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The measurement of dynamic surface velocities in rivers holds significant importance for 

hydrological studies, environmental monitoring, and water resource management. With the 

rapid evolution of image processing technologies, methods based on imagery for velocity 

measurement have garnered widespread attention due to their non-intrusive nature and 

operational simplicity. Addressing the invasive nature, limited measurement capabilities, 

and poor adaptability to complex environments inherent in traditional velocity measurement 

techniques, a novel technical scheme is proposed. Initially, an enhanced Mean shift 

algorithm is employed for effective tracking of river surface targets, overcoming stability 

and accuracy issues faced by conventional algorithms in complex aquatic environments. 

Subsequently, a new velocity measurement method, integrating optical flow techniques with 

calibration technology, is introduced to augment accuracy and mitigate environmental 

interferences. This research not only enhances the reliability of non-contact velocity 

measurement technologies but also offers new perspectives and tools for river monitoring, 

contributing significantly to the sustainable management and utilization of water resources. 
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1. INTRODUCTION

As environmental monitoring technologies continue to 

evolve, the measurement of dynamic surface velocities in 

rivers has emerged as a critical topic in the fields of hydrology, 

environmental science, and engineering management [1, 2]. 

Traditional velocity measurement methods often rely on 

contact sensors or are based on simplified assumptions for 

indirect estimation. These methods face numerous limitations 

in practical applications, such as invasiveness to the 

environment, measurement limitations, and operational 

complexity [3-5]. With the maturity of image processing 

technologies, non-contact measurement of river surface 

velocities using video or image data has gradually become a 

research focus. This approach can provide more continuous, 

intuitive, and comprehensive velocity information [6-8]. 

Non-contact velocity measurement technology not only 

minimizes interference with river ecosystems but also 

enhances the safety and convenience of measurements [9]. 

Especially under extreme weather conditions and adverse 

geographical environments, the limitations of traditional 

measurement methods become more pronounced [10]. 

Moreover, this technology supports the construction of water 

resource management and flood warning systems through 

extensive monitoring data, playing a significant role in 

promoting the rational use of river resources, maintaining 

ecological balance, and ensuring the sustainable development 

of human society [11, 12]. However, existing image-based 

velocity measurement technologies still exhibit some flaws 

and shortcomings. For example, traditional image tracking 

algorithms have limited stability and accuracy under complex 

conditions such as reflections and ripples on the river surface 

[13-16]. Although optical flow methods can estimate velocity 

fields, their adaptability and precision in dynamic river 

environments need further improvement. Additionally, 

calibration techniques in practical applications face challenges 

with complex operations and susceptibility to environmental 

influences. These technical limitations restrict the application 

scope and effectiveness of non-contact velocity measurement 

methods [17-19]. 

In response to these shortcomings, two major improvements 

are proposed in this study. Firstly, a river surface target 

tracking technique based on an improved Mean shift algorithm 

is studied. This technique, through algorithm optimization, 

enhances the identification and tracking capabilities of 

dynamic water surface targets, significantly improving 

stability and accuracy in complex environments. Secondly, a 

new method combining optical flow techniques and 

calibration technology for measuring dynamic river surface 

velocities is introduced. This method can estimate velocities 

more accurately while reducing the impact of external 

environmental factors. The integration of these two 

improvements provides a new technical path for non-contact 

measurement of river velocities, offering promising 

application prospects and research value. Through the 

exploration and implementation of these technologies, not 

only can the precision and efficiency of velocity 

measurements be enhanced, but more scientific data support 

can also be provided for river management and environmental 

protection. 
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2. RIVER SURFACE TARGET TRACKING 

ALGORITHM BASED ON IMPROVED MEANSHIFT 

 

The traditional Mean shift algorithm exhibits noticeable 

limitations in tracking river surface targets. Typically 

employing a single statistical feature modeling, such as color 

histograms, to represent the target model, the algorithm 

struggles with the complex and variable river surface 

environments. Factors such as lighting conditions, surface 

reflections, and wave changes easily affect the stability of 

color features, rendering the algorithm ineffective in 

accurately capturing and tracking targets. Moreover, the 

limited descriptive capability of a single feature often leads to 

tracking failure when target morphology changes or when the 

background features resemble those of the target. To address 

these deficiencies, an improved Mean shift algorithm that 

integrates grayscale statistical features with Histogram of 

Oriented Gradients (HOG) features is proposed. This hybrid 

model retains the non-parametric search advantages of the 

original Mean shift algorithm while enhancing target 

morphology and structural information extraction capabilities 

through the inclusion of HOG features, thereby effectively 

enriching and bolstering target representation robustness. 

