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Intrinsic Image Decomposition (IID) remains a pivotal challenge in the domain of computer 

vision, with applications spanning image editing, color image denoising, and segmentation, 

among others. Despite notable successes, there exists a significant opportunity for enhancing 

the feature encoding process to improve the accuracy of predicted outcomes. In response to 

this, a novel framework, termed Transformer and Laplacian Pyramid Network (TLPNet), is 

introduced. TLPNet comprises two distinct sub-networks: the Transformer for Reflectance 

Network (TRNet) and the Laplacian Pyramid for Shading Network (LPSNet). Within this 

framework, the Transformer module is strategically employed within the reflectance 

imaging component to effectively address the challenge of inadequate feature information 

extraction. Comprehensive experiments conducted on the ShapeNet Dataset and MIT 

Dataset have demonstrated the efficacy of TLPNet in predicting more accurate reflectance 

and shading images. This study contributes to the field by presenting an innovative approach 

that leverages the strengths of transformer models and Laplacian pyramid structures for the 

task of IID, setting a new benchmark for future research in the area. 
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1. INTRODUCTION

IID has made great progress. In 1971, Land and McCann [1] 

proposed the Retinex Theory. The Retinex Theory, a 

portmanteau of “retina” and "cortex," suggests that color 

perception is not solely determined by the wavelength of light 

entering the eyes. Instead, it proposes that the brain compares 

and processes the light reflected from different parts of a scene 

to comprehend the color and brightness consistently. This 

process helps in maintaining color constancy under varying 

shading conditions. The Retinex theory differentiates between 

shading and reflectance components in an image by analyzing 

gradients [1, 2]. Barrow et al. [3] explored the idea of 

decomposing an image into its intrinsic components. Eq. (1) 

encapsulates this idea, where I represents the observed image: 

𝐼 = 𝑅 ∗ 𝑆 (1) 

R is the reflectance image, indicating the intrinsic color 

properties of the objects in the scene, independent of the 

illumination conditions; S is the shading image, which 

contains the incident illumination and the shape information. 

Reflectance images and shading images have great 

significance in other research fields. Reflectance has been 

found to enhance various image processing and computer 

vision tasks. In particular, it can greatly improve the 

performance of semantic segmentation [4], help find attempts 

to spoof face recognition systems [5], lead to more in-depth 

facial intrinsic analysis [6], and make photo editing better [7]. 

On the other hand, shading is particularly useful in extracting 

shape information from images (shape from shading) [8], 

assisting in relighting tasks for more realistic lighting effects 

[9], and playing a critical role in 3D reconstruction processes 

[10]. Each of these applications leverages the unique 

properties of reflectance and shading to improve the quality 

and accuracy of the results. Ma et al. [11] comprehensively 

examine various approaches and methodologies developed 

over the years for separating the reflectance and illumination 

components of an image. It likely covers the theoretical 

underpinnings of the technique, evaluates different algorithms, 

and discusses their applications and limitations. 

It can be known from Eq. (1) that the IID is ill-posed. Many 

solutions were proposed by researchers to address this 

problem. Before deep learning and neural networks became 

mainstream, IID mainly relied on some traditional computer 

vision techniques. These methods are usually based on the 

physical properties of the image, heuristic rules, or statistical 

models [12-16]. These methods also have problems. Different 

scenes may require different physical constraints, and 

selecting or adjusting these constraints can be difficult without 

prior knowledge about the scene. In dynamic or changing 

environments, such as outdoor scenes or changing shading 

conditions, physical constraints may need to be adjusted in real 

time, which increases the complexity of the algorithm. Deep 

learning models can better generalize to different images and 

scenes after being trained on large and diverse data, rather than 

being limited to specific physical conditions or constraints. 

Deep learning and neural networks have developed vigorously 
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in recent years [16, 17]. In this field of IID, there are two main 

methods: unsupervised learning [18, 19] and supervised 

learning [20-24]. Unsupervised learning does not rely on 

labeled training data. It learns image decomposition by 

exploring the intrinsic structure of the data. Supervised 

learning relies on labeled training data. These labels guide the 

learning process to ensure that the decomposition results 

match the expected output. 

In this paper, we propose IID using a TLPNet. First, the 

application of Transformer in this field of image processing is 

gradually increasing. On the one hand, Transformer is able to 

capture global dependencies through the self-attention 

mechanism, and even regions that are far apart in the image 

can directly influence each other. On the other hand, the 

Transformer architecture performs well when handling large-

scale data sets, especially when large amounts of training data 

are available. As model size increases, transformers are often 

better able to utilize the additional data to improve 

performance. In addition, we also use the Laplacian pyramid 

to improve the effect of the shading image. Laplacian pyramid 

by representing images at different scales. This method allows 

the shading image to extract image features from coarse to fine. 

