is seen in Table 9 that DSC scores vary between 0.77 

and 0.84. The most successful result was Liu et al. [72] used 

the WMH Segmentation Challenge dataset for training but 

used the ISLES 2015 stroke dataset instead of the WMH 

dataset for testing, they could only achieve a 0.84 dice score. 

In our study, the WMH Segmentation Challenge was used for 

both training and testing with the proposed methods, and 0.83 

segmentation success was achieved according to the dice 

metric by using Mask R-CNN. Likewise, in other studies 

suggested earlier on the ISLES 2015 dataset, a segmentation 

performance between 0.76 and 0.85 was achieved according 

to the DSC score. In our study, DSC scores of 0.93 were 

achieved with the Mask R-CNN, and higher performance was 

obtained compared to previous studies.  

In addition, unlike most of the other studies, extensive tests 

were made on two different data sets, and the training and test 

performances were given comparatively. Extensive 

experimental studies were carried out to determine the fine-

tuned hyperparameter values, and thus the instance 

segmentation method was successful for WMH segmentation, 

which is a difficult problem. As a result, it has been revealed 

that it is important to determine the optimized values of the 

network parameters before comparing different methods in 

deep learning networks and applying novelty to the model. 

Statistical analyzes were also performed in the study to 

reveal the significant relationship between DSC scores 

obtained using WMH and Stroke datasets. For statistical 

analysis, the two-sided Wilcoxon signed-rank test was applied 

since the data were normally distributed and there was a 

dependent variable for the results. The Wilcoxon signed-rank 

test is a non-parametric statistical test that evaluates the 

difference between the medians of the data of two dependent 

variables [73]. As can be seen in Table 9 used WMH 

Segmentation Challenge dataset, p-value (p= .011 < .05) was 

statistically significant in the two-sided Wilcoxon signed-rank 

test (N=10) between this study and other studies (Li et al. [45], 

Chen et al. [52], Park et al. [70], Hou et al. [71], Liu et al. [72], 

Wu et al. [74], Rathore et al. [75], Lee et al. [76], Zhou et al. 

[77] and Li et al. [78]). On the other hand, in ISLES 2015 

dataset, the p-value (p= .012 < .05) was reached to be 

statistically significant in the two-sided Wilcoxon signed-rank 

test (N=9) between this study and other studies (Chen et al. 

[52], Khezrpour et al. [69], Liu et al. [72], Clèrigues et al. [79], 

Karthik et al. [80], Vupputuri et al. [81], Liu et al. [82], Wang 

et al. [83] and Rajinikanth et al. [84]). 

 

 

5. CONCLUSION AND FUTURE DIRECTIONS 

 

In this study, Mask R-CNN, which provides a novel 

approach for automatic segmentation of WMH, was 

implemented by fine-tuning the hyperparameters as instance 

segmentation. Thanks to this approach, it has been seen that it 

has contributed to the detection of hyper-intensities 

encountered in brain MRI images with higher performance by 

experts. In addition, in our study, a detailed performance 

comparison of U-Net and different fine-tuned Mask R-CNN 

deep learning models were performed. In the study, WMH 

Segmentation Challenge and ISLES 2015 Challenge dataset 

were used in experimental studies. In experimental studies, the 

highest DSC score of 0.83 was achieved with the Mask R-

CNN technique in experimental studies conducted using the 

WMH Segmentation Challenge dataset. In the previous studies 

proposed using this dataset, similar results were obtained in 

this study, and it was observed that the highest DSC scores 

were reached in these studies up to 0.84. Assessing the results, 

it is clear that the obtained WMH segmentation performance 

is successful for the WMH segmentation of the Mask R-CNN 

approach. Here, it has been proved by training and validation 

loss graphs in Figure 8 and Figure 13 that the segmentation 

performance obtained with the dataset is not unique to the 

dataset, that is the network gets rid of overfitting. The biggest 

reason why the performance ratio in the WMH Segmentation 

Challenge dataset did not increase further is that it contains 

very small WMH regions on a pixel basis. In addition, dataset 

size, magnetic field strength, cross-sectional area, Repetition 

Time (TR) and Echo Time (TE) of the MR device, noise and 

resolution values of images acquired by MR devices, and 

differences in expert masks may also affect the segmentation 

of WMH. The limitations of the study are the limited data sets, 

the difficulty of accessing the data sets, the need for more 

powerful equipment in the training phase in case of larger MR 

images. Due to these limitations, although the current deep 

learning techniques are useful in the decision-making 

processes of physicians in difficult problems such as WMH 

segmentation, it has been observed that they are not yet at a 

level that can be used for the creation and preliminary 

evaluation of decision support systems in the radiology units 

of hospitals. It is seen that the development and accessibility 

of powerful GPU components, the establishment of larger 

working groups to create and label data sets, and the 

development of techniques that can achieve much more 

successful results with limited resource use can enable 

decision-support systems to be usable. 

