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Background: The segmentation of brain tumor images remains a challenging yet vital aspect 

of medical image analysis. In particular, Gliomas, being the most prevalent type of 

malignant brain tumors, necessitate early and accurate diagnosis for effective monitoring, 

analysis, and planning of radiotherapy. However, the segmentation of Glioma images 

presents two major obstacles: the imbalance of segmented classes and a dearth of training 

data. Thus, the conception of a dependable and suitable model for such medical image 

segmentation is paramount. Methods: In recent years, the utilization of deep neural networks 

for the automatic segmentation of Gliomas proved to be very promising. Drawing inspiration 

from this success, a three-dimensional brain tumor analysis approach, termed as the Residual 

Convolution Gated Neural Network, which incorporates residual units and signal gating into 

UNet, thereby enhancing the performance of brain tumor segmentation. By combining the 

advantages of UNet, ResNet and signal gating, we obtain a novel 3D UNet, featuring block 

modifications using the newly formulated ResNet 'M' blocks. As a result, our developed 

Res-Gated-3DUNet network offered improved accuracy in Gliomas image segmentation 

results. The model was trained and validated using the 2020 Multi-modal Brain Tumor 

Segmentation Challenge (BraTS2020) datasets. The validation stage using the BraTS2020 

dataset resulted in relatively high dice values. The segmentation accuracy was also increased 

through the incorporation of an innovative combined loss function, proposed in this work. 

The experimental results reveal that the Res-Gated-3DUNet outperforms conventional brain 

tumor segmentation algorithms. Conclusion: when compared with current literature, the 

proposed methodology offers more accurate and efficient 3D brain tumor segmentation. 

Moreover, the Res-Gated-3DUNet architecture proved to be not only an effective, but also 

a promising technique for Glioma fine segmentation in multimodal images. 
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1. INTRODUCTION

The field of medical image segmentation has earned 

growing attention over the past decades due to its critical role 

in offering automatic identification of regions of interest to 

medical professionals in general and neurologist in particular 

for brain tumor identification. In fact, the development of an 

accurate, automated segmentation methodology for tumors is 

of critical importance to medical practitioners for it offers 

unbiased and precise information at the diagnostic and 

treatment stages. It is important to recall, among various brain 

tumors, Gliomas remain some of the most aggressive adult 

brain tumors that typically originate from glial cells and 

possess high risks to spread to brain tissue [1]. 

The role of medical imaging has proved over the years to be 

an invaluable tool in the medical diagnosis, with a wide range 

of imaging modalities being developed and used for early 

diagnosis, detection, and treatment stages of medical health 

conditions. Among all imaging modalities, the Magnetic 

Resonance Imaging (MRI) stands out as a high-precision 

technique that is highly insightful and thus required in clinical 

health diagnosis. The use of MRI imaging spans a wide range 

of health conditions including brain strokes, multiple sclerosis, 

cerebral aneurysms, traumatic brain injuries, tumors, and 

spinal cord disorders [1]. The high-resolution images 

produced by the MRI technique provide an insight on various 

tissue parameters, providing, as a result, a wealth of 

information on brain tissue. This unique advantage makes 

MRI an ideal modality for studying brain tumors, thereby 

rendering the detection of Gliomas using MRI images a major 

focus in the field of medical image processing and analysis. 

Given the profound impact of early and reliable brain tumor 

detection on patient outcomes, several competitions have been 

established to foster the development of novel diagnostic 

methods for such brain diseases. The Multi-modal Brain 

Tumor Segmentation (BraTS) challenge, held annually since 

Traitement du Signal 
Vol. 41, No. 1, February, 2024, pp. 141-151 

Journal homepage: http://iieta.org/journals/ts 

141

https://orcid.org/0000-0002-0209-5088
https://orcid.org/0000-0002-2261-974X
https://orcid.org/0000-0002-8181-4684
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410111&domain=pdf


 

2012, is especially noteworthy as it encourages the use of 

innovative Deep Learning (DL) models in providing better to 

segmentation of brain tumor MRI images [1]. 

Being an integral part of any Artificial Intelligence (AI) 

solution, Deep learning, currently plays a critical role in a 

variety of competitive medical imaging challenges, including 

that of the BraTS challenge for Glioma segmentation. 

Amongst the various DL models, Convolutional Neural 

Networks (CNNs) have shown great efficacy in brain tumor 

segmentation [2]. The Full-Convolution Neural Network 

(FCN) [3], proposed by Long et al., represents an important 

contribution in the field to the field of image segmentation 

using neural networks [3]. A fully-symmetric Convolutional 

Neural Network, known as Unet, was built on the FCN has 

been recently used in biomedical image segmentation [4]. The 

UNet model was later augmented with an SE-Res module in 

the contracting path and an SK module in the expanding path 

for cardiac segmentation tasks [5]. Presently, the 3D UNet 

model has established itself as a prominent choice for accurate 

and automated brain tumor segmentation [6]. Enhanced UNet 

variants, including the dense convolutional network 

(DenseNet) [7] and the Residual Network (ResU-Net) [8], 

have been embraced for the segmentation of brain tumor 

images. 

