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Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by 

restricted, repetitive behaviors and impaired social interaction. Currently, the identification 

of individuals with ASD largely relies on subjective assessments, presenting a challenge for 

researchers to distinguish between Typically Developing (TD) children and those with ASD. 

This study analyzes EEG data from 10 children with ASD and 10 TD children in response 

to an audio-video stimulus. Two separate analyses were performed on EEG frequency bands 

within the range of 0-70 Hz and specific frequency bands of 8-30 Hz, aiming to identify the 

brain lobe region that yields the most significant discrimination between ASD and TD. 

Parameters such as Linear Frequency Cepstral Coefficients (LFCC), Cepstral energy, signal 

energy, delta, and delta-delta derivatives were utilized for the analysis. The study deployed 

classification techniques including K-Nearest Neighbors (KNN), Multi-Layer Perceptron 

(MLP), Decision Tree, Support Vector Machine (SVM), Bagging KNN, and Random Forest 

(RF). The results indicated that KNN surpassed all other classification models for frequency 

bands within the range of 0-70Hz, achieving a discriminating accuracy of 98.3% for ASD 

and TD in the central lobe region (C3, C4, Cz). However, KNN did not yield a significant 

level of accuracy when applied to a specific frequency band; it was improved by employing 

Bagging KNN, reaching 93.8% in the central lobe region (C3, C4, Cz). The electrode 

combination in the central lobe (C3, C4, and Cz) demonstrated superior discrimination 

between TD and ASD compared to other brain lobes.  
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1. INTRODUCTION

Autism, a neurodevelopmental disorder, profoundly 

influences cognitive processing and impedes communication 

and social interaction. The distinct behavioral traits associated 

with this condition, such as social isolation, significantly 

impact the affected individual's quality of life. The 

neurological underpinnings of Autism Spectrum Disorder 

(ASD) were postulated through clinical case studies conducted 

by pioneering medical professionals Hans Asperger and Leo 

Kanner [1, 2]. ASD arises from a complex interplay of genetic 

and environmental factors. Genetic risk factors, including 

chromosomal abnormalities and gene deficiencies, affect an 

estimated 10% to 20% of individuals with ASD. The 

recurrence rate of ASD in siblings is estimated at 5% to 8%, 

indicating a higher susceptibility within ASD households [3]. 

Accurate prevalence estimates of ASD are indispensable for 

shaping public policy, raising awareness, and guiding research 

[3]. In the United States, the Centers for Disease Control and 

Prevention (CDC) established the Autism and Developmental 

Disabilities Monitoring (ADDM) Network to track the 

prevalence of ASD. This national surveillance program 

collects data on ASD in children, utilizing health and 

education records to monitor the incidence and characteristics 

of the disorder [4]. Similarly, in Canada, the National Autism 

Spectrum Disorder Surveillance System monitors children 

aged 5 to 17 across several provinces and territories [5]. 

Conventional ASD diagnoses predominantly rely on 

subjective caregiver questioning. Advances in brain imaging, 

particularly through structural Magnetic Resonance Imaging 

(MRI), have unveiled atypical brain structures in individuals 

with ASD. Functional MRI studies also highlight unusual 

brain activity during social cognition tasks. However, the high 

cost of MRI and its unsuitability for newborns have steered 

researchers towards Electroencephalogram (EEG) as a cost-

effective and portable alternative [6]. Despite containing 

crucial information about brain function, EEG signals have 

lacked a standardized approach for analysis. Previous studies 

have employed anomaly detection methods such as Isolation 

Forest, Angle-based Outlier Detector, and Minimum 

Covariance Determinant models to analyze EEG patterns in 

autistic children [7]. The coherence between EEG channels 

has assessed using the NeuCube architecture [8]. The analysis 

focused on the strength of self-similarity in the signals, 

utilizing Hurst exponents derived from Detrended Fluctuation 

Analysis (DFA) outputs [9]. 

Within the area of EEG classification, techniques have 

automated to improve accuracy [10]. These techniques involve 
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extract features from the time, frequency, and time-frequency 

domains. In this current research, the focus is on extracting 

cepstral domain features. In 1937, Mel was proposed as a pitch 

unit, and in 1963, the cepstrum was introduce by BP Bogert, 

MJ Healy, and JW Tukey for analyzing periodic structures in 

frequency spectra. Cepstral analysis, coupled with a frequency 

scale developed by Davis and Mermelstein in the 1980s, 

emerged as a potent tool for speech signal processing and 

natural language recognition [11]. Mel Frequency Cepstral 

Coefficients (MFCC), which extracts features from signals in 

the frequency domain, help reduce dimensionality and aid in 

anomaly detection in brain activity [12, 13]. MFCC offers 

benefits such as noise resistance and pattern identification in 

the frequency domain [14], and it has been successful in 

speech recognition and natural language processing [15-17]. 

Linear Frequency Cepstral Coefficients (LFCC) retains 

lower and higher frequency characteristics, rendering it more 

effective than MFCC in specific applications [18]. In this 

research, LFCC is utilizing to characterize the spectral 

envelope of EEG to improve classification between ASD and 

TD individuals [19]. Parameters such as Cepstral Energy and 

Signal energy, along with their derivatives, are incorporated to 

enhance the accuracy [20]. 

