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Addressing the challenge of secure data transmission within the Internet of Things (IoT) 

necessitates robust solutions. Deep learning has emerged as a potent tool for threat analysis 

and response to security incidents in the IoT landscape. A particular method, namely the 

Generative Adversarial Network (GAN), is utilized for identifying attacks during secure 

data transmission. Despite its usefulness, GANs are not devoid of shortcomings, such as 

mode collapse, which limits the diversity of the generator's output. This issue often arises 

from training difficulties when the generator encounters a specific type of data that easily 

deceives the discriminator. To mitigate these limitations, this study introduces an enhanced 

model of the GAN, the Conditional GAN (CGAN), featuring two generators and two 

discriminators (G1, G2, and D1, D2). This model, when amalgamated with cryptographic 

techniques, effectively addresses the mode collapse issue. Furthermore, Algebraic Matrix 

Encryption (AME) and Improved Fully Homomorphic Encryption (FHE) algorithms are 

proposed as secure data transmission solutions. To evaluate the diversity of the generated 

fake samples, the Jaro-Winkler similarity measure is employed. A comprehensive 

comparison of the proposed model’s efficiency is conducted, incorporating metrics such as 

Jaro-Winkler accuracy test, training time, loss, Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Percent Root Mean Square Difference (PRD), recall, F-score, mean, 

and standard deviation. According to the analysis, the proposed model surpasses the 

performance of AEGAN and MTC-GAN, thereby demonstrating its potential in enhancing 

secure data transmission in IoT. 
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1. INTRODUCTION

Security remains a compelling challenge for both 

individuals and organizations, demanding thorough scrutiny at 

every stage, from initial design to daily operations. The 

lifecycle of a device necessitates rigorous security control, 

encompassing initial booting, patch updates, and all 

intermediate stages. The issue of IoT security becomes 

particularly critical during financial transactions or when 

handling private and confidential information. Given the ease 

of access to monitor data feeds, change settings, and modify 

authorizations, potential infiltrators have significant 

advantages [1]. 

Deep Learning (DL), with its increasing application across 

sectors such as healthcare and cybersecurity, is a potent tool 

for understanding 'normal' and 'abnormal' behaviors in the way 

IoT components and devices communicate within an IoT 

framework [2, 3]. By analyzing every input data component of 

the IoT system, common patterns of interaction can be 

identified, enabling early detection of malicious activity. 

Furthermore, ML/DL techniques can be instrumental in 

predicting new attacks, which are often adaptations of 

previous ones, as these techniques can effectively anticipate 

future unknown attacks by learning from existing ones [4]. To 

provide effective and secure solutions, IoT systems must 

progress beyond merely enabling secure device connectivity 

to offering security-based intelligence underpinned by DL/ML 

approaches. 

Recent advancements in deep learning, such as Generative 

Adversarial Networks (GANs), can generate new data 

mirroring the statistical properties of the training set. For 

instance, a GAN trained on images can create new, seemingly 

realistic images. This implies that within an IoT setup, fake 

data can be integrated with the original message in the GAN 

to mislead an attacker with decoy information. However, these 

cross-modal translation frameworks prove inadequate for 

multi-domain image-to-image translation [5]. Existing 

cryptographic systems utilizing neural networks and 

generative adversarial neural networks have limited 

mechanisms for data security. Data anonymization, although a 

viable approach, does not guarantee complete data security, as 

some aspects of the protected data can still be inferred from 
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the non-anonymised data [6]. 

Homomorphic encryption, a relatively recent and promising 

technique, can address cryptography-related challenges in AI. 

Accordingly, the current study aims to enhance GAN's 

architecture by incorporating two generators (G1 and G2) and 

two discriminators (D1 and D2). The contributions of this 

work are as follows: 

• The work employs CGAN, introducing additional coding 

technology to the generator using an algebraic matrix to 

address time complexity issues in the coding process. 

• A novel technique, termed Improved CGAN, is proposed 

to distinguish between real and fake data, ensuring secure 

data transmission. 

• Encoded data serve as input for Fully Homomorphic 

Encryption (FHE), further bolstering the security of IoT 

data. IoT messages are crucial for cryptographic 

purposes within this project. 

• The Jaro-Winkler similarity measure is used to assess the 

diversity of generated fake data. 

• Conditional information (alphabets and numbers) is 

added to noise and used in the encryption process. The 

key sizes, derived from noise, are encrypted using an 

improved FHE in the second generator. 

 

 

2. LITERATURE REVIEW 

 

Previous research has explored the use of GAN-based 

models for detecting risks in IoT devices both within and 

outside the network. Some researchers have factored in the 

role of network function virtualization in managing hostile 

devices identified on the network [7]. Their GAN-based model 

identified malicious devices deviating from the norm by 

mapping the latent space of the relevant IoT device dataset. 