Despite these advancements, accurate Multi-modal three-

dimensional (3D) the tumor segmentation of image brain 

remains a challenge, given the class imbalance problem often 

encountered in medical imaging datasets. The number of 

pixels or voxels representing healthy tissue significantly 

exceeds those representing tumor regions. This class 

imbalance can lead to biased models that prioritize the 

majority class, resulting in suboptimal segmentation 

performance for the minority class (tumor regions). 

Segmenting brain tumors is a delicate and challenging task, 

particularly for localizing various Glioma sub-regions (such as 

necrotic core, peritumoral edema, enhancing tumor, and non-

enhancing tumor core). This process presents additional 

challenges due to significant variations in image intensities, 

sizes, and shapes of these sub-tumors [9]. A focal loss function 

and a model cascade have been proposed in order to address 

the class imbalance issue, leading to remarkable 

improvements [10]. Due to their inherent system complexity, 

these model cascade methods struggle to deliver higher 

performances. 

In light of these challenges, the proposed work presents a 

novel DL model, denoted as Res-Gated-3DUNet, designed to 

address the class imbalance problem while enhancing the 

segmentation performance. Specifically, a novel three-image 

dimensional 3D UNet architecture is developed with residual 

encoder-decoder blocks that efficiently learn the hierarchical 

representations of the input data, thus enabling a precise 

separation of tumorous regions in these three-dimensional 

images. The proposed approach seeks to address the 

challenges posed by class imbalance and aims to deliver more 

accurate and robust brain tumor segmentation results 

compared to existing methods. The benefits of skip 

connections are examined and new skip connection based on 

signal gate is proposed. Inspired by ResNet [8], 3D UNet [11], 

and short skip connections using signal gating, a hybrid 

architecture is therefore introduced in this study for improved 

accuracy in Glioma image segmentation. The proposed Res-

Gated-3DUNet architecture is extensively tested on the 

BraTS2020 dataset as indicated in the studies [1, 12-15]. 

The contributions of this study are summarized as follows: 

• Proposition of an efficient architecture with block 

modifications, denoted by ResNet’M, for MRI 3D glioma 

imaging. 

• Introduction of a novel signal gating mechanism within the 

encoder to allow for efficient information flow in the network. 

This gating mechanism, combined with short skip connections, 

enhances model performance by facilitating the network to 

learn more complicated representations of features. 

• Implementation of a multi-class focal loss function to 

handle the class imbalance problem in MRI glioma imaging. 

• Comprehensive evaluation and comparison of the 

proposed model against state-of-the-art models on the 

BraTS2020 dataset. The results illustrate the superior 

performance of our approach in terms of Dice score, 

Sensitivity, Specificity, and Hausdorff Distance (HD). 

The rest of the paper is organized as follows. Section 2 

presents a review of related works. Section 3 details the 

proposed methodology, including data preprocessing, the 

proposed Res-Gated-3DUNet model, and the loss function. 

Section 4 details the experimental results and discussion, and 

Section 5 concludes the research work and suggests directions 

for future work. 

 

 

2. RELATED WORK 

 

In surveying the literature on Brain tumor image 

segmentation, one identifies a wide range of methods have 

been used [16]. Image segmentation in different homogenous 

regions has for long relied on edge detection methods, which 

were used for brain tumor segmentation as well [17]. Another 

model for different textured regions has often been 

successfully modeled using Markov random fields [18]. 

Graph-based approaches using estimate initial boundary 

delineation for ultimate image segmentation, have also been 

used for the same purpose with limited success [19-21]. 

A texture-based model proved to distinguish and thus 

segment low-grade Gliomas from high-grade Gliomas regions 

in brain MRI images. Although the aforementioned semi-

automatic methods can provide accurate results, they often fail 

to achieve high performance on large image datasets. 

Recently surveyed literature reflects the use of 

discriminative and generative models for brain tumor 

segmentation. Among the latter models, those using Deep 

Learning (DL) are emerging as the most dominant. In fact, a 

rising number of studies using DL methods in medical image 

analysis, have been continuously reported. In his review paper, 

Suzuki [22] gave an overview of the field of DL and its 

applications in medical image analysis. He assessed what has 

changed before and after the introduction of DL in the field of 

ML and identified the main reasons that make DL powerful 

and its applications in medical image analysis in general. 

It is worth noting based on countless recent studies reveal 

clearly that the DL model presents a powerful tool in brain 

tumor segmentation. Moreover, the approach based on 

Convolutional Neural Network (CNN) is one of the most 

commonly used algorithms of DL, which brings several 

advantages into the problem of medical image segmentation. 