The classification of EEG signals in this research involves 

four classifiers: K-Nearest Neighbors (KNN), Decision Tree, 

Multi-Layer Perceptron (MLP), and Support Vector Machine 

(SVM), along with ensemble methods like Bagging and 

Random Forest. These techniques aim to distinguish ASD and 

TD children using EEG signals, demonstrating promising 

results. 

The significant contributions of this work are as follows: 

1. The proposed study aims to develop two distinct linear 

scale filter banks. One filter bank designed and 

employed to capture all frequency bands present in 

EEG, while the other specifically designed and used 

for extracting the alpha and beta frequency bands. 

2. An analysis is conducted separately on all frequency 

bands and alpha and beta frequency bands in EEG to 

identify the brain region that exhibits the highest level 

of discrimination between individuals with ASD and 

those with TD. 

 

The article has organized as follow: Section 2 provides a 

comprehensive review of previous experiments that utilized 

EEG data for the ASD and TD classification. The 

methodology has briefly outlined, and the model presented in 

Section 3. Section 4 extensively details the EEG signal 

classification results, which are then compared to existing 

machine learning models and discussed. Finally, Section 5 

concludes the paper. 

 

 

2. RELATED WORKS 

 

2.1 Frequency domain features 

 

In the study, Igberaese and colleagues employed the K-

Nearest Neighbors (KNN) technique to classify Power 

Spectral Density (PSD). They found significant variations 

between individuals with autism and control subjects. Through 

the KNN classification algorithm, they achieved an average 

accuracy rate of 89.29% in classification of PSD estimates 

[21]. 

 

2.2 Time-frequency domain features 

 

In a different approach, Abdolzadegan et al. [22] combined 

both linear and nonlinear features, such as Fast Fourier 

Transform (FFT), Wavelet Transform, Power Spectrum, 

Entropy, Lyapunov Exponent, Correlation Dimension, Fractal 

Dimension, Synchronization Likelihood, and Detrended 

Fluctuation Analysis, to characterize EEG signals. They also 

incorporated Density-based clustering for artifact removal, 

ensuring robustness. Feature selection has performed using 

various criteria, including Minimum-Redundancy Maximum 

Relevancy (mRmR), Genetic Algorithm (GA), Mutual 

Information (MI), and Information Gain (IG). The study found 

that the Support Vector Machine (SVM) achieved a 

classification accuracy of 90.57%, while the KNN classifier 

recorded an accuracy of 72.77%. Additionally, the sensitivity 

of SVM and KNN has found to be 99.91% and 91.96%, 

respectively. 

Sinha et al. [23] utilized the Discrete Wavelet Transform to 

extract features from EEG data in both time and frequency 

domains. These features are input into various classifiers, such 

as KNN, linear discriminant analysis, K-nearest neighbor 

(subspace) networks, and SVM. The study found that the 

subspace KNN yielded the highest accuracy rate of 92.8% 

when applied to time-domain features. 

Ibrahim et al. [24] achieved optimal classification by 

combining Shannon entropy, Discrete Wavelet Transform, 

and KNN techniques to analyze datasets obtained from King 

Abdulaziz University, MIT, University of Bonn, and a real-

time dataset comprising EEG recordings from 46 participants. 

These combinations yielded an overall accuracy rate of up to 

94.6% for the classification problem. 

Tawhid et al. [25] utilized a combination of normalization, 

filtering, and re-referencing to process raw EEG data. The 

processed EEG signal transformed into a two-dimensional 

image using the Short-Time Fourier Transform (STFT). 

Features have extracted using CENTRIST (a local ternary 

pattern (LTP) and CENsus TRanformed hISTogram 

(CENTRIST)). Principal Component Analysis (PCA) was 

employed to identify significant features, and the SVM 

classifier applied for classification. With ten-fold cross-

validation, an accuracy of 95.25% along with 97.07% 

sensitivity and 90.95% specificity was achieved. 

Roopa Rechal et al. [26] applied Variational Mode 

Decomposition (VMD) to extract features from EEG data, and 

subsequently ReliefF was employed to identify the optimal 

features. In distinguishing between normal and autistic signals, 

various supervised learning techniques such as Artificial 

Neural Networks (ANN), KNN, and SVM has applied. The 

SVM classifier achieved an accuracy of 95.41%, a sensitivity 

of 97.50% and a specificity of 93.33%. 

Baygin et al. [27] developed and evaluated a methodology 

using a substantial dataset of EEG signals from individuals 

with autism and healthy controls. They used a model to 

transform EEG signals into 2D images by constructing 

spectrogram images via the STFT.  

They extracted signal features using a 1D local binary 

pattern. They also explore deeper characteristics within the 

spectrogram images using a hybrid lightweight deep feature 

generator, its combination of pre-trained models such as 

MobileNetV2, SqueezeNet, and ShuffleNet. Feature selection 

and ranking performed using the ReliefF algorithm. By 

utilizing the most prominent distinguishing features, the SVM 

classifier successfully attained 96.44% accuracy in the 
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automatic detection of autism. Furthermore, it demonstrated a 

sensitivity of 97.79%, specificity of 93.16%, precision of 

97.19%, and an F1-score of 97.49% [27]. 