In terms of data acquisition, an efficient seismic data 

acquisition approach known as the Compact Detection 

Framework with Generative Adversarial Network (CSA-GAN) 

was developed to address the limitations of large-scale seismic 

data acquisition. This approach relies on a data gathering 

architecture centered around compressed sensing theory, 

which reduces overall data traffic load and balances data 

transfer [8]. 

A novel strategy to handle mode collapse in GANs was 

developed using two discriminators. Although the use of two 

discriminators is not new, it has proven to be effective in 

overcoming some of GAN's inherent weaknesses [9]. The 

strategy effectively integrates the Kullback-Leibler (KL) and 

reversed KL divergences into a unified objective function, 

enabling it to efficiently vary the predicted density in 

collecting multi-modes [10]. 

In the realm of music, a novel melody composition 

approach was developed based on individual bars. This 

approach improved upon the original GAN model by creating 

a new GAN model with two discriminators: an LSTM model 

and a model ensuring bar correlation. This resulted in a 

reduction in the overall architecture's execution time 

compared to the traditional GAN [11]. 

Researchers have also proposed the Public Key Fully 

Homomorphic Encryption scheme (PKFHE), which is 

fundamentally based on Euler's theorem. This scheme proved 

to be faster in terms of temporal complexity and demonstrated 

strong data security in the cloud [12]. 

There has been research on verified public-key encryption 

with keyword search in a multi-user situation, using 

homomorphic encryption [13]. The researcher proposed a 

system based on the structure of the inverted encoding pointer 

and explained how it could be used to verify the accuracy and 

completeness of research results. 

Another study proposed a faster FHE technique that 

required fewer ciphertext refreshes. This method, based on the 

Ducas and Micciancio (DM) technique, seemed to have a 

lower computational cost compared to the GSW and DM 

methods [14]. 

One of the latest innovations in privacy-preserving 

authentication techniques is homomorphic encryption [15]. 

This technology protects the privacy of users' data by ensuring 

that the results from homomorphic encryption processes are 

identical to those obtained from the original text. 

A Conditional Activation GAN (CAGAN) was introduced 

to combine various GANs. The architecture of the integrated 

GANs had no significant influence on the number of 

computations [16]. Furthermore, to avoid batch normalization 

from ignoring the conditions specified in a CAGAN's 

discriminator. 

In a bid to improve outcomes, a novel architecture in the 

generator-discriminator pair was presented along with a new 

refined loss function for improving details. The generator used 

an autoencoder with skip connections, and the inception 

module captured multiple scales of spatiotemporal correlation 

[17]. The refined loss function aimed to eliminate GAN 

artifacts and ensure better reconstruction performance. 

To tackle both security and energy efficiency in IoT, two 

unique deep learning approaches were suggested [18]. The 

researchers proposed reducing the use of energy-intensive "1" 

values in the DRAM interface, thus offering an innovative 

power-saving solution in IoT devices. Furthermore, the data 

was protected by the chaotic XOR encryption (CXE) approach, 

which has been proved to be faster and more secure compared 

to XOR operation. 

The proposed Variance Enforcing GAN (VARGAN) is a 

new GAN design that includes a third network to boost variety 

in generated data [19]. Due to its impressive diversity, low 

computational complexity, and fast convergence, VARGAN 

is a promising paradigm for preventing mode collapse. 

The Dual Discriminator Weighted Mixture Generative 

Adversarial Network (D2WMGAN) approach demonstrated 

that it could effectively learn many modes of data, providing 

rich, realistic examples, and mitigate the issue of mode 

collapse [20]. 

An evolutionary multi-objective cyclic GAN (EMOCGAN) 

was suggested for solving the problem of mode collapse. 

However, there are a few limitations, such as when the 

proposed approach has a low UQI or is not comparable to the 

state-of-the-art [21]. 

The proposed attentive evolutionary generative adversarial 

network (AEGAN) approach was developed to resolve issues 

in existing GANs such as mode collapse, instability, and low 

processing efficiency [22]. 

By combining the strengths of the Variational Auto-

Encoder (VAE) and the Generative Adversarial Network 

(GAN) with an auxiliary discriminative classifier network, 

researchers addressed the challenges of image blurriness and 

mode collapse to some extent [23]. 

Various encryption methods have been introduced to protect 

data from hackers. The most common technology is FHE. 

There are three main types of isomorphic encoding methods: 

Partially homomorphic PHE encoding, Somewhat 

Homomorphic SHE encoding, and Fully Homomorphic FHE 
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encoding. The security of these encryption methods has been 

proven mathematically. However, FHE has a higher 

computational cost and requires more time to execute [24]. 