One can realize that a CNN-based DL model has provided a 

reliable architecture for brain tumor segmentation [23], while 

an FCN was one of the first deep learning networks for image 

segmentation [3]. Despite its long history, the reported success 

of CNN models has been limited. More recently, the concept 

of UNet network was introduced by Olaf Ranneberger who 
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applied it in training for analysis of medical image [4]. Ever 

since, UNet has emerged as a leading semantic segmentation 

framework, playing a pivotal role in the segmentation of brain 

tumor images. To integrate fine-level information, the UNet 

architecture utilizes skip-level connections, incorporating 

higher-resolution feature maps into the encoder path. 

When first launched in 2012, the BraTS competition has 

already proposed the exploration of DL algorithms for tumor 

segmentation. Ever since, DL has been the algorithm of choice 

for most entries of the challenge. The use of a combined 

segmentation framework that includes conditional random 

fields and Functional Convolution Neural Networks (FCNN), 

offered a new segmentation framework [24]. Such unified 

approach was based on image patches to train the FCNNs and 

their segmentation outcome using the BraTS2016 dataset. 

It is worth noting that the use of a 3D UNet [25] model with 

residual connections, in the encoder as well as the decoder 

paths, was the focus of a recent study on brain tumor 

segmentation [26]. To distinguish between cancerous cells and 

normal ones, an initial investigation focused on a basic 

DeepSeg network. This network incorporated CNN models, 

including residual neural networks (ResNet) and NASNet, 

within a modified UNet architecture and dense convolutional 

networks (DenseNet) [27]. The performance of this proposed 

architecture was assessed on the BraTS2019 challenge dataset, 

resulting in Dice scores ranging from approximately 0.81 to 

0.84. In a separate study [28], the authors proposed an 

automatic segmentation model based on CNNs, utilizing a 3×3 

kernel operator to facilitate deeper architectures. The 

developed algorithm's performance was evaluated using the 

BraTS2015 dataset. 

Various 3D-CNN architectures, trained on BRATS2015 

brain tumor datasets were compared in a reported study [29]. 

The considered data is based on the 2018 BRATS challenge 

and the results show that the developed model outperforms 

both randomly initialized U-Nets and pre-trained ones for all 

training variables. A summary of research on DL methods for 

brain tumor segmentation is shown in Table 1. This latter 

reveals that the 3D-CNN used method, rooted in the 

DeepMedic CNN, performed best and thus advocated the use 

of smaller receptive fields with a multiscale architecture [29]. 

The study [30] proposed a new Deep Learning architecture 

which relied on both localized and global brain image datasets 

for accurate segmentation. 

The proposed method, called Residual and Pyramid Pool 

Network (WRN-PPNet) of study [31], proposed to segment 

brain tumors by first obtaining 2D slices from 3D MRI brain 

tumor images and then normalizing the 2D slices and inserting 

them into the model. 

Inspired by the aforementioned works and especially the 

success of the UNet architecture, we sought in our work to 

further develop the Res-Gated-3DUNet as a novel DL method 

for brain tumor segmentation, which will be next detailed. 

 

Table 1. Summary of selected studies on brain tumor segmentation based on the Brats challenge 

 
Authors Method Learning Dataset Publication Year Accuracy 

[24] FCNN Brats2013 2018 Overall accuracy 0.81 

[28] CNN Brats2013 2016 DSC 0.88 (WT), 0.83 (TC), 0.77 (ET) 

[30] RDM-Net Brats2015 2019 Overall Dice 0.86 

[26] CNN Brats2015 2017 DSC 0.9 (WT), 0.75 (TC), 0.73 (ET) 

[27] DeepSeg Brats2019 2020 Overall Dice 0.81 

 

 
 

Figure 1. Four MRI modalities of the same patient from the BraTS2020 dataset 
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3. MATERIALS AND METHODS 

 

In this section, we discuss the adopted data pre-processing 

and model architecture in our work. Given the critical 

importance of the database in any study, we have opted for that 

of BraTS, a world-wide challenge held since 2012 to assess 

emerging Machine Learning (ML) methods for brain tumor 

segmentation using multimodal MRI images. It is the largest 

and most publicly available dataset focused on the 

segmentation of brain tumors, particularly gliomas, from 

multi-MRI modalities. 

 

3.1 Data pre-processing 

 
The proposed model in this work, Res-Gated-3DUNet, was 

trained on the BradTS 2020 dataset which contains 369 

Glioma patients and 125 cases, which are unlabeled and used 

as validation sets [11]. In fact, the BraTS2020 database 

contains four 3G-MRI sequence modalities, denoted by: T1: 

Native, T1-weighted: Post-contrast (T1CE), T2: T2-weighted, 

and Fluid Attenuated Inversion Recovery (FLAIR) volumes 

for each patient. The set can be divided into subsets for manual 

segmentation including tumor sub-regions. A summary of the 

characteristics of the BraTS data set are illustrated in Table 2. 