 

2.3 Phase related features 

 

Jamal et al. [28] observed phase-synchronized patterns on 

128-electrode EEG scans between children diagnosed with 

Autism Spectrum Disorder (ASD) and typically developing 

children. These synchro states shifted over time in response to 

specific cognitive tasks. Researchers analyzed EEG activity 

during neutral, cheerful, and scary facial expressions, 

employing brain connection parameters from the least frequent 

and most frequent synchro states for classification. They 

utilized two supervised learning methods for this task: support 

vector machines with polynomial kernels and discriminant 

analysis. Specifically, when employing a second-order 

polynomial kernel in SVM, the leave-one-out cross-validation 

of the classification algorithm resulted in an impressive 

accuracy rate of 94.7%. This configuration also exhibited a 

sensitivity of 85.7% and a perfect specificity of 100%. 

Alotaibi and Maharatna [29] adopted a dual approach for 

ASD classification, combining the cubic SVM and trial-

averaged phase-locking values (PLV) techniques. This 

approach demonstrated outstanding results, with an overall 

accuracy of approximately 95.8%. Remarkably, they achieved 

perfect sensitivity of 100% and high specificity of 92%. 

 

2.4 Cepstral domain features 

 

Mohanta and colleagues [30] collected a dataset of signals 

from typically developing (TD) children, children with ASD 

who spoke English, and children who spoke Indo-English as a 

non-native language. The acoustic features extracted from 

these signals has fundamental frequency (FO), dominant 

frequencies (FD1, FD2), Mel Frequency Cepstral Coefficients 

(MFCC), formant frequencies (F1 to F5), linear prediction 

cepstrum coefficients (LPCC), strength of excitation (SoE), 

signal energy (E), and zero-crossing rate (ZCR). Several 

techniques, including Logistic Regression (LR), Decision 

Trees (DT), Linear Discriminants (LD), Quadratic 

Discriminants (QD), K-Nearest Neighbors (KNN), and 

Support Vector Machines (SVM), were employed to 

categorize these feature sets. SVM utilized a Medium 

Gaussian kernel (MGK), cubic kernel (CK), and quadratic 

kernel (QK). The KNN classifier model outperformed other 

baseline model in terms of accuracy, achieving a peak 

accuracy rate of 96.5%. 

In summary, these studies underscore the promising 

potential of machine learning techniques in characterizing and 

classifying EEG signals for ASD detection. A review of the 

relevant literature indicates that KNN and SVM yield superior 

results in ASD classification. However, other techniques, such 

as Artificial Neural Networks (ANN) and Decision Tree, have 

also been employed for ASD classification. The chosen base 

models for this research are KNN, Decision Tree, SVM, and 

Multi-Layer Perceptron (MLP).  

This research also utilizes ensemble classifiers, such as the 

Bagging and Stacking ensemble, to enhance classification 

accuracy. The primary goal of this research is to improve the 

precision in categorizing individuals with ASD and TD 

individuals through EEG signal analysis. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Data acquisition 

 

The research work involved the participation of 10 children 

diagnosed with ASD and 10 children with TD between the 

ages of 5 and 7 years. The cognitive abilities of the participants 

were evaluated through a DSM V assessment. The research 

was carried out in compliance with the Declaration of Helsinki 

and received approval from the Institutional Review Board (or 

Ethics Committee) of Sri Ramachandra Medical College 

Research Institute (SRMC-RI). Prior to data collection, 

informed consent was duly obtained from the participant's 

guardian, permitting the acquisition of EEG data for research 

objectives. The Indian Scale for Assessment of Autism (ISAA) 

was utilized for Autism diagnosis, categorizing children 

scoring less than 70 as non-autistic and those scoring 70 or 

more as autistic. During the data acquisition, Children 

diagnosed with ASD received training to sit still and watch the 

video without any erratic movements. The visual screen is 

presented at a distance of 45cm. 

In visual screen presented training follow-up sessions for 

children, and occasionally, cartoon videos preferred by the 

participants during the data acquisition.  

 

 
 

Figure 1. Overall block diagram of the proposed system 
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These videos received recommendations from an 

occupational therapist affiliated with Sri Ramachandra 

Medical College Research Institute (SRMC-RI). EEG signal 

acquisition involved the placement of Ag/AgCl electrodes on 

the scalp using conductive gel and tapes to improve 

conduction. The acquisition process followed the 10-20 

International Standard, encompassing EEG signals recorded 

from 19 channels and two earlobes at a sampling rate of 500 

Hz. Electrodes were positioned over specific cortical lobes, 

including the frontal (Fp1, Fp2, F3, F7, F4, F8, and Fz), 

temporal (T3, T5, T4, and T6), occipital (O1 and O2), parietal 

(P3, P4, and Pz), and central (C3, C4, and Cz) areas. 

Subsequently, the recorded EEG signals underwent analysis 

using Nihon Kohden Neurofax MEB9000 version 05-81 and 

software tools to apply filtering and remove artifacts. The 

electrode polarization was overcome by using Ag/AgCl 

electrodes, and powerline interference, eye movement, muscle 

artifacts, electrode drift, cardiac activity, and environmental 

noise were removed. The electroencephalogram was recorded 

with a sensitivity of 7 μV, with low-pass and high-pass filters 

applied at a cut-off frequency range of 0 to 70 Hz. The stimuli 

presented to the children included a video, each with duration 

of 60 seconds. Each participant received instructions to view 

five videos. The concentration level of the children with ASD 

during the stimuli could not be observed visually, making EEG 

signal acquisition necessary for better insights. The diagram is 

presented in Figure 1. Depicts the block diagram of the 

proposed system. 