In conclusion, the literature review has shown that GANs 

have been used in various domains to generate data, including 

IoT, music, and seismic data. Despite their successful 

application in these fields, GANs still face issues such as mode 

collapse and high computational costs. Homomorphic 

encryption techniques, on the other hand, have proven to be 

secure but are also computationally expensive. Therefore, 

there seems to be a need for methods that can address these 

shortcomings. 

 

 

3. METHODOLOGY 

 

This section describes about proposed work in detail. The 

main objective of this work is to improve the GAN 

architecture for transferring the data securely and more 

efficiently in IoT applications and to solve the mode collapse 

problem. AME and improved FHE are used to encrypt and 

decrypt the IoT message. 

The advantage of using an algebraic matrix is that the 

complexity involved in the encryption process was reduced. 

Though many techniques are used to overcome the mode 

collapse problem, still it is remaining as one of the challenging 

tasks in active research. This work utilized one additional 

generator and discriminator to handle the mode collapse 

problem in standard GAN. 

 

3.1 Backgrounds of GAN 

 

GAN is a generative model that allows two sub-models to 

compete for correct data generation. A GAN is made up of a 

generator and a discriminator. The generator's purpose is to 

create authentic fake data, whereas the discriminator's goal is 

to distinguish true data from the generator's fake data. Each of 

these models improves at their job during training, and the best 

stop state is a balancing act in which neither model 

outperforms the other. The generator extracts feature from the 

training data to generate realistic images. The discriminator is 

trained on its own to classify both the labeled false and real 

images. A GAN could get trapped in a few different failure 

scenarios. The two most common types of failures are 

convergence failure (which fails to produce good quality 

outputs), and mode collapse failure (which fails to create a 

variety of different-looking outcomes). 

 

 
 

Figure 1. Architecture of proposed CGAN for secured data transmission 

 

3.2 Problems in GAN 

 

A well-trained GAN can typically produce a wide range of 

outputs. Whenever a generator could only generate a single 

output or a limited number of outputs, mode collapse occurs. 

This could be due to training issues, such as the generator 

discovering a type of data which can easily tricked the 

discriminator, then continues to generate that type. As the 

generator doesn’t have an incentive to switch things up, the 

entire system will over-optimize on that one output. As a result, 

whether the data or any information is generated as accurate, 

the suggested study determined an additional generator and 

discriminator for identifying the mode collapse problem. This 

work solves the mode-collapse problem by monitoring 

whether the produced fake samples by the generators are 

diverse. If not, the feedback is given to solve this problem. 

 

3.3 Improved CGAN 

 

The proposed CGAN is improved with two generators (G1 

and G2) and discriminators (D1 and D2) which solves mode 

collapse problem by checking whether the generated data 

samples by the generators are diverse in nature as well as 

similar to real data. Figure 1 depicts the proposed work's 

architecture. Initially, on the sender's side, the fake data 

samples generated by the generators (G1 and G2) and real 

samples are encrypted using AME and FHE techniques. It is 

further transmitted through IoT network to the receiver, where 
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the received, data is decrypted using same two techniques 

(AME, FHE). Then, the discriminator (D1) checks whether the 

generated samples are diverse. If so, then real and fake data 

are classified using discriminator D2. Otherwise, the feedback 

is sent as a loss function to the generators. The FHE technique 

is improved to encrypt the message using the number of 

character counts in messages that are referred to as key size. 

 

3.4 Dual generators 

 

This work uses two generators G1 and G2. Both generate 

fake samples by taking noise and condition as input. The 

generators can be denoted as:  

 

𝐺1(𝑌) = 𝐺1
𝑎(𝐺1

𝑎−1 (… . . . 𝐺1
2(𝐺1

1(𝑌)))) (1) 

 

𝐺2(𝑌) = 𝐺2
𝑏(𝐺2

𝑏−1 (… . . . 𝐺2
2(𝐺2

1(𝑌)))) (2) 

 

where, a and b denote the total number of layers in two 

generators. There can be single distribution for single 

generator and mixed distribution for two of them. In this work, 

we assume both generators have similar structure and same 

equal weights. Inspired from the work [22], this work uses 

feature matching loss for training the IoT data for mixed data 

distribution in generators. The feature matching loss function 

were utilized by generators to control the mixed data 

distribution, thereby reduces overlapping of high-density data 

regions of real data while remaining close to the genuine data 

distribution. 

 

3.5 Dual discriminator  

 

The receiver consists of dual discriminators D1 and D2. In 

this, first one determines whether generated samples are 

diverse or not. For this, Jaro-Winkler similarity is used. If it is 

diverse, the next discriminator will classify the data as real and 

fake samples. Otherwise, feedback will be passed as loss 

function to the generators for improving the generated fake 

samples.  