The tumor sub-regions considered for evaluation are: 

The whole tumor (WT): Segmenting the whole tumor extent 

(present in T2-FLAIR: Union of all labels). 

The Tumor core (TC): Segmenting the core tumor outline 

(visible in T2: Union of labels 1 and 4).  

The active tumor (AT): Segmenting the active tumor 

regions. 
 

Table 2. Summary of the characteristics of adopted the 

BraTS data set 

 

Acronym 
MRI 

Sequence 
Acquisition Method Property 

T1 T1-weighted Sagittal or Axial Native image 

T1Gd T1-weighted Axial 3D acquisition 
post-contrast 

enhancement 

T2 T2-weighted Axial 2D Native image 

T2-

FLAIR 
T2-weighted 

Axial or Coronal or 

Sagittal 2D 
Native image 

 

Figure 1 displays four distinct MRI modalities along with 

the corresponding ground truth segmentation of patient data 

from the BraTS2020 dataset. The data is partitioned following 

the following pre-processing steps: 

-All images are stacked into a 4-dimentional array. 

-In order to ensure that all MRI images share the same scale, 

the min-max method is used. 

-Cropped images with the smallest bounding box containing 

the complete brain images were used. 

-Four modal MRI images of the same contrast (original size: 

240×240×155×1) are merged to form three-dimensional 

images with four channels (combined image: 

240×240×155×4). 

-Four-dimensional tensor is saved and numbered by array. 

We note that the (FLAIR, T1CE, and T2 images are used in 

order to extract robust features. Figure 2 illustrates sample 

results of this pre-processing stage. 
 

 

 
 

Figure 2. Sample of image pre-processing results 

 

3.2 Proposed model architecture: Deep network 

 

Due to the continuous improvements in imaging 

technologies and the large amount of applications, new 

algorithmic solutions for image segmentation are needed. 

Segmenting an image remains a key step that eventually 

enable quantitative measurements, diagnoses, and treatment of 

anatomical structures. Therefore, selecting the appropriate 

segmentation model is a critical stage in medical imaging in 

general for its outcome serves physicians to quickly and 

accurately identify potential regions of interest. 

We recall that the image segmentation approach is even 

more critical when the subject at hand is the detection of brain 

tumors. It is well known in the medical field that it is 

particularly challenging to segment brain tumors due to their 

irregular, uneven, and unstructured shapes and sizes. In the 

segmentation of Gliomas (most vicious and common brain 

tumor) generally, one faces at least two key challenges: 

Imbalance of classes and lack of training data. Therefore, this 

task has preoccupied researchers for several years. This has led 

to the appearance of various methods aiming to efficiently 

develop suitable algorithms, rooted in advanced ML 

approaches. The aim of this section is to describe the proposed 

novel segmentation model for medical image segmentation. 
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which will provide fast and robust image segmentation using 

the BraTS dataset for Brain tumor segmentation. 

Specifically, Deep Learning approaches are exploited in 

brain tumor segmentation with multi-modal strategy. The 

approach suggests building new extensions of the most famous 

deep network “Unet” used for image segmentation purposes. 

Inspired by UNet [4], ResNet [8], and signal gated approach, 

we propose a combined architecture, called Res-Gated-3D 

UNet, as shown in Figure 3. 

First, we note that instead of using the usual convolutional 

layers in the encoding-decoding path, we introduce ResNet‘M 

blocks to make the learning stage easier. Second, to avoid the 

vanishing gradient during backpropagation step and improve 

the segmentation accuracy of the unbalanced classes in a given 

dataset, we propose a hybrid loss function. Lastly, and in order 

to show how this deep learning technique can be achieve 

advanced performances, we used Brats2020 challenging 

datasets. 

The proposed Res-Gated-3DUNet model architecture 

parameters include the number of layers, filters in each layer, 

and input/output tensor dimensions. They are described as 

follows: 

Number of Layers: The Res-Gated-3DUNet typically 

consists of multiple layers, organized into an encoder-decoder 

structure. Each layer is responsible for extracting and encoding 

features at different levels of spatial resolution. 

Number of Filters: In each layer, the number of filters 

determines the depth of feature representation captured by the 

model. As we progress deeper into the network, the number of 

filters typically increases to capture more complex patterns. 

Input Tensor Dimensions: The input tensor is a 3D 

medical image, represented as a volume with spatial 

dimensions and channels corresponding to different modalities 

(e.g., T1-weighted, T2-weighted, FLAIR). In our case, an 

input tensor has dimensions like (128, 128, 128, 3), where the 

spatial dimensions are 128×128×128, and there are 3 channels 

representing different image modalities. 

Output Tensor Dimensions: The output tensor is the 

segmented mask representing the predicted tumor regions. It 

has the same spatial dimensions as the input tensor but with a 

single channel. In our case, the output tensor has dimensions 

like (128, 128, 128, 1). 