Grayscale features exhibit strong robustness to lighting 

variations, and HOG features are sensitive to target edges and 

shapes. The combination of these significantly improves the 

algorithm's tracking performance in complex water surface 

environments. Assuming the gradients of point (a,b) in the 

horizontal and vertical directions are represented by Ha(a,b) 

and Hb(a,b), respectively, the process of calculating the HOG 

features is as follows: 
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Based on the aforementioned calculations, the gradient 

magnitude and direction at point (a,b) can be further 

determined using the following formula: 

 

( ) ( ) ( )

( )
( )
( )

2 2
, , ,

,
,

,

a b

a

b

H a b H a b H a b

H a b
a b ARCTAN

H a b


= +

 
=   

 

 (2) 

 

In the context of this study on dynamic river surface 

velocity measurement, it is crucial to construct an accurate 

target tracking model to ensure measurement accuracy and 

reliability under various environmental conditions. Initially, 

for a given river surface image area, preprocessing steps are 

employed to optimize the image for better feature extraction. 

Preprocessing includes noise reduction and contrast 

enhancement, among other steps, to mitigate the impacts of 

environmental noise and lighting variations. Subsequently, 

two parallel feature extraction operations are performed on the 

preprocessed image area: calculation of the grayscale 

histogram and extraction of HOG features. The grayscale 

histogram is constructed by tallying the frequency of each gray 

level present in the image, providing information on the 

distribution of image brightness. The process of extracting 

HOG features involves calculating the gradient direction and 

intensity in local areas of the image. Figure 1 illustrates the 

construction of the target model integrating grayscale and 

HOG features. 

 
 

Figure 1. Schematic for establishing a target model 

integrating grayscale and HOG features 
 

 
 

Figure 2. Basic principle of the Meanshift algorithm 
 

Following the extraction, the grayscale histogram and HOG 

feature vectors undergo normalization to eliminate disparities 

between different feature magnitudes, ensuring their 

comparability during subsequent integration. Subsequently, 

the two normalized feature vectors are merged into a unified 

feature space to construct the final target description model. 

This process is based on the joint probability distribution, 

specifically estimated through a statistical method that 

assesses the joint distribution of the two features. Assuming 

the normalized pixel position centered on the target is 

represented by c*u, with the target center coordinates denoted 

by (a0,b0), the grayscale value at pixel position cuk within the 

target area's interval index value in the grayscale histogram is 

indicated by β(cuk), and the HOG value at pixel position cuk 

within the target area's interval index value in the HOG 

histogram is represented by α(cuk). The interval index value 

vector divided by the grayscale histogram is denoted by i, and 

the interval index value vector divided by the HOG histogram 

is denoted by n. The target model expression is provided as 

follows: 
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Based on this model, the iterative search process of the 

Meanshift algorithm is utilized to identify and locate 

dynamically changing candidate regions within continuous 

video frames. Figure 2 illustrates the basic principle schematic 

of the Meanshift algorithm. In each iteration, by calculating 

the similarity between the current candidate area and the 

original model, combined with the method of probability 

distribution, the search window is dynamically adjusted to 

adapt to the movement and morphological changes of the 

target on the river surface. Thus, the description template of 

each candidate area is updated in real-time, accurately 

capturing the latest state of the target. The center position of 

the candidate target is denoted by d, and the size of the kernel 

function window is represented by g. The expression for the 

description template o of the corresponding candidate target 

area is given as follows: 

 

( ) ( )
2

1 1

l v
uk

uk uk

u k

d c
o z J c i c n

g
   

= =

 −
 = − −       
 

  (5) 

 

The Meanshift iteration process for the specific river surface 

target tracking algorithm includes defining the Bhattacharyya 

coefficient. In the context of target tracking, W represents the 

feature distribution based on the target model, while O 

represents the feature distribution of the candidate target area. 