The two discriminators can be given as, 

 

𝐷1(𝑧1) = 𝐷1
𝑐(𝐷1

𝑐−1 (… . . 𝐷1
2(𝐷1

1(𝑧1))))  

= 𝐷2
𝑒(𝐷2

𝑒−1 (… . . 𝐷2
2(𝐷2

1(𝑧2))))  
(3) 

 

In above equation, c and e refers to number of layers in two 

discriminators. First discriminator will find whether the 

generated samples are diversified or not. In the next step, 

discriminator 2 will classify samples as real and fake. In this 

work, we consider both discriminators share equal layers and 

weights to avoid mode collapse problem. This also reduces the 

number of parameters in receiver side. 

 

3.6 Model training 

 

The proposed model is based on data that have been trained 

using joint data distributions. Weight-sharing restrictions are a 

crucial component of our contribution since they allow 

networks to manage their shared data and boost efficiency. 

Furthermore, the sharing weight restriction permits the model 

to reduce the number of parameters while reducing the original 

GAN's complexity. Also, this work assumes the generators 

and discriminators share same number of layers and equal 

weights. 

The generators are G1and G2, the discriminators are D1 and 

D2, and is a set of noise that was used encode the real message. 

The discriminators D1 and D2 determine the outcomes based 

on the AME and FHE conditions, accordingly. They were 

trained via maximizing the loss based on each determination 

outcome, as illustrated in Eqs. (4) and (5) utilizing D1 and D2 

loss correspondingly. 

Let,  

 

Loss D1 (D1, G1)  
=  Eα[log D1 (α)]  + 𝐸𝛼[1
−  log D1 (G1 (α))] 

 

 

Loss D2 (D2, G2)  =  Eα[log D2 (α)]  +  𝐸𝛼[1 −
 log D2 (G2 (α))]  

(4) 

 

The generators are trained as shown in Algorithm 1 by 

optimizing the losses using Loss G1 (), G2 (), and (Eq. (3)) by 

comprehensively considering the determination results of the 

two discriminators. 

 

Loss (G1, G2, D1, D2)  =
Eα[1−LOG(G1(α))]+Eα[1−LOG(G2(α))]

2
  

(5) 

 

3.7 Improved CGAN model training algorithm  

 

FUNCTION Back Propagation (α) 

BEGIN  

Initialize generator G1, generator G2, discriminator D1, 

discriminator D2 

Initialize α  

FOR i←1 to SIZE (number of iterations) 

FOR j←1 to SIZE (number of batch size)  

α update D1 by Loss D1 (D1, G1)  

Update D2 by Loss D2 (D2, G2)  

Update G1 by Loss G1 (D1, D2, G1)  

Update G2 by Loss G2 (D1, D2, G2)  

END FOR 

END FOR 

END 

 

3.8 Encryption and decryption modules 

 

The fake samples generated by generators and real samples 

are encrypted and passed through IoT network. Then, the 

received encrypted text on receiver side are decrypted for 

further processes. This is illustrated in Figure 2. 

 

3.9 Algebraic Matrix Encryption 

 
A=1 B=2 C=3 D=4 X=-12 

E=5 F=6 G=7 H=8 Z=-13 

I=9 J=10 K=11 L=12 

M=13 N=-1 O=-2 P=-3 

Q=-4 R=-5 S=-6 T=-7 

U=-8 V=-9 W=-10 X=-11 

 

Let the key be 1𝐾1 ,2𝐾2 ,....𝐾𝑁  where N is the number of 

words in the message. Also, consider the messages are 1𝐾5 

=HELLO, 2𝐾5 = WORLD. 1𝐾5= HELLO can be denoted as: 

H= 8, E= 5, L= 12, L= 12, O= -2. 2𝐾5= WORLD: W= -10, O= 

-2, R=-5, L=12, D=4 Construct the Cyclic Square Matrix with 

characters in 𝐾𝑖for each i =1, 2,... n, not clear. 
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1𝐾5 
8 5 12 12 -2 

5 12 12 -2 8 

12 12 -2 8 5 

12 -2 8 5 12 

-2 8 5 12 12 

2𝐾5 
-10 -2 -5 12 4 

-2 -5 12 4 -10 

-5 12 4 -10 -2 

12 4 -10 -2 -5 

4 -10 -2 -5 12 

 

Now, calculating the E (η (1𝐾5 )) and E (η (2𝐾5 )) using the 

following condition.  