Figure 4 provides a visual representation of the encoder-

decoder structure, the connections between layers, and the 

flow of information within the model. The efficiency of the 

proposed architecture is expected to be high, given its block 

modifications flexibility, called ResNet‘M blocks. 

 

 

 
 

Figure 3. Proposed image segmentation algorithm architecture 
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(a) (b) (c) 

 

Figure 4. Different variants of convolution units and residual convolutional units: (a) forward convolutional, (b) residual 

convolutional block, and (c) the proposed residual convolutional block modified (ResNet’M) 

 

It is important to recall that MRI images provide rich 

information thanks to its multiple acquisition parameters. 

Therefore, when compared with single modality images, MRI 

images provide significant improvement to the outcome of the 

feature extraction process. In fact, by offering multiple views. 

MRI images bring complementary information, thus 

contributing to better data representation and ultimately an 

increased discriminative power of the image analysis process. 

For instance, T2 and FLAIR images are more suitable in 

detecting a tumor with peritumoral edema, while T1 and T1c 

are better suited to detect a tumor core without peritumoral 

edema. Hence, the use of multi-modal MRI images has proved 

to be a powerful tool in improving the accuracy of brain tumor 

image segmentation, and as a result better diagnosis and 

potential treatment. Therefore, the fusion of multiple image 

modalities is an important task of multi-modal medical image 

segmentation. For that, we used the FLAIR, T1CE, and T2 

images, in order to extract more robust features.  

In this research study, we propose a novel model based on 

the Res-Gated-3DUNet architecture, incorporating 3D 

ResNet‘M blocks in both the encoder and decoder to enhance 

the segmentation of brain tumors.  

The encoder path of the model is structured such that each 

stage features a ResNet‘M block (refer to Figure 4c) instead of 

the conventional residual convolutional block (Figure 4b). 

These ResNet‘M blocks consist of two 3D convolutions with 

Batch Normalization (BN) and Rectified Linear Unit (ReLU), 

followed by a skip connection (Shortcut) for the addition of 

identity information. The layers are therefore used in each 

ResNet‘M blocks according to following the pipeline flow: 

Input→Convolution layer →ReLU layer →Dropout layer 

→BN layer →Convolution layer →ReLU layer →Shortcut 

layer →BN layer →Shortcut+BN layer →ReLU layer 

→Output. 

A Max pooling operation between every two ResNet‘M 

blocks is performed in order to reduce the resolution of the 

feature maps. We user the encoder to get the feature 

representation from the three modalities and to accelerate the 

training process. We note that, different MRI modalities can 

highlight different sub-regions, which in turn can provide the 

complimentary information to analyze the brain tumor. 

Therefore, ResNet‘M block is proposed to produce the most 

important features from different modalities and to highlight 

regions that are most relevant to brain tumor segmentation. 

Decoder Path: The decoder path has the same architecture 

as that of the encoder and consists of four levels. This path is 

used to recover the image details. On the decoder side, and in 

order to enhance the spatial content, an up-sampling layer with 

tri-linear interpolation is introduced. The UNet skip 

connections combine the decoder and encoder paths to 

maintain accurate spatial information. In addition, this process 

leads to an appropriate representation of features that were 

present in the initial layer. To address this problem, we 

introduce a signal gated in our Res-Gated-3DUNet 

architecture. 

A signal gated implementation in skip connections seeks to 

suppress activations in irrelevant regions. In fact, bridge 

between stages using residual connections coupled with gated 

signals in the encoder part Gated signal takes 2 inputs, denoted 

by G and X, described below: 

G: Gating signal; comes from the next lower network layer. 

Since it comes from a deeper network layer it has better 

features representation. 

X: Comes from the skip connection. Since it comes from 

early layers, it has better spatial information. 

By combining the spatial information from the skip 

connection with the feature information from the gating signal, 

we improve feature reuse and propagation while reducing 

redundant connections. The integration of the gating signal to 

the multi-modal brain tumor segmentation process, is 

therefore adopted. Each residual unit with gated signal can be 

denoted then using the following expressions: 

 

𝑦𝑙 = ℎ(𝑥𝑙) + 𝐹(𝑥𝑙 + 𝑤𝑙) (1) 

 

𝑥𝑙 + 1 = 𝑓(𝑥𝑙) (2) 

 

where, 𝑦𝑙 denotes the output of the lth layer, F(.) is defined as 
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the residual function, the activation function is denoted f(.), 

and the identity mapping is h(.), 𝑥𝑙+1, and 𝑥𝑙 represent the 

output and the input of the residual unit, respectively. 

The Combined loss function: 

The optimization of the segmentation process requires a 

careful selection of the loss function. For that, various 

performance metrics have been established to assess the 

quality of the image segmentation results. We now introduce 

the concept of cross entropy. 