 

3.2 Feature extraction 

 

In this section, the extraction of absolute features, delta 

features, and delta-delta features is described in detail. 

 

3.2.1 Absolute features 

Absolute features are defined as quantitative characteristics 

or measures that are directly computed from the EEG data 

without undergoing any additional transformation. In this 

work, absolute features encompass features such as LFCC, 

cepstral energy, and signal energy, which are extracted from 

the EEG data.  

 

A. Linear Frequency Cepstral Coefficients 

 

In essence, LFCCs are representing the spectral envelope of 

a signal using a set of coefficients. Due to its non-linear 

frequency scale, de-correlated makeup, and noise resistance, 

this representation is frequently utilized in signal processing 

[31]. Signals behave as quasi-stationary in short periods; hence 

a small window size should be employed while analysing 

LFCC features frame by frame. The inverse Fourier transform 

is not used as the final transform in the LFCC; instead, the 

Discrete Cosine Transform (DCT) is used [32]. Since the 

resulting coefficients are real-valued, the DCT offers an 

advantage over the Fourier transform in terms of ease of 

processing and storage. The coefficients of LFCCs are the first 

few DCT coefficients that describe the coarse spectral 

structure. The average power of the spectrum is represented by 

the first DCT coefficient. The broad form of the spectrum is 

roughly represented by the second coefficient, which is 

connected to the spectral centroid. 

A matrix of feature vectors taken from each frame is the 

result of employing LFCC. In this output matrix, the columns 

correspond to the associated feature vector coefficients, and 

the rows to the corresponding frame numbers. LFCC systems 

in this work use only seven cepstral coefficients. Finally, the 

categorization method uses cepstral coefficients.  

 

LFCC extraction from EEG using following steps: 

Step 1: Framing and Windowing 

The EEG signal is divided into short frames in the time 

domain and is quickly analyzed because it is difficult to 

evaluate a signal at once. The signal is split into frames that 

contain almost stationary signal blocks before the windowing 

operation is applied. Results can be improved by processing 

data with hamming before applying FFT. 

 

𝑤(𝑛) = 0.54 − 0.46 cos (2𝜋𝑛𝑁)   0 ≤ 𝑛 ≤ 𝑁 − 1 (1) 

 

N is the length of the window, w(n) is the window value. 

 

Step 2: Fast Fourier Transform  

To examine the various frequencies of a signal, an FFT 

transforms a time-domain representation of the signal into a 

frequency-domain representation. If a clear signal in the time 

domain contains cross talk, noise, or jitter, the frequency 

domain is excellent at revealing it. Windowing can be used to 

reduce the spectral leakage that results from discontinuities in 

the initial, non-integer number of periods of a signal. The 

digitizer acquires each finite sequence, and windowing 

decreases the amplitude of the discontinuities at the 

boundaries. 

 

𝑋(𝑘) =
1

𝑁
∑ 𝑥(𝑛). 𝑤(𝑛)𝑒−𝑗

2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0   n=0, 1, 2,.., N (2) 

 

x(n) is the windowed signal and N is the size of the domain. 

 

Step 3: Design an Optimized Linear Scale Filter Bank 

for EEG Signal 

The initial filter bank will commence at position one, attain 

its peak at position two, and subsequently recede to zero at 

position three. The succeeding filter bank will start at position 

two, achieve its maximum at position three, reduce to zero at 

position four, and so on. The subsequent Eq. (3) outlines the 

procedure for determining these values: 

 

𝐻𝑖(𝑘) =  

{
  
 

  
 

0                 𝑘 < 𝑓𝑏𝑖−1
(𝑘−𝑓𝑏𝑖−1

)

(𝑓𝑏𝑖
−𝑓𝑏𝑖−1

)
𝑓𝑏𝑖−1 ≤ 𝑘 ≤ 𝑓𝑏𝑖

(𝑓𝑏𝑖+1
−𝑘)

𝑓𝑏𝑖+1
−𝑓𝑏𝑖

𝑓𝑏𝑖 ≤ 𝑘 ≤ 𝑓𝑏𝑖+1

0                 𝑘 > 𝑓𝑏𝑖−1

  (3) 

 

where, the index i represents the filter number, with 𝑓𝑏𝑖 

indicating the filter boundaries, which are expressed as 

positions determined by the sampling frequency used. 

Similarly, the index k pertains to the coefficients of the N-

point FFT. Figure 2 depicts the linear filter bank with different 

frequencies. 

 

Step 4: Log 

The log energy of each filter of the linear filter bank is 

computed using Eq. (4) 

 

𝑥𝑖 = ln(∑ |𝑋(𝑘)|2𝐻𝑖(𝑘)
𝑁−1
𝑖=0 )     0 ≤ 𝑖 ≤ 𝑀  (4) 

 

𝐻𝑖(𝑘) is the transfer function of 𝑖𝑡ℎ filter. 
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(a) 

 
(b) 

 

Figure 2. Illustrate the Linear-filter bank (a) Filter bank 

consists of 70 filters for frequency range of 0-70 Hz (b) Filter 

bank consists of 22 filters for frequency range of 8 to 30Hz 

 

Step 5: Discrete Cosine Transform  

For the given frame analysis, the Cepstral representation of 

the EEG spectrum provides a comprehensive depiction of the 

signal's local spectral characteristics. Using the DCT, 

transform the linear spectrum coefficients (and consequently 

their logarithm) to a domain that resembles time, known as the 

quefrency domain. These features are referred to as the linear 

scale cepstral coefficients. 