On the other hand, in this study, higher performance was 

achieved with a 0.93 DSC score using Mask R-CNN in 

experimental studies conducted with the ISLES 2015 dataset. 

In addition, a very high success rate of 0.99 was achieved in 

the detection of lesions in the ISLES 2015 dataset. The most 

important reason for this can be said that the lesion sizes on 

the images in the dataset are larger and more distinct, and thus 

expert mask is done with higher accuracy. As a conclusion, 

higher DSC scores for WMH segmentation performance were 

achieved using the Mask R-CNN compared to previous studies. 

Hyperintense lesions were segmented using two datasets 

consisting of MR images. While one of the datasets consists of 

disease images belonging to a certain class (stroke), the other 

dataset consists of images in which all hyperintensities are 

classified as WMH in general. MICCAI 2017 WMH 

Challenge event was held in 2017, and then this dataset was 

provided as publicly-available. In this challenge, it was seen 

that CNN-based methods were generally successful and U-Net 

was used for the first time. In subsequent studies, it has been 

observed that the performance of the segmentation U-Net and 

methods developed by modifying the U-Net model is high. 

The biggest advantages of the U-Net model are that it can 

achieve good performance with a small number of images, and 

that it can train many images at the same time (high batch size) 

due to the low number of CNN layers. The application can be 

run with low-specification hardware and can get fast results. 

High performance has also been achieved with the Mask R-

CNN network, which is a technique used in this study for 

WMH segmentation. The most important innovation that 
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Mask R-CNN brought to the studies with deep learning-based 

networks is that if there is more than one object belonging to 

the same class, they are not only included in a single class 

identifier as in semantic segmentation but a unique descriptive 

object identifier is assigned to each object. In addition, 

individual localization information of each object is obtained 

in Mask R-CNN. In this way, it can also detect the exact 

location and size of each WMH lesion in the brain. This 

technique used in the Mask R-CNN model is called in-stance 

segmentation. In this respect, Mask R-CNN has a special place 

compared to other segmentation methods developed before it, 

and it can provide convenience in the 3D segmentation of 

lesions. There are a number of difficulties in the 

implementation of the Mask R-CNN network. In instance 

segmentation, the network architecture of Mask R-CNN is 

complicated by the feature extraction by focusing on each 

object separately (regions of interest), the use of FPN for 

pooling the regions of interest, the use of RPN structure for 

region recommendation, and the fact that it contains too many 

hyperparameters to optimize. With simple CNN, when 

256×256 MR images are used, batch size images such as 32 

and 64 can be processed with a single GPU, while this number 

can be limited to 2, 4, or at most 8 images at the same time for 

instance segmentation. 

 

Table 9. The comparison of this study and some previously proposed studies for WMH segmentation 

 
Study and Year Dataset MR Sequences WMH Type Method DSC 

(Guerrero et al. 

[44], 2018)  

WMH (their own dataset) T1-w and FLAIR WMH CNN (uResNet) 0.70 

(Li et al. [45], 

2018) 

MICCAI 2017 WMH T1-w and FLAIR WMH U-Net 0.80 

(Manjón et al. [85], 

2018) 

AIBL 

MICCAI 2008 MS Lesion  

FLAIR Alzheimer 

MS 

Ensemble of NN and 

patch-based voting 

0.78 

(Jiang et al. [43], 

2018) 

Their own datasets (OATS, 

Sydney MAS) 

T1-w and FLAIR WMH UBO detector, k-NN 0.85 

(Wu et al. [74], 

2019) 

MICCAI 2017 WMH T1-w and FLAIR WMH SC U-Net  0.78 

(Liu et al. [72], 

2020) 

MICCAI 2017 WMH (train), 

ISLES 2015 (test) 

T1-w and FLAIR WMH, Ischemic 

stroke 

M2DCNN 0.84 

(Liu et al. [82], 

2020) 

ISLES 2015 (SISS) T1-w, T2-w, DWI 

and FLAIR 

Stroke 

 

DRANet (U-Net 

based) 

0.76 

(Rathore et al. 