 

1. 𝑊𝑖 =  
𝑗+1

2
if η (𝐾𝑖) = j is odd, k =  1, 2 … . n & 𝑎𝑛𝑑 𝐼, 𝑗 =

 1, 2 …  

2. 𝑊𝑖 =  
𝑗

2
if η (𝐾𝑖) = j is even, k =  1, 2 … . n & 𝑎𝑛𝑑 𝐼, 𝑗 =

 1, 2 …  

 

• Then for 1𝐾5: η (1𝐾5 ) = 5, this is an odd number, so 

using the condition is 
𝑗+1

2
if η (𝐾𝑖) = j the resultant value is 3. 

This is similar to η (2𝐾5 ). Assign each column value as 𝑏1= 

12 12 -2 8 5 and 𝑏2= -5 12 4 -10 -2.  

where, 𝑏1 and 𝑏2 are the diagonal matrix, respectively. 

• Compute the diagonal matrix D (𝑏1) −5I5 =D (12 12 

-2 8 5)−5I5 = 7 7-7-3 0 and D (𝑏2) −5I5= D (-5 12 4 -10 -2) 

−5I5 = -10 7 -1 -15 -7. Hence the encrypted results are M1= 7 

7-7-3 0 and M2= -10 7 -1 -15 -7. This encrypted message is 

forwarded to the FHE encryption module for next stage of 

encryption. 

 

3.10 Fully Homomorphic Encryption (FHE) 

 

FHE is an encryption technology that performs addition and 

multiplication at the same time and can compute any operation 

[2]. Many encryption algorithms have been used to convert 

plain text to ciphertext and vice versa. However, it is still 

inefficient and it is not easy to convert text or data because it 

contains complex mathematical formulas that take longer to 

process. 

 

 

3.11 FHE key generation 

 

Let's consider the encrypted results from AME M1 and M2 

key sizes like 1𝐾5 𝑎𝑛𝑑 2𝐾5 = n. Select another number using 

Eq. (4). 

 

S1 =  n ∗ 𝑢 (6) 

 

Next, select one big random integer with the condition, 

i.e.(R ≤ 1 and R ≥ 9), therefore  

 

e = R (n − m + 1) (7) 

 

Now, the public key is (S1, e) and the secret key is (n).  

 

3.12 FHE encryption 

 

According to FHE, M1= 7 7-7-3 0 and M2= -10 7 -1 -15 -7 

are the messages from IoT. Now, they were utilizing the Eq. 

(6) to encrypt the message again.  

 

C1 C2 = M1M2ij∗e+1mod S1 (8) 

 

where, C1 and C2 are the ciphertexts of message HELLO 

WORLD, i and j are the two random integers.  

Next, the double encrypted message is transmitted to the 

receiver through the IoT network. 

 

3.13 FHE decryption 

 

The received encrypted IoT data are decrypted in two stages. 

First, it is decrypted using FHE decryption technique. Then, it 

is decrypted using FHE decryption technique. 

According to FHE, decrypting the ciphertext using Eq. (7). 

  

𝑃1𝑃2 = 𝐶1𝐶2 𝑚𝑜𝑑 𝑛 (9) 

 

where, P1= 7 7-7-3 0 and P2= -10 7 -1 -15 -7 are decrypted 

message, n is the secret key.  

FHE is used for encrypting the actual message in the other 

approach of proposed work (hello world). In the first stage, the 

collected number of character counts in encrypted message is 

referred to as key size and that message will be considered as 

P1 and P2. 

 

 
 

Figure 2. Encryption and decryption steps for sample real data 
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Algebraic Matrix Decryption 

Now, decrypting the 1𝐾5  and 2𝐾5  with the help of a 

diagonal matrix. 𝑐1= D (𝑏1) + 5I5 = 17 17 3 13 10 and 𝑐2 = D 

(𝑏2) + 5I5 = 0 17 9 -5 3. Hence the decrypted results are 17 17 

3 13 10 and 0 17 9 -5 3. Now rearrange the values from 1st to 

5th, 8 5 12 12 -2, which is HELLO. c2 = -5 12 4 -10 -2 →3rd 4th 

5th 1st 2nd. Now rearrange the values from 1st to 5th, which is 

WORLD. Finally, this output from the decryption module is 

send to the discriminator1 for further checking diverse 

samples. 

In this work, Improved FHE encrypts the data (message) to 

ensure that the message is transferred quickly and securely. 

When compared to traditional FHE, the improved FHE has 

lower time complexity. Because the key size in improved FHE 

is (input) is extracted directly from the IoT message, and no 

random integer values are used as input at the start. 

 

3.14 Calculation of degree of similarity using Jaro-Winkler 

similarity 

 

The performance of the generators can be evaluated by 

checking whether generated fake data are diverse in nature. 

This is achieved by calculating the degree of similarity 

between generated fake data. For this, Jaro-Winkler similarity 

method is adopted. The Jaro-Winkler similarity seems to be a 

string metric that compares the edit distance of two strings. 