 

𝑋𝑘 = ∑ 𝑥𝑖 cos [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]𝑁−1

𝑛=0   (5) 

 

B. Cepstral energy 

 

The cepstral energy is computed by the sum of squares of 

the cepstral coefficients. The following equation is used to 

calculate the cepstral energy: 

 

𝐸𝐶 = ∑ |𝐶(𝑘)|2𝑁−1
𝑘=0   (6) 

 

This type of energy is frequently employed in speech 

recognition systems because it offers a smoother, more reliable 

estimate of the energy that takes advantage of the cepstral 

representation of the signal [33]. 

 

C. Signal energy 

 

The input EEG signal energy is computed by the sum of 

squares of the input signal [34]. The following equation is used 

to calculate the Signal energy: 

 

𝐸 = ∑ |𝑋(𝑛)|2𝑁−1
𝑛=0   (7) 

 

3.2.2 Deltas and delta-deltas features 

Delta features are calculated by taking the first-order 

difference of consecutive absolute features. They provide 

information about the rate of change or slope of the absolute 

features over time and can be useful in capturing trends or 

dynamics in the data. 

Delta-delta features are obtained by taking the first-order 

difference of consecutive delta features. These features 

provide information about the acceleration or change in the 

rate of change of the absolute features and can help capture 

higher-order changes or patterns in the data. Both Features are 

utilized to analyze the temporal dynamics of a frame [35]. The 

following equation is used to calculate the delta coefficients: 

 

𝑑𝑡 = 
∑ 𝑛(𝑐𝑡+𝑛− 𝑐𝑡−𝑛)
𝑁
𝑛=1

2∑ 𝑛2𝑁
𝑛=1

  (8) 

 

where, 𝑑𝑡  is a delta coefficient, derived from frame t and 

calculated using static coefficients 𝑐𝑡+𝑛  to 𝑐𝑡−𝑛 . The usual 

value of N is 2. The same formula is used to produce Delta-

Delta (Acceleration) coefficients, however this time; deltas are 

used instead of static coefficients [36]. 

Since LFCCs frequently only include data from a single 

window, these cepstral coefficients are regarded as static 

characteristics. Calculating cepstral energy, signal energy, and 

first and second derivatives also referred to as delta and delta-

delta derivative coefficients will provide insight into the 

temporal dynamics of cepstral coefficients [37]. The feature 

vector used in this research work has a length of 27, and it 

contains nine absolute features, including seven Linear 

Frequency Cepstral Coefficients, one cepstral energy, and one 

signal energy. To account for those absolute properties, nine 

deltas are introduced. There are added nine delta-deltas. End 

up with 27 features (27 features/frame ×120 frame/channel × 

19 channels) for each audio-video stimuli of each ASD and 

TD child. Figure 3. depicts the total number of EEG features 

extracted.  

 

 
(a) 

 
(b) 

 

Figure 3. Illustrates the feature extraction (a) The total 

number of features extracted from all channels; (b) The 

number of features extracted from each frame 
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3.3 Classifiers 

 

The methodology consisted of two phases. In the first stage, 

the classification utilized the training data to build a model by 

establishing the correlation between the extracted features and 

their associated labels. Subsequently, in the second phase, the 

trained classification model was evaluated using new, 

untrained features, and the labels of the new features set were 

compared with the real labels to determine the accuracy of the 

classification algorithm. This work employed various machine 

learning algorithms, including KNN, MLP, SVM, Decision 

Tree, and ensemble classifiers such as bagging and Random 

forest. The particulars of the algorithms are explicated in the 

subsequent subsections. 

 

3.3.1 K-Nearest neighbors 

The KNN method is a supervised machine learning 

algorithm utilized for addressing classification and regression 

problems. Its approach involves classifying new data by 

considering the class of its k-nearest neighbors, selected using 

the majority voting principle. Specifically, for a given value of 

k, the algorithm evaluates the classes of the k closest training 

points to the test data point. The test data point's class is then 

determined depend on the majority class of the k nearest 

neighbors. The distance between the training and testing data 

points can be calculated using Euclidean, Manhattan, or 

Hamming distances [38]. This work utilizes Manhattan 

distance. 

Eq. (9) for Manhattan distance is  

 

𝑑(𝑥. 𝑦) =  ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1   (9) 

 

where, 𝑑(𝑥. 𝑦)  represents the distance between point x and 

point y, ∑ represent cumulative sum of n step. 

The KNN algorithm is composed of several fundamental 

steps, as follows: 

Step 1: Determine the value of k, representing the number 

of nearest neighbors to be examined. 

Step 2: Compute the distance between the each of the 

training data points and new data point, utilizing a distance 

metric such as Euclidean distance or Manhattan distance. 

Step 3: Identify the k nearest data points by selecting the 

ones with the smallest calculated distances. 

Step 4: For classification tasks, determine the majority class 

among the k nearest neighbors and assign this class to the new 

data point.  

Overall, the KNN algorithm involves a series of 

computations and decisions based on the value of k and the 

distance metric used. 

 

3.3.2 Multi-layer perceptron 

This work utilized the MLP feedforward ANN model for 

converting input data sets into appropriate outputs. The MLP 

consists of fully interconnected multiple layers, with each 

layer containing neurons with nonlinear activation functions, 

except for the input layer. One or more nonlinear hidden layers 

may separate the input and output layers. The error is 

estimated based on the labels for the initial feed-forward 

operation using a cost function, which is a term used to 

describe the error function. The cost function types include 

cross-entropy, mean absolute error, and mean squared error. 