The Laplacian pyramid can be used to enhance the details of 

an image, such as by sharpening edges and textures. In 

summary, our contributions are as follows: 

●We apply Transformer to the encoder of IID, which can 

better extract features from the image. Using transformers can 

often make better use of the extra data to improve performance. 

●When the Laplacian pyramid is used to process shading 

images, its multiscale representation is used to improve image 

features step by step from big to small, especially by 

sharpening edges and textures. This makes the shading image 

better overall and better at capturing shading details. 

●Multiple loss functions, which include mean square error 

(MSE) and cosine similarity error (CSE), are applied in our 

TLPNet. The loss of reflectance image, shading image, and 

reconstruction image have different weights. 

 

 

2. RELATED WORKS 

 

2.1 Transformer module 

 

The Transformer model was originally proposed by 

Vaswani et al. [25]. It is mainly used to solve sequence-to-

sequence tasks in natural language processing (NLP), such as 

machine translation. Its core innovation is the self-attention 

mechanism, which enables the model to more effectively 

capture long-distance dependencies when processing 

sequence data. 

The Transformer model is also used in the image field. It 

can help improve the performance of image classification [26, 

27], contribute to generating more realistic pictures [28], assist 

in object detection [29], and play a critical role in semantic 

segmentation [30]. 

 

2.2 Laplacian Pyramid 

 

The origins of the Laplacian Pyramid date back to 1983, as 

proposed by Burt and Adelson [31] in their seminal paper. This 

concept is developed on the basis of the Gaussian pyramid and 

aims to represent the multiscale information in images more 

effectively. The Laplacian pyramid is constructed by 

subtracting the unsampled and smoothed version of the 

previous layer from each layer of the Gaussian pyramid. This 

method can effectively capture the detailed information of 

images at different scales and is suitable for various 

applications such as image compression, image fusion, and 

feature extraction. Burt and Adelson [32] introduced the 

multiresolution spline method using the Laplacian pyramid for 

image stitching and fusion. Jacobs et al. [33] used the 

Laplacian Pyramid for fast multiresolution image query and 

demonstrated its application in image retrieval. Do and 

Vetterli [34] proposed the contourlet transform, which 

combines the Laplacian Pyramid and the directional filter to 

represent the directional information of the image more 

effectively. Song et al. [35] introduce a novel method that 

leverages a Laplacian pyramid-based architecture to decode 

depth residuals, focusing on refining the depth boundaries and 

global layout of depth maps. 

 

 

3. IMAGE DECOMPOSITION USING TRANSFORMER 

AND LAPLACIAN PYRAMIDBASED (IIDTLP) 

 

3.1 Architecture network 

 

Currently, there are two different network structures in deep 

learning for IID. One is the parallel structure, with the 

reflectance image and shading image using the same encoder 

to extract image features but using different decoders to 

generate the reflectance image and shading image. Another 

one is serial structure [22], which uses two encoders and 

decoders to reconstruct the reflectance image and the shading 

image. 

 

 
 

Figure 1. Architecture network of TLPNet 
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As shown in Figure 1, we propose TLPNet, which adopts a 

similar structure to CasQNet. The reason we use a serial 

network structure is that the reflection image generated by the 

Transformer network is better. First, we use a Transformer 

encoder to extract image features; it generates a reflectance 

image from a natural image. Second, we use the outcome of 

the quotient of the natural image and the reflectance image to 

splice the natural image. We use the splicing outcome to 

extract image features to get the shading image. 

 

3.2 Transformer for reflectance 

 

TRNet is designed for constructing reflection images from 

nature images. The architecture is shown in Figure 2. First of 

all, we use a transformer encoder to exact the features from the 

nature image. Transformer encoders can catch more features 

from nature images than other neural networks. Second, we 

down-sample the reflectance image. We get the reflectance 

images of 1/2, 1/4, 1/8, and 1/16 sizes to prepare for obtaining 

the shading image. Figure 3 has more detail about the 

Transformer encoder and decoder. The Transformer block in 

Figure 3 is shown in Figure 4. 

 

 
 

Figure 2. Architecture network of TRNet 

 

 
 

Figure 3. Architecture network of transformer encoder and 

decoder 

 

 
 

Figure 4. Architecture network of transformer block 

 

3.3 Laplacian pyramid for shading 

 

In the process of predicting shading images, we first use Eq. 