The cross entropy (CE): It’s is computed for each pixel in 

the objective to determine the entropy of the prediction 

probability and the ground truth [31]: 

 

𝐶𝐸 (𝑝𝑡) = −𝛼𝑡 𝑙𝑜𝑔 (𝑝𝑡) (3) 

 

where, 𝑝𝑡 denotes the probability of the event t in p. 

We have also introduced another loss function which is the 

Dice coefficient (DL) as another loss function. It measures the 

level of similarity between predicted and ground truth, no 

matter how small or large the target value is; this coefficient is 

given by: 

 

DL = 1 − DS (4) 

 

Finally, a focal loss indicator (FL) is defined as follows [32]: 

 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡 (1 − 𝑝𝑡)𝛾 + 𝑙𝑜𝑔 (𝑝𝑡) (5) 

 

where, γ is the focusing parameter and p is the estimated 

probability (γ≥0 and p∈[0, 1]). 

It is important to recall that Dice loss and binary cross 

entropy are generally adopted by scientific community in the 

evaluation and analyzing of medical image segmentation 

results. On the other hand, the binary cross entropy is not most 

adequate in dealing with an imbalanced dataset. 

Given the issue of class imbalance, the Focal loss and Dice 

loss were used to train the proposed Res-Gated-3DUNet 

network. The ultimate brain image segmentation outcome is 

evaluated using the following combination of the focal and 

dice loss, which is defined as the combined loss function 

(CFD): 

 

CFD = FL + (0.1 × DL) (6) 

 

We note the CFD loss is proposed in our architecture to 

handle multi-class segmentation situations, as is the case in our 

study.  

In conclusion, we have introduced an enhanced network 

known as the Res-Gated-3DUNet architecture. Derived from 

the standard UNet model, this architecture replaces the 

original UNet convolution block with upgraded ResNet‘M 

blocks. Subsequently, we will delve into the performance of 

our model, emphasizing its key advantages, including its 

ability to reduce network parameters, mitigate issues related to 

vanishing gradients, deepen network layers, and ultimately 

enhance feature propagation. 

 

 

4. RESULTS AND DISCUSSION 

 

The value of any model is measured by its performance, 

which greatly depends on its proper parametrization. In our 

case, the training step is important for the learning process of 

the proposed network, which will then be tested for its capacity 

to properly perform the designated image segmentation. 

 

4.1 Performance metrics 

 

In order to evaluate obtained results, we rely on three 

metrics: Dice coefficient, specificity, and sensitivity, which 

we evaluate as follows: 

Dice Coefficient: This coefficient measures the similarity 

between the ground truth and the predicted segmentation. It is 

composed by the ratio of the intersection of the two sets to 

their sizes averages. 

 

Dice =
2TP

FN+FP+2TP
  (7) 

 

The “Intersection” refers to the number of pixels that are 

correctly classified as tumor regions in both the predicted and 

ground truth segmentations. The “Total pixels in predicted” 

and “Total pixels in ground truth” refer to the total number of 

pixels in the corresponding segmentations. 

The Dice coefficient ranges from 0 to 1, where 1 indicates 

a perfect match between the predicted and ground truth 

segmentations, and 0 indicates no overlap at all. Higher values 

indicate better segmentation performance. 

Sensitivity: it measures the model’s ability to correctly 

detect positive instances (tumor regions) among all truly 

positive instances. So it is the ratio of True Positives to the 

True Positives and False Negatives, added together. 

 

Sensitivity =
TP

TP+FN
  (8) 

 

We recall that TP means True Positives, it consists of the 

number of pixels correctly classified as tumor regions. FN 

means False Negatives; they are the pixels incorrectly 

classified as background (missed tumor regions). Sensitivity 

metric ranges from 0 to 1, where 1 indicates perfect sensitivity 

(no missed tumor regions) and 0 indicates no true positive 

detections. 

Specificity: Determines the model’s capability to correctly 

exclude negative instances (healthy tissue) among all truly 

negative instances. It measures the ratio of True Negatives to 

the total of True Negatives and False Positives. 

 

Specificity =
TN

TN+FP
  (9) 

 

True Negatives (TN) are the number of pixels correctly 

classified as background (healthy tissue). False Positives (FP) 

are the number of pixels incorrectly classified as tumor regions. 

Similarly, this metric is designed to have a range from 0 to 1, 

where 1 indicates perfect specificity and 0 indicates no true 

negative detections. 

 

4.2 Network training and segmentation results 

 

Network training 

In all experiments, our network structure was implemented 

using Keras with a TensorFlow backend, and the training 

process was executed on NVIDIA GeForce GTX GPUs. The 

training comprised two hundred epochs, with a patch size of 

4×96×96×96. It's worth noting that two patches were 

randomly selected for each patient in each epoch. The training 

process, utilizing Adam optimizers with learning rates of 1e-3, 

took approximately 4 hours. 