For categorization purposes, the cross-entropy cost function is 

used. The weights are updated using gradient descent through 

backpropagation, with stochastic gradient descent being 

commonly employed for this optimization. In this work, the 

Adam optimizer is utilized for classification. After several 

training epochs, the model is capable of categorizing the data 

[39]. 

The activation function is defined by the following 

equation, 

 

𝑓(𝑏 + ∑ 𝑤𝑖𝑥𝑖𝑖 )  (10) 

 

where, 𝑓( ) the activation function, b indicates the bias 

component, 𝑥𝑖  signifies the activation values, 𝑤𝑖  represents 

the weight values and b corresponds to the bias component of 

the model. 

 

3.3.3 Decision tree 

The decision tree algorithm is a popular machine learning 

technique employed for addressing both regression and 

classification problems. It constructs a tree-like structure to 

represent a set of decisions and their corresponding results. 

Each node in the tree like structure represents a decision based 

on one or more input features, while each leaf node of the tree 

represents the predicted output. In classification problems, the 

goal is to forecast the class label of a new instance based on its 

input features. The algorithm recursively splits the data into 

smaller subsets based on the input features until each subset is 

as homogeneous as possible concerning the target variable. At 

each node of the tree, the algorithm selects the feature that can 

best separate the data into the most homogeneous subsets 

using a splitting criterion, such as the Gini index, information 

gain, or entropy. The Gini index is employed as the splitting 

criterion in this work. 

The formula for the Gini index is defined by Eq. (11), 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃(𝑖)2
𝑗
𝑖=1   (11) 

 

where, j denotes the number of classes present in the target 

variable, and let P(i) denote the ratio of observations that have 

passed in a given node, divided by the total number of 

observations present in that node. 

Decision trees are highly regarded in machine learning due 

to their interpretability and ability to handle both numerical 

and categorical data. However, they are susceptible to 

overfitting, where the tree becomes too difficult and fits the 

training data too strictly, prominent to poor generalization 

performance on new data. To overcome this issue, techniques 

such as pruning, ensemble methods, and regularization can be 

applied to mitigate overfitting and enhance the performance of 

decision trees. 

 

3.3.4 Support vector machine 

The SVM machine learning algorithm is employed for 

performing both regression and classification tasks. SVM 

algorithm is primarily used to determine the optimal 

hyperplane or boundary that can effectively distinguish 

between different classes within the feature space. This 

hyperplane is selected to maximize the margin or the distance 

between the closest data points of each class. The margin size 

is indicative of the robustness and generalizability of the 

model for future predictions.  

The equation for the hyperplane in an SVM with two classes 

is given by Eq. (12), 

 

𝑤𝑇𝑥 + 𝑏 = 0 (12) 
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where, w is the vector perpendicular to the hyper-plane, x is 

the input data, and b is the bias term or offset of the hyperplane 

from the origin. The SVM aims to identify the values of w and 

b that maximize the margin while ensuring that all data points 

are accurately classified. This is accomplished by resolving a 

constrained optimization problem in which the norm of w is 

minimized while satisfying the constraint that each data point 

is on the correct side of the hyperplane. 

 

3.3.5 Ensemble learning 

In disease diagnosis, an ensemble approach involves 

partitioning the original dataset into smaller datasets to 

decompose each dataset, thus enabling prediction algorithms 

to be applied to each decomposed dataset. By leveraging the 

decomposed dataset as a reference, the individual prediction 

outcomes are averaged to obtain an overall prediction. Allende 

and Valle suggest that merging models for disease diagnostic 

prediction can have several advantages, including the use of 

appropriate aggregation techniques, which can significantly 

improve overall diagnostic accuracy; the use of combination 

strategies as the optimal prediction model is often unknown; 

and the ability to significantly reduce errors by combining 

multiple predictions. Furthermore, ensembles are frequently 

employed for prediction for several reasons, such as improved 

generalizability, increased tolerance, and decreased model 

variance concerning data noise. 

 

Bagging ensemble Bagging is a suitable tool for algorithms 

that are considered weaker or more prone to variances such as 

KNN or decision trees. Breiman [40] proposed the use of 

bagging, also known as bootstrap aggregating, as a traditional 

ensemble method for addressing classification issues. Bagging 

involves generating several samples from a single dataset 

using the bootstrap method with replacement, resulting in 

multiple trees for the same predictor variables that are 

combined to produce an aggregate estimate. The aggregate 

estimate is determined through averaging or voting for 

classification or regression problems, respectively [41]. The 

advantage of using bagging for ensemble formation is that it 

reduces the baseline predictor's error and can generate 

predictive performance estimates that are correlated with test 

set estimates or cross-validation [42]. However, the trees 

generated using bagging may lack diversity and share traits, 

which can limit their predictive power. To address this issue, 

RF was developed as a modification of the bagging method, 

with the addition of randomly selecting predictors at each 

decision tree node [43]. RF also involves choosing the optimal 

collection of features to describe the data [44]. Its algorithm 

includes the following steps: (i) generating samples from a 

training set using the bootstrap method with the number of 

observations for several predictors and variable responses; (ii) 

building several trees, with each node containing a subset of 

the number of predictor variables chosen at random; (iii) using 

the best subset identified in step (i) to produce a variable 

response estimate from each tree; and (iv) producing a final 

estimation by averaging the predictions acquired in step (iii). 