(2) to perform quotient operations on original images and 

reflectance images of different sizes. Since the predicted 

reflection image is not completely accurate, this will cause the 

edges of the shading map to be unsmooth and the texture to be 

unclear. We call this result the temporary shading image. In 

order to solve the problems raised above, we applied the 

Laplacian Pyramid to our model. Laplacian Pyramid is a 

technique used in image processing, mainly for multi-scale 

decomposition of images. It is a further development based on 

the Gaussian Pyramid and is used to capture details in images 

in greater detail. Before extracting shading features, we 

concatenate the temporary shading map and the Laplacian map 

of corresponding sizes. This can better preserve important 

information in the image. Figure 5 also shows the process of 

shading the image from coarse to fine. In Figure 5, Ri (i from 

2 to 5) is the different size of reflectance image, R size is the 

same to the nature image; Di (i from 0 to 4) is the different size 

of temporary shading image; and L is the result of the different 

sizes of Laplacian pyramid. The highest level of the shading 

image is as follows: 

 

𝑆 = 𝐼/𝑅 (2) 

 

𝑆 = 𝑆𝑘 + 𝑈𝑝(𝑆𝑘+1), 𝑘 = 0,1,2,3 (3) 

 

S4 contains the global layout of the shading map at the 

image pyramid. By iteratively computing Eq. (3) with the 

order of k = 3 → 2 → 1 → 0, S is computed as the final shading 

image. 

 

 
 

Figure 5. Architecture network of LPSNet  

 

3.4 Loss function 

 

The trainable parameters of the TLIID network are 

optimized based on three loss functions, which include LR, LS, 

and LC, as follows: 

 

𝐿𝑡 = {

 𝐿𝑅 𝑒𝑝𝑜𝑐ℎ < 20
 𝐿𝑆 20 ≤  𝑒 𝑝 𝑜 𝑐 ℎ < 40 

 𝜆𝑅𝐿𝑅 + 𝜆𝑆𝐿𝑆 + 𝜆𝐼𝐿𝐶 40 ≤  𝑒 𝑝 𝑜 𝑐 ℎ < 60
 (4) 

 

The loss function of 𝐿𝑅  is designed for TRNet, 𝐿𝑆  is 

designed for LPSNet. Also, we design 𝐿𝐶  for the product of 

the predicting R and S. In training process, the parameters are 

empirically set as: 𝜆𝑅  = 1.0; 𝜆𝑆  = 1.0; 𝜆𝐼  = 0.25; We can 

conclude from I = R * S, R and S are two parts of I, R and S 

perform multiplication operations, resulting in 𝜆𝐼 = 0.5 * 0.5. 

The effect of reflection images is an important section on 

IID. The reflectance loss function is the most important part to 

impact reflection images. Therefore, we use 𝐿𝑅𝑚𝑠𝑒 and 𝐿𝑅𝑐𝑠𝑒  

to compose the reflectance loss, which are defined as follows: 

 

𝐿𝑅 = 𝐿𝑅𝑚𝑠𝑒 + 𝐿𝑅𝑐𝑠𝑒 (5) 
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𝐿𝑅𝑚𝑠𝑒 = 𝑀𝑆𝐸(𝑅, �̂�) =
1

𝑛
∑  

𝑛

𝑖=0

(𝑅𝑖 − 𝑅�̂�)
2 (6) 

 

𝐿𝑐𝑠𝑒(𝑅, �̂�) =
𝑅 ∗ �̂�

∥𝑅∥∥∥�̂�∥∥
=

∑  𝑛
𝑖=0   (𝑅𝑖 ∗ 𝑅�̂�)

√∑  𝑛
𝑖=0  𝑅𝑖

2 ∗ √∑  𝑛
𝑖=0  𝑅�̂�

2

 
(7) 

 

𝐿𝑅𝑐𝑠𝑒 = 1 −
𝐿𝑐𝑠𝑒(𝑅, �̂�) + 1

2
 (8) 

 

where, Ri represents the actual point values and 𝑅�̂� represents 

the predicted point values. For each data point, subtract the 

predicted value from the actual value. n is the quantity of data 

points. Cos Similarity Error (CSE)∈[-1, 1], In order to achieve 

the best effect when 𝐿𝑅𝑐𝑠𝑒  is 0. We did some processing on the 

CSE in Eq. (8). 