With the use of fused variables, the definition is as follows: 
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To simplify the calculation, the Bhattacharyya coefficient is 

expanded using Taylor series to obtain its approximate 

expression: 
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The core objective of the Meanshift iteration equation is to 

maximize the approximation of the Bhattacharyya coefficient, 

thereby making the feature distribution of the candidate area 

as similar as possible to the feature distribution of the target 

model. In each iteration, by calculating the Bhattacharyya 

coefficient between the current candidate area and the target 

model, then moving the center of the candidate area to 

maximize this coefficient. The direction of movement is 

determined by the difference between the current position and 

the probability centroid. This iterative process continues until 

convergence is reached, that is, when the candidate area no 

longer undergoes significant changes, or the increment of the 

Bhattacharyya coefficient is below a certain threshold. The 

statistical value of the grayscale index u and HOG index k in 

the candidate template is denoted by wuk, and the statistical 

value of the grayscale index u and HOG index k in the target 

template is denoted by Ouk. The corresponding iterative 

equations are provided as follows: 
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Hu invariant moments, as shape descriptors, provide crucial 

characteristic information about the shape of target objects, 

which remains invariant for target identification and tracking, 

even under image scaling, rotation, or reflection, thus 

maintaining consistency. This study opts to integrate Hu 

invariant moments with template similarity coefficients to 

establish new iterative convergence criteria. By incorporating 

template similarity coefficients, a more comprehensive 

assessment of the similarity between the candidate and model 

targets can be achieved. This assessment encompasses not 

only features such as grayscale and texture but also shape 

information unaffected by changes in viewpoint. Such 

iterative convergence criteria aid in enhancing the adaptability 

and robustness of the river surface target tracking algorithm in 

complex environments. It ensures that, even under complex 

conditions like surface reflection and wave changes, targets 

can still be accurately captured and tracked, thereby providing 

stable and reliable data support for velocity measurement. This 

study defines the following seven Hu moments: 
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Assuming the candidate and target models based on fused 

grayscale and HOG features are represented by Oi and Wi, 

respectively, and the Hu moment vectors of the candidate and 

target models are denoted by Og and Wg, the Euclidean 

distance between Hu invariant moment vectors is represented 

by DI(Og(d)Wg). Taking into consideration both the Hu 

invariant moments and the similarity coefficients between Oi 

and Wi, the expression for the algorithm's convergence 

criterion is provided as follows: 

 

( )( ) ( )( )^i i g gMAX o d W MIN DI P d w =  (11) 

 

The process steps of the river surface target tracking 

algorithm based on the improved Meanshift are detailed as 

follows, as depicted in Figure 3: 

(a) At the initiation stage of measuring the dynamic surface 

velocity of the river, the first frame of the video sequence is 

acquired. Through the method of differencing, this step 

effectively separates moving targets from the background, 

further calculating the target area markers to indicate the initial 

position and size of the target. 

(b) Based on the position of the target, the Region of Interest 

(ROI) is cropped. Within this area, the Hu invariant moment 

vector, as well as the grayscale histogram and the orientation 

gradient histogram vector of the ROI, are calculated. These 

features, together with the Hu moment vector, constitute the 

description template of the target. 
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(c) The next frame image is read, and the candidate target 

area corresponding to the previously located ROI is cropped. 

The description template for this candidate area, including the 

Hu moment vector and its weight matrix, is calculated, and 

based on this, the next possible position of the target is 

determined. The weight matrix is calculated based on the 

feature distribution within the candidate area, reflecting the 

contribution of different pixels to target localization. 

(d) The similarity between the ROI and the candidate area 

is evaluated by calculating the Bhattacharyya coefficient 

between them. Additionally, the similarity between their Hu 

invariant moment vectors is measured using the Euclidean 

distance. By combining these two similarity indices, the 

proximity between the candidate area and the true target area 

can be more accurately judged. 

(e) If both the Bhattacharyya coefficient and the similarity 

of the Hu vectors reach the threshold set by the algorithm, it 

can be concluded that the optimal position of the target in the 

current frame has been found. If the predetermined threshold 

is not reached, the algorithm continues the iterative search 

until convergence. 

Once the optimal position of the target is determined, the 

area of the target in the current frame is calculated using the 

region growing method. At this step, it is necessary to decide 

whether to update the target description template to adapt to 

possible changes in the target during motion. Meanwhile, the 

Bhattacharyya coefficient is calculated, and whether to update 

the model is judged based on the preset threshold. If an update 

is required, the algorithm returns to the second step, 

recalculating the ROI and the target description template. 

(f) The algorithm determines whether all frames have been 

processed. If not, the third step is continued with the 

processing of the next frame image. If all frames have been 

processed, the algorithm concludes. 