Segmentation results were obtained for the BraTS2020 

147



 

validation datasets, and Figure 5 illustrates a sample of these 

results. Brain tumor segmentation was conducted on a 

randomly selected patient using both the original 3D UNet and 

our proposed model. The figure displays slices of an MRI 

image along with their corresponding ground truth and slices 

of the segmented image predictions from both the 3D UNet 

and Res-Gated-3DUNet architectures. Notably, when 

compared with ResNet and 3D UNet, the Res-Gated-3DUNet 

consistently demonstrated superior performance. 

The combined focal dice loss is used to calculate the 

training accuracy. We recall in Figure 6 that small epochs lead 

to higher training accuracy; large epochs lead to a gentler 

change in the training curve. 

The performance metric results of the proposed method on 

the BraTS2020 validation datasets are shown in Table 3. The 

obtained values for the dice, sensitivity, and specificity metrics 

are illustrated for WT, TC, and ET data sets. It’s clear that the 

all TC, ET, and WT sets have dice scores of 0.854, 0.849, and 

0.879, respectively. 

 

 
 

Figure 5. Sample of the segmentation results on the brats2020 validation set 

 

 
 

Figure 6. Training accuracy curve on the BraTS2020 dataset 

 

Table 3. Performance of the proposed method on the 

Brats2020 validation datasets 

 
 TC ET WT 

Dice 0.854 0.849 0.879 

Sensitivity 0.789 0.707 0.825 

Specificity 0.999 0.999 0.998 

 

Comparative performance and discussion: 

Next, a comparison of the proposed Res-Gated-3DUNet 

with ResNet and the original 3D UNet method, is presented. 

We recall that in this study, the used parameters are the same 

in training process, and training data. 

ResNet (Residual Network): is a deep neural network 

architecture introduced by He et al. [8]. It addresses the 

vanishing gradient problem in very deep networks by 

introducing residual connections, allowing layers to learn 

residual mappings instead of directly learning the desired 

mappings. The ResNet’s skip connections facilitate the flow 

of gradients during training stage, making it possible to train 

deeper networks offering thus improved performance. This 

network architecture has witnessed relatively large success in 

various computer vision such as object detection and image 

classification. 

3D UNet: is a three-dimensional extension of the U-Net 

architecture introduced by Çiçek et al. [25]. Similar to U-Net, 

3D UNet uses an encoder-decoder structure with skip 

connections to effectively learn the relevant hierarchical 

features and capture the essential contextual information in 3D 

medical images. Due to its ability to handle 3D volumes, and 

produce reasonably accurate segmentations, this network 

architechure has been widely used in various medical image 

segmentation applications, such brain tumor. 

Table 4 shows the dice values obtained by our new approach 

which reflect higher TC, ET, and WT values than those of 

ResNet models. It surpasses them by 0.119%, 0.125%, and 

0.069% respectively. Furthermore, based on the same table, 

the dice of TC, ET, and WT achieved by our proposed method 

are also higher, respectively by 0.013%, 0.146%, and 0.044%, 

than 3D UNet. 

 

Table 4. Comparative analysis of the Brats2020 dataset 

based on dice metric 

 
 TC ET WT 

Proposed 0.854 0.849 0.879 

3D UNet [25] 0.724 0.703 0.835 

ResNet [8] 0.735 0.724 0.810 

 

Using the proposed combined CDF loss, the dice coefficient 

obtained is of 87% for the WT images, which is significantly 

performant as shown in Table 5. 
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Table 5. A comparison of loss function on the basis of 

average dice metric 

 
Loss Function Value 

Dice Loss 0.84 0.849 0.879 

Focal Loss 0.81 0.703 0.835 

CDF Loss 0.87 0.724 0.810 

 

Table 6. A comparison of dice scores with other advanced 

methods on different BraTS datasets 

 
Work Reference Dice (ET) Dice (WT) Dice (TC) 

Proposed 0.79 0.87 0.82 

[2] 0.65 0.78 0.75 

[25] 

[27] 

0.62 

0.66 

0.84 

0.85 

0.73 

0.70 

 

One notes clearly that, the developed segmentation method 

in this work, displays a superior performance compared to that 

of ResNet and the original 3D UNet. This significant 

enhancement can be attributed to at least two primary factors. 

Firstly, our encoder-decoder architecture incorporates 

ResNet‘M blocks, in contrast to the traditional convolution 

blocks employed by 3D UNet. The ResNet‘M blocks contribute 

to more robust feature propagation compared to conventional 

blocks. Additionally, the shortcut gated connections within the 

ResNet‘M blocks enhance gradient flow, thereby improving 

information flow efficiency. 

Table 6 compares the experimental results of our study with 

advanced methods that used different BraTS datasets but 

shared the same network parameters. As can be noted, these 

methods are not better than the proposed Res-Gated-3DUNet 

in terms of performance metrics. 