The main goal of using RF is to enhance tree performance by 

reducing their variance [45]. Unlike bagging, RF aims to 

minimize correlation among the sampled datasets by 

increasing randomization while developing trees. Therefore, 

RF outperforms bagging models by providing better predictive 

power due to its reduced correlation among the trees. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presented a comprehensive analysis of the 

diverse performances of multiple classifiers across distinct 

brain areas. 

 

4.1 Environmental setup 

 

Python 3.7.12 and Colab were utilized. Scikit-test Learn 

train split function with an 80/20 split along with many 

predefined models was used to divide the dataset. 

Normalization and standardization operations were performed 

using scikit-learn. The data was read and processed using 

Numpy, Scipy, and Pandas. The suggested model's 

effectiveness was evaluated through measures of accuracy, 

precision, specificity, sensitivity, and F1 score. 

 

4.2 Parameter selection 

 

Hyperparameters, which are variables that users typically 

specify when constructing a machine-learning model, play a 

crucial role in estimating the optimal parameters of the model. 

Before specifying the parameters, hyperparameters must be 

specified or utilized. One of the best features of 

hyperparameters is the ability to select their values. For 

example, k in the KNN Classifier and max depth in Random 

Forest Algorithms are hyperparameters. Grid Search is a 

method that determines the combination of hyperparameters 

and their values that produces the best performance out of all 

possible combinations. It uses that combination as its starting 

point and then evaluates the performance of every possible 

combination. Cross-validation is used together with 

GridSearchCV during the Grid Search process. 

During the model training process, cross-validation is 

utilized. As a common practice, the data is separated into 

training sets (80%) and test sets (20%) before training the 

model. During cross-validation, the training dataset is further 

divided into training and validation data. Cross-validation with 

K-fold is the most widely used cross-validation method, with 

a k value of 10. The training data is divided into k partitions 

using a repetitive approach. In each iteration, k-1 partitions are 

used to train the model and one partition is retained for testing. 

The remaining partitions will be designated as test data in the 

following iteration, followed by the k-1 partitions as training 

data, and so on. In every iteration records the performance, and 

at the end, the average of all performances is calculated. Thus, 

the best hyperparameters are identified through GridSearch 

and cross-validation. 

 

4.3 Model selection 

 

Based on the literature survey, it is clear evident that both 

KNN and SVM demonstrate superior performance in ASD 

classification, while MLP and Decision Trees are also 

employed for this purpose. KNN is simple and it can be 

effective in capturing local patterns in the data. But KNN can 

be sensitive to the choice of k (the number of neighbors) and 

requires a suitable distance metric, which might not always be 

straightforward to define for EEG-based data. SVM is 

effective in handling high-dimensional feature spaces. It is 

robust against overfitting when the margin is properly 

regularized. However, SVM is sensitive to the choice of kernel 

function and parameters, which may require tuning for optimal 

performance. MLP (Multi-Layer Perceptron) can learn 
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complex patterns and relationships in data and Decision trees 

provide interpretable models, allowing for transparency and 

insight into the decision-making process. However, MLPs and 

Decision trees are prone to overfitting. So it provides less 

accuracy when compared to KNN and SVM. 

 

4.4 Performance analysis 

 

In this work, Data is arranged according to classes 0 for TD 

and 1 for ASD for further processing and classification. While 

extracting the features 80% data of each class is utilized for 

the training of the classifier using k-fold cross-validation 

(k=10) and subsequently, 20% of unseen data of each class is 

used for the test. The classifier training was carried out using 

extracted features and was tested on data to forecast the label 

of the data and calculate the prediction accuracy for 2-classes. 

 

4.4.1 Comparative analysis of machine learning models for all 

frequency bands 

To achieve optimal classification performance, the various 

classifiers were employed with optimal parameter settings. 

The KNN classifier was specifically configured with a value 

of k set to 1, which enabled the classifier to assign the class 

label of a given test data point based on the majority voting 

principle. Moreover, the Manhattan distance metric was 

utilized for computing the distance between the training and 

test data points. For the Decision Tree classifier, the Gini index 

was utilized for binary splitting of the tree. Similarly, the MLP 

classifier was set to use the hyperbolic tangent (tanh) 

activation function and the adaptive moment estimation 

(adam) solver. Finally, the SVM classifier was set to use the 

Radial Basis Function (RBF) kernel. The performance of all 

the models was compared, and it was found that the KNN and 

SVM classifier outperformed all the other classifiers at the 

central lobe and temporal lobe. This is illustrated in Figure 4, 

which depicts the comparison of the accuracy, precision, 

sensitivity, specificity and F1 score of the various base models 

for all frequency bands.  