Jaro Similarity is quite similar to Jaro Similarity. Jarrow 

compares the similarity of two strings. The Jaro distance has a 

value between 0 and 1. Where 1 indicates that the strings are 

equivalent and 0 indicates that the two strings are not similar. 

The closer the string value is, the greater the distance between 

the two strings. Whenever the prefixes of two strings match, 

Jaro-Winkler analogy uses the "p" prefix scale to provide a 

more accurate result when strings share a common prefix up 

to a maximum length of l. So, this work considers Jaro-

Winkler similarity to find the similarity between generated 

fake images. When the degree of similarity value was low, it 

is apparent that the generators' fake samples were diverse in 

their nature. Hence, the mode collapse problem is resolved. 

The Jaro-Winkler similarity can be calculated using 

following steps: 

Step1: Compute the match range (MR) of comparing 

strings str1 and str2. 

 

𝑀𝑅 =  
max (𝑙𝑒𝑛(𝑠𝑡𝑟1)),(𝑙𝑒𝑛(𝑠𝑡𝑟2))

2
− 1  (10) 

 

Step 2: The Jaro Similarity (Js) can be determined with the 

help of Eq. (11), 

 

𝐽𝑠 =
1

3
∗

𝑚𝑐

|𝑠𝑡𝑟1|
+

𝑚𝑐

|𝑠𝑡𝑟2|
+

𝑚𝑐−𝑡

𝑚𝑐
 , 𝑚𝑐! = 0  (11) 

 

where, 𝑚𝑐 denotes the number of matching characters, t 

denotes half the number of transpositions, |𝑠𝑡𝑟1| and 

|𝑠𝑡𝑟2| denotes the lengths of strings str1 and str2 

correspondingly. 

The characters were considered to match when they are 

identical and they are not more than 

 

[
max (|𝑠𝑡𝑟1|,|𝑠𝑡𝑟2|)

2
] − 1  

 

The conversions are half the number of matching characters 

in both strings, but in a different order. 

Step 3: Compute the Jaro Winkler similarity using 

following formula, 

 

𝐽𝑤𝑠 = 𝐽𝑠 +
𝑆

10
∗ 𝐿 ∗ (1 − 𝐽𝑠)  (12) 

 

where, 𝐽𝑤𝑠 denotes Jaro-Winkler similarity; S and L denotes 

the scaling factor and length of the matching prefix up to a 

maximum of 4 characters. 

 

Algorithm for Jaro-Winkler similarity 

Input: Two strings str1 and str2 

Compute Jaro Similarity of two strings 

              if(str1 and str2 are equal) 

               return 1; 

Calculate length of two strings  
|𝑠𝑡𝑟1| = len(str1) and |𝑠𝑡𝑟2| =len(str2) 

Determine the maximum distance at which matching 

is permitted. 

[
max (|𝑠𝑡𝑟1|,|𝑠𝑡𝑟2|)

2
] − 1  

        Count number of matches mc and hashes for 

each string, h_str1 and h_s1 

Check to see whether there are any matches in the 

first string. 

             for(𝑖 ≤ |𝑠𝑡𝑟1|) 

for j in range(max (0, i - max_dist), min (|𝑠𝑡𝑟2|, i + 

max_dist + 1))  

             if (str1[i] == str2[j] and h_str2[j] == 0) 

                h_str1[i] = 1; 

                hash_str2[j] = 1; 

                mc += 1; 

                break; 

else 

 return 0; 

end for 

       Check Number of transpositions 

Determine the number of times two characters match 

while there is a third matching character between the indices. 

return the Jaro Similarity 𝐽𝑠 

       end for 

Calculate Jaro-Winkler similarity 𝐽𝑤𝑠 using step 3. 

 

 

4. WHALE OPTIMIZATION ALGORITHM  

 

The main issue with training the GAN is that it could 

encounter constraints like mode collapse, vanishing gradients, 

as well as instability, each of which is influenced by the GAN's 

hyperparameters. The selection of appropriate 

hyperparameters is a critical issue which might affect the 

GAN's output. In this work, the Whale Optimization 

Algorithm (WOA) is used to optimize the hyperparameters of 

the GAN. 

 

 

5. RESULT AND DISCUSSION 

 

Using the following parameters, this section conducted an 

efficient comparison between the proposed work and the state 

of the artwork. The parameters are Jaro-Winkler accuracy Test, 

Training time, Loss of Generator and Discriminator, Root 

means square error (RMSE), mean absolute error (MAE), 

percent root mean square difference (PRD), recall, F-score, 

mean and standard deviation. This study uses two current 
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approaches to assess the performance of the proposed work as 

MTC-GAN [5]. 