 

 
 

Figure 3. River surface target tracking algorithm based on the improved Meanshift 

 

 

3. MEASURING DYNAMIC RIVER SURFACE FLOW 

VELOCITY BASED ON OPTICAL FLOW AND 

CALIBRATION TECHNIQUES 

 

In the study of dynamic river surface velocity measurement 

techniques, the calculation of optical flow values for river 

surface targets typically involves the use of optical flow theory 

to estimate the motion changes of each pixel point over time. 

By integrating the category, size, and location attributes of 

water surface targets obtained through the improved Meanshift 

algorithm, this study employs the FlowNet to further analyze 

the motion of these targets between consecutive video frames. 

Specifically, the FlowNet first predicts the displacement 

vectors between the current and the next frame using deep 

learning methods, combined with target attributes and 

spatiotemporal information. These displacement vectors 

represent the optical flow. Subsequently, the velocity and 

motion trend of the water flow can be calculated through the 

vector magnitude and direction of the optical flow field. Figure 

4 presents the framework of the method. 

Camera calibration is crucial when measuring the dynamic 

surface velocity of rivers, as this process involves converting 

two-dimensional image information captured by the camera 

into three-dimensional information in the real world. Since the 
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size, position, and optical flow speed of river surface targets 

captured by the camera are relative to the camera's own 

parameters rather than absolute physical dimensions or speeds, 

it is essential to precisely define the camera's intrinsic 

parameters such as focal length and field of view, as well as 

extrinsic parameters like the camera's position and orientation. 

Through camera calibration, the correspondence between 

pixels and actual physical units can be established, allowing 

pixel movement to be converted into actual distance 

movement, and thereby calculating the true velocity of river 

surface targets. Without calibration, the data captured by the 

camera would lack the necessary context to quantify image 

data into actual physical quantities, resulting in inaccurate 

measurements and analysis of river surface flow velocities. 

Specifically, this study assumes a point l0 in the physical 

world with a true velocity represented by n0, which 

corresponds to a velocity on the camera's projection plane 

represented by n'0. In a unit time ds, the distances they travel 

are n0ds and n'0ds, respectively, with the camera's focal length 

represented by q, and the distance between the camera and the 

river surface target represented by c. Based on the principle of 

projection, the relationship between n0ds and n'0ds is as shown: 

 

0 0'n ds n ds

c q
=  (12) 

 

Since the magnitude of the optical flow value representing 

the relative velocity of the river surface target to the camera 

should be proportional to the velocity of the river surface 

target on the projection n'0, with the proportionality value 

represented by j0, it follows that: 

 
'

0 0OPn j n=  (13) 

 

Combining the above two expressions, the following is 

obtained: 

 
( )0 0: : :OPn n c dj c j= =  (14) 

 

In the study of dynamic river surface velocity measurement 

techniques, prior information serves as an important reference, 

aiding in resolving the uncertainty between the target size in 

camera images and its actual physical dimensions. The prior 

size of river surface targets may be derived from historical 

measurement data, known geographical features, or 

information provided by specialized measurement equipment. 

With the aid of this prior knowledge, researchers can establish 

a relationship between the image size of the target and its 

actual size, thereby estimating the distance between the 

camera and the target. This study opts to utilize the prior size 

of river surface targets to estimate the distance between the 

camera and the river surface targets. This method becomes 

particularly important in situations where environmental 

conditions limit the use of other positioning technologies or in 

the absence of sufficient control points for spatial analysis. 

Specifically, the type of river surface target is first identified, 

and its prior size information is obtained. Upon acquiring this 

data, the principle of similar triangles is employed to establish 

the relationship between the pixel size of the target in the 

image and its actual size. For instance, if the real-world length 

of a specific target is known, then by measuring its pixel length 

in the image and combining this with parameters such as 

camera focal length and sensor characteristics, the distance 

from the camera to that target can be estimated. This distance 

estimation is crucial for subsequent optical flow velocity 

calculations, as it affects the conversion factor from pixel 

speed to actual physical speed. Assuming the height of the 

plane where the river surface target is captured by the camera 

is represented by gSU, the prior height of the river surface target 

is represented by gPR, the ratio of the target's height to the 

image height is represented by eYL, based on the working 

principle of the lens, the following is obtained: 
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TANϕ can be determined through calibration: 
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By combining the above two expressions, the following is 

obtained: 
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Assuming the known constants obtained through calibration 

are represented by c2, g2, n1, nOP1, and c1, the output of the 

FlowNet is represented by eYL, the actual height of the river 

surface target is represented by gPR, and the optical flow 

reference value is represented by nOP. Then, the following can 

be obtained: 
 

2 1
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Through the above formula, the optical flow of river surface 

targets can be converted into their physical velocity. 