Our proposed approach is a competitive automatic brain 

tumor segmentation method. On the basis of the dice 

coefficient, the Res-Gated-3DUNet model performed better 

than the four models mentioned above. 

In this work, we present an efficient method for combining 

three MRI sequences into a single image. We also evaluated 

our Res-Gated-3DUNet model with other teams participating 

in the BraTS2020 Challenge. 

A performance analysis of our method in comparison to 

some of the most advanced models is outlined in Table 7. The 

most accurate values in each column are highlighted in bold 

font.  

Additional comparisons with other models and their 

respective results can be accessed on the online leaderboard 

through the online evaluation platform. 

(https://www.cbica.upenn.edu/BraTS20/lboardValidation.ht

ml.)  

Several experiments illustrate the enhanced efficiency of 

the presented Res-Gated-3DUNet architecture compared to 

state-of-the-art models such as Unet3dD, LMB, CV_UARK, 

ovgu_seg, and MiRL. Consequently, incorporating the 

ResNet’M in the network proves to be an effective means of 

improving the accuracy the model segmentation.

 

Table 7. Performance comparison of the proposed model with other standard approaches 

 
  Dice   Specificity   Sensitivity  

 TC ET WT TC ET WT TC ET WT 

Proposed 0.854 0.849 0.879 0.999 0.999 0.998 0.789 0.707 0.825 

Unet3d 0.724 0.703 0.835 0.998 0.999 0.998 0.785 0.711 0.867 

LMB 0.764 0.716 0.824 0.999 0.999 0.999 0.721 0.695 0.766 

CVUARK 0.746 0.640 0.831 0.999 0.999 0.998 0.726 0.660 0.850 

Ovgu seg 0.655 0.550 0.773 0.999 0.999 0.998 0.565 0.652 0.778 

MiRL 0.741 0.666 0.850 0.999 0.999 0.997 0.745 0.731 0.917 

 

In summary, the proposed method reflected its effectiveness 

and clear advantages over existing methods. It also proved to 

capture and learn from the complementary feature information 

made available through the various image modalities. This 

allowed the extraction of the most useful features relevant to 

the target regions. Moreover, for better refinement of the 

segmentation results, a new effective combined loss function 

was introduced. Although this method showed promising 

results, its applications should be can be extended to other 

research fields and its performances should be further explored. 

 

 

5. SUMMARY AND CONCLUSION 

 

In this paper, we sought to address the challenging task of 

MRI image segmentation for brain tumor detection. For that, 

the world BraTS2020 challenge datasets were used in training 

and testing a new model for Deep Learning Network applied 

to image analysis and segmentation. 

Specifically, we developed a network architecture, denoted 

by Res-Gated-3DUNet with improved segmentation accuracy 

of brain tumor in 3D multimodal images. The proposed 

network can be regarded as an extension of the 3D U-Net 

architecture, as it integrated the residual encoder-decoder 

(ResNet’M) blocks and gated activations. The residual 

connections in the encoder and decoder pathways of the 3D U-

Net architecture were also incorporated. In fact, the residual 

connections enable the network to efficiently capture and 

propagate relevant feature information, thus reducing the 

vanishing gradient problem and facilitating the training of 

deeper networks. This has resulted in additional enhancement 

to the model’s ability to better learn complex hierarchical 

representations such as those encountered in 3D MRI brain 

images. Moreover, the proposed model incorporated gated 

activations within the residual blocks which resulted in the 

improvement of the information flow. In fact, the gated 

activations are known to promote feature discrimination, 

especially in the presence of class imbalance, which is 

common in medical image segmentation. As a result, feature 

discrimination was enhanced, which in turn improved the 

segmentation accuracy, particularly in challenging brain 

tumour regions. 

The implementation of the proposed model proved to be 

relatively more effective producing balanced and precise 

segmentation results. A qualitative evaluation of the obtained 

results confirmed visually better segmentation assessments of 

the proposed model’s outcome. Moreover, the Res-Gated-3D 

UNet successfully demarked tumor boundaries with relatively 

high precision, thus indicating its robust performance in 

challenging tumorous regions. 
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Finally, we recall that the integration of a novel loss 

function, based by a Combined Focal-Dice Loss (CFD), 

played a useful role in improving the segmentation accuracy. 

The CFD loss function effectively addressed class imbalance, 

thus further enhancing the quality of the segmentation results. 

One of the main disadvantages of the proposed network 

architecture is related to its computational complexity, since 

the deeper learning architecture tends to require more 

resources during training and inferences stages. Exploring 

alternative loss functions to further improve the model’s 

performance could bring more benefits. Additionally, we 

suggest the incorporation of more input modalities to leverage 

complementary information and enhance the segmentation 

accuracy. Finally, a generalization of the proposed model to 

different medical health conditions and datasets is essential to 

assess its extensibility and applicability beyond the field of 

brain tumor region segmentation. 
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