 

Table 1. Training parameters 

 
Parameters Value 

Number of iterations for 

Optimization 

20 

Activation function  Sigmoid 

Number of search agents 20 

Validation frequency 1000 

Training algorithm Adam 

Batch size 64 

Adam number of epochs 150 

 

Table 2. Measurement of Jaro-Winkler accuracy similarity 

 

S.No. 
String 

1 

String 

2 

Measurement of 

Similarity 
Conclusion 

11 Tagang Dagang 0.92 
No mode 

collapse 

22 Find Fine 0.93 
No mode 

collapse 

33 Mape Mape 0 
Mode 

collapse 

44 Take keta 0.83 
No mode 

collapse 

55 Lose Loss 0.87 
No mode 

collapse 

 

The WOA is used in hyperparameter optimization because 

it keeps the transition between exploration and exploitation as 

seamless as possible. Table 1 shows the optimal 

hyperparameters determined using the WOA. The activation 

function used here is the sigmoid function. If a neuron's 

activation function seems to be a sigmoid function, then the 

output of this neuron will be typically between 0 and 1. 

The Jaro-Winkler algorithm and GSO-COFC is to 

determine the accuracy of the model. Table 2 denotes the five 

sample values for two strings, string 1 and string 2 and it 

depicts that the similarity value for two strings using Jaro-

Winkler algorithm and GSO-COFC. The similarity value for 

third sample is 0, which indicates both strings are same and 

final conclusion is there occurs a mode collapse problem. 

The difference between actual and generated data is 

measured by the RMSE value and is defined as: 

 

𝑅𝑀𝑆𝐸 = √𝑛 ∑ (𝑅𝑖 − 𝐹𝑖)
2𝑛

𝑖=1   (13) 

 

The average absolute error between the generated and the 

real data is calculated using the term "mean absolute error" and 

it can be defined as: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑅𝑖 − 𝐹𝑖|

𝑛
𝑖=1   (14) 

 

By using the percent root mean square difference, the 

distortion between the real and generated data can be 

calculated which is shown in below equation. 

 

𝑃𝑅𝐷 = √100
∑ (𝑅𝑖−𝐹𝑖)2𝑛

𝑖=1

∑ (𝑅𝑖)2𝑛
𝑖=1

  (15) 

 

Table 3 shows the performance comparison for proposed 

model and existing techniques. While comparing proposed 

model in terms of RMSE, MAE, PRD, recall and F-score, the 

proposed model indicates better results than MTC-GAN and 

AEGAN models. It is because the dual generator generates 

fake data samples and if not, the discriminators send feedback 

to generators to avoid mode collapse problem. 

 

Table 3. Performance comparison for proposed model 

 
Parameters Methods 

MTC-GAN AEGAN Proposed Method 

RMSE 0.57 0.49 0.45 

MAE 0.54 0.51 0.48 

PRD 62.2 56.8 51.1 

Recall 60.35 68.18 71.25 

F-score 80.65 85.23 87.12 

 

Figure 3 shows the loss variance in the proposed model, and 

due to the large losses from epoch 1 to 7, the model was pre-

trained to deal with them to reduce the loss to a certain level. 

Table 4 shows the performance of various methods in terms of 

loss and training time. 
 

Table 4. Results of the proposed model with existing 

techniques 
 

Parameters Proposed Model [18] [19] 

Epoch 150 150 150 

Training Time 42min 45min 270min 

Loss of Generator 2.5678 2.699 15.714 

Loss of Discriminator 1.480 1.570 4.617 

 

Encryption time: 

The proposed algorithm is shown in Table 5 and in 

comparison of the AEGAN and MTC-GAN algorithms. The 

proposed approach works best for messages of various sizes 

from 200 KB to 450 KB. Improved CGAN can be applied to 

larger amounts of data and with less encoding time. 

 

Table 5. Encryption time 

 
Data Size in 

kb 
MTC-GAN AEGAN 

Proposed 

Method 

200 1.2 1.1 0.0598 

250 1.7 1.3 0.066 

300 2.4 1.6 0.072 

350 3.6 2.4 0.0791 

400 4.2 2.6 0.0876 

450 4.7 3.2 0.0953 

 

The generating loss G1, as demonstrated in Figure 3 (a), 

began at Epoch 0 at 2.490, suddenly increased to 1.480 at 

Epoch 30 because of the discriminator processing the 

encryption operation, and finished at epoch 150, with the loss 

of 0.7. Also, the generating loss G2, as demonstrated in Figure 

3 (b), began at Epoch 0 at 2.527 and finished at Epoch 30 at 

1.423. At Epoch 150, the loss is 0.3. The MTC-GAN loss 

variation is shown in Figure 4, and AEGAN loss variation is 

shown in Figure 5. 