For the LPSNet, the loss function is composed of MSE and 

CSE for predicting shading images. The shading loss is as 

follows: 

 

𝐿𝑆 = 𝐿𝑆𝑚𝑠𝑒 + 𝐿𝑆𝑐𝑠𝑒 (9) 

 

𝐿𝑆𝑚𝑠𝑒 = 𝑀𝑆𝐸(𝑆, �̂�) =
1

𝑛
∑  

𝑛

𝑖=0

(𝑆𝑖 − 𝑆�̂�)
2 (10) 

 

𝐿𝑐𝑠𝑒(𝑆, �̂�) =
𝑆 ∗ �̂�

∥𝑆∥∥∥�̂�∥∥
=

∑  𝑛
𝑖=0   (𝑆𝑖 ∗ 𝑆�̂�)

√∑  𝑛
𝑖=0   𝑆𝑖

2 ∗ √∑  𝑛
𝑖=0   𝑆�̂�

2

 
(11) 

 

𝐿𝑆𝑐𝑠𝑒 = 1 −
𝐿𝑐𝑠𝑒(𝑆, �̂�) + 1

2
 (12) 

 

where, 𝐿𝑆𝑚𝑠𝑒  is the MSE of shading image, 𝐿𝑆𝑐𝑠𝑒  is the CSE 

of the shading image. S is the ground-truth image. �̂� is the 

estimated shading image. 

According to 𝐼  = �̂�  ∗ �̂�, we estimate 𝐼  by using �̂�  and �̂�. 

Reconstruction image loss functions are also composed of 

MSE and CSE. The reconstruction image loss as follows: 

 

𝐿𝐼 = 𝐿𝐼𝑚𝑠𝑒 + 𝐿𝐼𝑐𝑠𝑒  (13) 

 

𝐿𝐼𝑚𝑠𝑒 = 𝑀𝑆𝐸(𝐼, 𝐼) =
1

𝑛
∑  

𝑛

𝑖=0

(𝐼𝑖 − 𝐼�̂�)
2 (14) 

 

𝐿𝐼𝑐𝑠𝑒(𝐼, 𝐼) =
𝐼 ∗ 𝐼

∥𝐼∥∥∥𝐼∥∥
=

∑  𝑛
𝑖=0   (𝐼𝑖 ∗ 𝐼�̂�)

√∑  𝑛
𝑖=0   𝐼𝑖

2 ∗ √∑  𝑛
𝑖=0   𝐼�̂�

2

 
(15) 

 

𝐿𝐼𝑐𝑠𝑒 = 1 −
𝐿𝑐𝑠𝑒(𝐼, 𝐼) + 1

2
 (16) 

 

where, 𝐿𝐼𝑚𝑠𝑒  is the MSE of the reconstruction image, 𝐿𝐼𝑐𝑠𝑒  is 

the CSE of the reconstruction image. 

The loss function was designed using MSE and CSE. MSE 

can compare pixel values directly. It is sensitive to noise and 

outliers. CSE focuses on directional similarity rather than size. 

CSE is more in line with human perceptions of image 

similarity. 

 

4. EXPERIMENTS AND ANALYSIS 

 

In this section, we evaluated the TLPNet on the MIT 

intrinsic image dataset [36] and the ShapeNet dataset [37] to 

evaluate its effectiveness. 
 

4.1 Experiments setup 

 

Evaluation Indicators: We use three main evaluation 

methods: MSE, local mean square error (LMSE) [38], and 

structural dissimilarity (DSSIM) [39]. 

Implementation Details: We use the PyTorch machine 

learning framework to implement TLPNet. In training, the 

input image size is 256*256. We introduce a transformer in the 

reflectance image net, and the shading image adopts a 5-level 

Laplacian Pyramid. The learning rate is 10–4. The epoch is 60. 

We train TRNet in the first 20 epochs; LPSNet is trained in the 

middle 20 epochs; And in the last 20 epochs, we train the total 

net (TLPNet). 

 

4.2 Quantitative comparison 

 

We performed a series of comparative experiments on the 

ShapeNet dataset and the MIT dataset. In these datasets, our 

method gets great performance both in terms of quantitative 

analysis and visual quality. In this section, we compare the 

one-level or many-level shading image, applying or not 

applying the Laplacian pyramid, adding or not adding 

reconstruction image error, and the weight of different 

reconstruction image errors. 

 

4.2.1 Ablation study 

In this subsection, comparative experiments are conducted 

on a quarter of ShapeNet dataset to verify the effectiveness of 

the proposed architecture. Laplacian pyramid-based and 

multi-layer shading images on different weights in the loss 

function. First, performance variations are evaluated 

according to the level of shading image. The architecture 

changes according to different levels of shading image. One-

level shading image is shown in Figure 6. The change from 

concatenating the Laplacian pyramid to a temporary shading 

image is shown in Figure 3. Table 1 shows the estimated 

results of different architectures and weights in the loss 

function. Our final model, TLPNet, achieves the best overall 

performance on the ShapeNet dataset. Thanks to our proposed 

Laplacian Pyramid and the special weight of reconstruction 

loss function. 