 

4.4.2 Comparative analysis of machine learning models for 

specific frequency bands 

According to the analysis, KNN and SVM demonstrated 

higher accuracy levels at the central and temporal lobes across 

all frequency bands. Subsequently, SVM and KNN were 

utilized to evaluate the accuracy of the central and temporal 

lobes for specific frequency bands. Specific frequency band 

ranges like alpha and beta frequency bands are chosen because 

alpha waves appear in the electroencephalogram (EEG) when 

an individual is in a typical wakeful state marked by quiet 

restfulness, while beta EEG patterns arise when a person is 

alert, attentive, and actively engaged in thinking. However, the 

obtained accuracy was found to be minimal, prompting the 

adoption of the bagging ensemble method. Bagging 

algorithms guarantee variance reduction, overfitting 

avoidance, and excellent prediction stability. Random forest is 

an ensemble technique that aggregates the results from various 

models that were created using the input data to produce the 

final product [46]. Classification can be delayed by building 

many decision trees; however, studies demonstrate that using 

the random forest for ASD classification results in satisfactory 

outcomes [47]. The performance of all other models was 

compared, and it was found that the Baging KNN 

outperformed all the other classifiers at the central lobe. Figure 

5. Depicts the accuracy, precision, sensitivity, specificity and 

F1 score of the machine learning models for specific frequency 

bands. Table 1 displays a comparison between our proposed 

approach's accuracy and that of an existing method. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4. Comparative analysis of various base model 

techniques for all frequency bands (a) KNN, (b) SVM, (c) 

Decision Tree, and (d) MLP 
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Table 1. Comparison between our proposed approach and an existing method 

 
Sources Features and Methods Classifiers Accuracy(%) 

Igberaese et al. [21] Power Spectral Density (PSD) KNN 89.2 

Abdolzadegan et al. [22] 

Fast Fourier Transform (FFT), Wavelet Transform, Power Spectrum, 

Entropy, Lyapunov Exponent, Correlation Dimension, Fractal 

Dimension, Synchronization Likelihood, and Detrended Fluctuation 

Analysis. Minimum-Redundancy Maximum Relevancy (mRmR), 

Genetic Algorithm (GA), Mutual Information (MI), and Information 

Gain (IG) 

SVM 90.5 

Sinha et al. [23] 
Alpha, beta, delta, theta, and gamma, kurtosis, skewness, mean, 

standard deviation, variance, and Shannon entropy 
Subspace KNN 92.8 

Ibrahim et al. [24] DWT, Shannon entropy KNN 94.6 

Jamal et al. [ 28] 

 
Network measures, synchrostates, 

SVM (Second 

Order Polynomial 

Kernel) 

94.7 

Tawhid et al. [25] Short-Time Fourier Transform, Principal Component Analysis SVM 95.25 

RoopaRechal et al. [26] Variational Mode Decomposition and RELIEFF SVM 95.4 

Alotaibi and Maharatna [29] Trial-averaged Phase-Locking Value (PLV) approach Cubic SVM 95.8 

Baygin et al. [27] 

One dimensional local binary pattern (1D-LBP), Short Time Fourier 

Transform (STFT), deep features from MobileNet, SqueezeNet, 

shuffleNet and RELIEFF 

SVM 96.44 

Proposed method 
LFCC, cepstral energy, signal energy and their delta and their delta-

delta derivatives 
KNN 98.3 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 5. Comparison of machine learnig models for specific 

frequency band. (a) KNN, (b)SVM, (c)Bagging KNN, and 

(d) Random Forest 

 

 

5. CONCLUSION 

 

Researchers from all over the world are currently tackling 

the issue of objective identification to differentiate between 

ASD and TD. The challenge comes from the vast range of 

symptoms among children with ASD; some may have good 

social abilities but struggle with communication, whereas 

others may have language skills but struggle with social 

interaction. The fact that ASD symptoms may not become 

obvious until later in childhood or maybe adulthood further 

complicates the problem of differentiating between TD and 

ASD in young children. To address this issue, the LFCC, 

cepstral energy, and signal energy of the EEG signal were 

studied. Combining delta and delta-delta derivative features 

with absolute features to capture rapid changes in the EEG 

signal increased the accuracy of ASD and TD categorization. 

The findings of this study demonstrate that by combining 

LFCC, cepstral energy, signal energy, and their delta and 

delta-delta derivatives, the KNN method can reach the greatest 

classification accuracy of 98.3% for all frequency bands in 

EEG at the central lobe. To reduce computation time, the 

experiment focused on identifying which lobe provided 

greater discrimination between ASD and TD. The central and 
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temporal lobes collaborated to provide accuracy above 97% 

across all frequency bands in EEG. Extrapolating LFCC for 

particular frequency bands, such as the alpha and beta 

frequency bands in the central and temporal lobes, allowed for 

additional study because KNN and SVM classifiers provided 

greater accuracy in assessments of all frequency bands. The 

accuracy of the SVM classifier was 68% for the central lobe 

and 76% for the temporal lobe, respectively. The central lobe 

reached the highest accuracy of 93.8% by employing bagging 

KNN to boost accuracy even further.  

This work developed two distinct linear scale filterbanks. 

The first filter bank aims to extract all frequency bands that 

exist in EEG signals, while the second filter bank is 

specifically designed to extract alpha and beta frequency 

bands. The proposed methodology is utilized to identify the 

optimal number of electrodes required for the acquisition of 

EEG signals, which can effectively differentiate individuals 

with ASD from those who are TD. One limitation of the study 

is that it focuses solely on extracting spectral envelope details 

using LFCC to obtain more discriminating brain lobe regions. 

In future studies, it is recommended to incorporate features 

from the time-frequency domain, time domain, and frequency 

domain to extract a broader range of information on the brain 

dynamics of EEG signals, thereby providing a comprehensive 

characterization of the EEG signal. 
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