When compared to existing works, the generator of the 

proposed work achieves a loss value of 2.5678, which is 

13.14% lower than MTC-GAN and 0.1312% lower than 

AEGAN. Similarly, the loss of discriminator for the proposed 

work is 1.480, which is 3.137% lower than MTC-GAN and 

0.09% lower than AEGAN. This low value indicates the 

effectiveness of the proposed work. 
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a) G1 

 
b) G2 

 
c) D1 

 
d) D2 

 

Figure 3. Results of the proposed work 

 

 
a) Loss of generator 

 
b) Loss of discriminator 

 

Figure 4. Results of MTC-GAN from Zhang et al. [18] 

 

 
 

Figure 5. Results of the AEGAN from Wu et al. [23] 

 

Also, the GAN hyperparameters tuned using WOA 

enhances the performance of the proposed work, thereby 

decreasing the loss value which is comparatively lower than 

the other methods. This further reduces the overfitting and 

instability problems in the proposed method. Additionally, it 

eliminates the problem of mode collapse in CGAN. The 

humpback whale's special hunting trick is used in WOA to find 

the best search agent for the generator in the given space. 

 

 
 

Figure 6. Results of mean and standard deviation for 

different GAN models 
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Another useful method for assessing the similarity between 

real and fake data visually is the estimation of mean and 

standard deviation. The plotted points in Figure 6 are the 

generated data, whereas the blue line in the Figure 6 reflects 

the original data. The similarity between the real and fake data 

is higher the closer the spots are to the blue line. The mean and 

standard deviation of real and fake data produced by AEGAN, 

MTC-GAN, and the proposed approach have been compared. 

Results demonstrate that the proposed model performs more 

effectively than other GAN models since the generated data is 

close to the diagonal. 

 

 

6. DISCUSSION 

 

Conditional Generative Adversarial Network (CGAN) is 

one of deep learning techniques that protects data based on 

conditions generated by constructor and identifier models. 

CGAN helps to retrieve selected features from generated data. 

This task exploits the potential of CGAN to control the data 

encryption and decryption part of the GAN network. In GANs, 

attackers can exploit corrupted nodes to inject erroneous data, 

compromising the integrity of network data. To address the 

shortcomings of private isomorphic encryption, we focus on 

achievable FHE for end-to-end data privacy in CGANs. 

The designed FHE can be implemented in sensor nodes, 

where the assembler can perform infinite computational 

ciphertext assembly functions. In order to detect false data 

early in the process of data transmission and aggregation, we 

propose a CGAN network structure consisting of monitoring 

nodes, forwarding nodes, and aggregator adjacent nodes. In 

this configuration, forwarding nodes and neighboring nodes 

verify data computed by the same set of observer nodes and 

detect spurious data as soon as it appears. Therefore, this 

structure reduces the data transmission in the network with 

damaged nodes. The advantage of using an algebraic matrix is 

that it can reduce the time complexity and input complexity in 

the encryption process. Addition and multiplication can be 

performed simultaneously, and all operations can be 

calculated immediately. Therefore, in this work, we consider 

solving the time complexity problem by solving the simplest 

mathematical derivation of the decoding part. In addition, we 

found that the homomorphic encryption algorithm has a 

shorter encryption time.  

 

 

7. CONCLUSION 

 

IoT is being deployed and harnessed globally to address 

some of the most pressing issues in global development. This 

phenomenon brought various issues, including reliability, 

safety, and enhancement in a range of fields, due to significant 

advances in wireless and mobile communication technology. 

The risks associated with IoT security, notably the 

fundamental issue of data confidentiality and integrity while 

data is being transported from IoT devices to servers through 

the internet, can be properly mitigated and handled with 

propriety. This paper proposed a deep learning-based CGAN 

model to guarantee safe data transmission. To improve the 

operation of CGAN, two generators and two discriminators 

were deployed, and the mode collapse problem was solved in 

this work. In addition, the two proposed encryption algorithms 

are employed to send the messages safely to the receiver. To 

find whether generated fake samples are diverse in nature. 

According to experimental data, the proposed method 

outperforms others in terms of Jaro-Winkler accuracy test, 

training time, loss, Root means square error (RMSE), mean 

absolute error (MAE), percent root means square difference 

(PRD), recall, F-score, mean, and standard deviation. The 

proposed model's generator loss was about 82.8%, that was 

less than the loss of the generator in the standard models. By 

using mean and standard deviation, similarity between real and 

fake data are visualized. 

The proposed model's discriminator loss was about 66.0 

percent, which is lower than the traditional model's (4.617). 

This could be used in other fields in the future, such as disease 

diagnosis, where the mode collapse problem can be solved and 

high-accuracy disease diagnosis is possible. Also, we planned 

to reduce encryption cost in future. 
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