[75], 2020) 

MICCAI 2017 WMH T1, FLAIR WMH ResNet+ SVM 0.80 

(Lee et al. [76], 

2020) 

Acute Infarct  

(Asan Medical dataset) 

DWI 

 

Stroke 

 

U-Net+ SE (squeeze 

and excitation blocks) 

0.85 

 

MICCAI 2017 WMH FLAIR WMH U-Net+ SE 0.77 

(Zhou et al. [77], 

2020) 

MICCAI 2017 WMH T1, FLAIR WMH U-Net+ CRF+ Spatial 0.78 

(Hou et. al. [71], 

2020) 

MICCAI 2017 WMH T1, FLAIR WMH HA-DCN 0.80 

(Clerigues et al. 

[79], 2020) 

ISLES 2015 (SISS) T1, T2, FLAIR, 

DWI, CBF, CBV, 

TTP and Tmax 

Stroke U-Net 0.59 

ISLES 2015 (SPES) 0.84 

(Park et al. [70], 

2021) 

MICCAI 2017 WMH T1-w and FLAIR WMH U-Net+ highlighting 

foregrounds (HF) 

0.81 

(Karthik et al. [80], 

2021) 

ISLES 2015 (SISS) T1-w, T2-w, DWI 

and FLAIR 

Stroke Multi-level RoI 

aligned CNN 

0.77 

(Vupputuri et al. 

[81], 2021) 

ISLES 2015 (SISS)  T1-w, T2-w, DWI 

and FLAIR 

Stroke MCA-DN CNN 0.79 

 ISLES 2015(SPES) 0.85 

(Rajinikanth et al. 

[84], 2021) 

ISLES 2015 T1-w, T2-w, DWI 

and FLAIR 

Stroke VGG+ SegNet 0.93 

(Li et al. [78], 

2022) 

MICCAI 2017 WMH T1-w and FLAIR WMH U-Net 0.83 

Chinese National Stroke Registry 

(CNSR) 

Stroke 0.78 

(Uçar and Dandıl 

[86], 2022) 

MICCAI 2008 MS Lesion (1) 

T2-w 

MS  

Mask R-CNN 

0.76 

Their own brain tumor  

dataset 

TCGA-LGG (2) 

Brain tumors  0.88 

(1)+(2) MS+ Brain tumor 0.82 

(Chen et al. [52], 

2022) 

ISLES 2015 (SISS) FLAIR Stroke CNN Posterior-CRF 0.61 

MICCAI 2017 WMH T1 and FLAIR WMH (U-Net based) 0.79 

(Wang et al. [83], 

2022) 

ATLAS T1-w Stroke U-Net 0.93 

ISLES 2015 T1-w, T2-w, DWI 

and FLAIR 

0.79 

ISLES 2018 0.67 

(Khezrpour et al. 

[69], 2022) 

ISLES 2015 (SISS) FLAIR Stroke U-Net 0.90 

Proposed study 

MICCAI 2017 WMH 

FLAIR 

WMH 
Mask R-CNN 0.83 

U-Net 0.82 

ISLES 2015 (SISS) 
Stroke 

Mask R-CNN 0.93 

U-Net 0.92 
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It is seen that deep learning is successful for the detection 

and segmentation of WMH lesions on MR images, and there 

is a need for more clinical, experimental, and algorithmic 

studies to develop new approaches in this regard. As a result 

of the experimental studies, it is also very important to develop 

systems that can make it easier for physicians to make 

decisions and reduce their workload. It has been concluded 

that instance segmentation can be useful for image 

segmentation. Data augmentation methods are beneficial in 

increasing performance, but this provides limited 

improvement. In addition, the pre-trained network coefficients 

used for instance segmentation may be obtained by training 

very large datasets such as COCO, and ImageNet, consisting 

of different image classes. Similarly, it is thought that pre-

training weight coefficients can be obtained and contribute to 

the increase of performance with large datasets containing 

only medical images belonging to different disease classes. In 

addition, it is thought that Mask R-CNN and similarly 

producing networks can be used more frequently in the future, 

especially for determining the classes of objects in MR images, 

drawing the boundaries of each object with descriptive 

information separately, and detecting 3D objects from MR 

images. 

As a result, it has been seen that deep learning-based 

decision support systems can be developed and these systems 

can be a tool that physicians can apply during the automatic 

pre-assessment phase and in cases where physicians are 

undecided. In this way, it has been seen that early stage disease 

findings that may be overlooked can be detected, the treatment 

processes of the patients can be facilitated and health 

expenditures can be reduced. However, there are some 

difficulties in front of the development of these systems to be 

more effective and successful. It is clearly seen that powerful 

hardware components become available and besides software 

techniques that can achieve more successful results, 

comprehensive data sets are needed. In obtaining these needed 

data sets, it has been observed that there are limitations in 

terms of expert verification and interpretation, as well as data 

privacy and security concerns, and these should be overcome. 
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