 

 
 

Figure 6. Architecture network of one shading image 

 

4.2.2 Comparison on ShapeNet dataset 

In this experiment, the proposed network is compared to 

other methods. All methods presented here are using the 

ShapeNet dataset. The results are shown in Table 2. The 

proposed method generally outperforms, on average, all other 

methods except for the DSSIM metric. Particularly, the 

proposed method outperforms other methods for the MSE and 

LMSE metrics. 
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Table 1. Performance analysis of the proposed method on the ShapeNet dataset according to the architecture and loss function 

 

Method 
MSE LMSE DSSIM 

R S R S R S 

one level shading + Laplacian Pyramid + (LR + LS + 0.25LC) 0.0060 0.0037 0.0065 0.0041 0.0376 0.0385 

multi-level shading + (LR + LS + 0.25LI) 0.0061 0.0039 0.0067 0.0044 0.0436 0.0418 

multi-level shading + Laplacian Pyramid + (LR + LS + 0.5LC) 0.0058 0.0044 0.0064 0.0049 0.0393 0.0547 

multi-level shading + Laplacian Pyramid + (LR + LS) 0.0056 0.0035 0.0063 0.0042 0.0389 0.0451 

multi-level shading + Laplacian Pyramid + (LR + LS + 0.25LC) 0.0056 0.0035 0.0061 0.0040 0.0376 0.0350 

 

Table 2. Quantitative evaluation on ShapeNet dataset 
 

Method 
MSE LMSE DSSIM 

R S R S R S 

Baseline - - 0.0789 0.0231 0.2273 0.2341 

SIRFS [36] 0.0061 0.0039 0.0067 0.0044 0.0436 0.0418 

IIW [40] 0.0167 0.0127 0.4810 0.2280 0.1679 0.1367 

DI [41] 0.0252 0.0245 0.0711 0.0275 0.1987 0.1454 

Han [42] - - 0.0101 0.0119 0.0490 0.0503 

Shi [43] 0.0278 0.0126 0.0353 0.0097 0.0939 0.0622 

CascadeQ [22] 0.0047 0.0035 0.0053 0.0053 0.0060 0.0065 

Our method 0.0037 0.0024 0.0041 0.0027 0.0243 0.0227 

 

Table 3. Quantitative evaluation on MIT dataset 

 

Method 
MSE LMSE DSSIM 

R S R S R S 

Retinex [1] - - 0.0353 0.1027 0.1825 0.3987 

SIRFS [36] - - 0.0416 0.0168 0.1238 0.0985 

DI [41] 0.0252 0.0245 0.0585 0.0295 0.1526 0.1328 

Shi [43] 0.0278 0.0126 0.0503 0.0240 0.1465 0.1200 

CasQNet [22] 0.0107 0.0106 0.0206 0.0186 0.0734 0.0705 

NCCNet [44] 0.0104 0.0081 0.0137 0.0128 0.0581 0.0580 

Our method (MIT) 0.0077 0.0068 0.0087 0.0077 0.0932 0.0628 

 

4.2.3 Comparison on MIT dataset 

In this section, we compare the other methods on the MIT 

Dataset [36]. The results are shown in Table 3. Only the 

DSSIM metric performs best; the other metric generally 

outperforms on TLPNet. Based on the training results of the 

ShapeNet dataset, we input the MIT data set for training for 20 

epochs. 

 

 

5. CONCLUSION 

 

In this work, we present a novel model called TLPNet for 

IID. TLPNet is a hybrid transformer for reflectance and a 

Laplacian Pyramid for shading. We train both sub-nets jointly 

using our proposed special weight loss function. The TLPNet 

estimated reflectance image and shading image are 

substantially more consistent than the state-of-the art baselines, 

both locally and globally. The result image of different 

algorithms on the ShapeNet dataset is shown in Figure 7. From 

Figure 7, the first row is the clean image from the ShapeNet 

dataset. For each sample, R is the estimated reflectance and S 

is the estimated shading. Ranjit is the algorithm from the study 

[45]. Carega is the algorithm from the study [46]. 

Nevertheless, there is still future work to consider. Our 

model struggles to accurately estimate reflectance and shading 

in DSSIM. Besides, as the training data mainly consists of 

indoor scenes, it seems harder to deal with outdoor scenes. 

Further research could focus on improving high-quality 

reconstruction in these two aspects. If we have more datasets 

under water, we would apply the method in the study [47] to 

get reflectance and shading images under water. 

 
 

Figure 7. The result image of different algorithms on the 

ShapeNet dataset 
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