Optical flow methodology inherently estimates visual 

motion by analyzing the movement of pixel points between 

sequences of images, naturally providing motion information 

within the two-dimensional plane, specifically in the a and b 

directions on the image plane. However, this method does not 

directly offer information about the object's motion along the 

depth direction (c-axis). In the measurement of river surface 

flow velocity, the three-dimensional dynamics of water flow 

constitute crucial information, particularly the longitudinal 

flow velocity perpendicular to the observation plane. 

Therefore, to overcome the limitations of optical flow 

technology in capturing three-dimensional motion information, 

this study applies the overhead angle optical flow method on 

the two-dimensional plane. By positioning the camera at an 

overhead angle, the three-dimensional motion of the water 

flow is projected onto a two-dimensional plane, allowing the 

longitudinal flow velocity component, which is otherwise 

unattainable, to be indirectly measured through its projection 

on the two-dimensional plane. Figure 5 displays a schematic 

diagram of the conversion of b-axis optical flow from an 

overhead perspective. Assuming the overhead angle of the 

camera is represented by β, the height of the camera by g, and 

the focal length of the camera by D. The distance of the river 

surface target on the b-axis from the midpoint in the image is 

denoted by f. Based on the pinhole imaging principle and angle 

relationships, the following is obtained: 
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The following can be derived from the Law of Sines: 
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A geometric transformation model is established to 

decompose the optical flow vectors on the two-dimensional 

image plane into two-dimensional velocity vectors on the river 

plane. Assuming the vertical axis optical flow on the image is 

represented by i', and the real optical flow on the b-axis is 

represented by i. The following expression provides the 

relationship between the b-axis optical flow velocity and the 

vertical axis optical flow velocity obtained from the image: 
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Through this transformation, actual water flow velocity 

components, including velocities in both the horizontal and 

vertical directions, can be extracted from the two-dimensional 

optical flow. 

 

 
 

Figure 4. Framework of the dynamic river surface velocity measurement method based on optical flow and calibration 

techniques 

 

 
 

Figure 5. Schematic diagram of b-axis optical flow 

conversion from an overhead perspective 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From Table 1, it is observed that for a 15*20 river surface 

target subjected to various transformations, the calculated Hu 

values were obtained. According to the theory of Hu invariant 

moments, these transformations should not significantly alter 

the Hu values. The data in the table indicate that for g1, the Hu 

values remain close under different transformations, 

demonstrating the consistency of g1 through these changes and 

proving its invariance. For g2 to g7, although numerical values 

changed following translation, rotation, and scaling operations, 

the extent of change is generally small, which to some extent 

supports the stability of Hu invariant moments. Notably, the 

changes in g3 and g4 are very minimal, indicating these 

moments are particularly stable against rotation and scaling. It 

is important to note that while Hu invariant moments possess 

invariance to these operations, due to limitations in calculation 

and representation accuracy, especially in digital image 

processing, theoretical invariance may manifest as 

approximate invariance in practical applications, which could 

be one of the reasons for the slight variations in Hu values. The 

invariance of Hu values to flipping, as well as subsequent 

rotation and scaling, especially the values of g1, indicates that 

these moments are stable against such transformations. 

Integrating Hu invariant moments as image features for river 

surface target tracking technology studied in this article is 

reasonable. Through the improved Meanshift algorithm, these 

Hu invariant moments can be used as template matching 

features within the tracking algorithm to enhance the 

identification and tracking capabilities of dynamic water 

surface targets. In complex environments, even as targets 

undergo transformations such as rotation, scaling, or flipping, 

Hu invariant moments provide stable features for the 

algorithm, thereby aiding in the accurate tracking of targets, 

which is especially important in dynamic and variable river 
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environments. Furthermore, combining similarity coefficients 

with templates can further enhance the robustness of the 

algorithm, ensuring stability and reliability in the tracking 

process in practical applications. 

Comparing the tracking accuracy of various algorithms on 

both the training and testing sets, as illustrated in Figure 6, for 

different centroid error thresholds, it can be concluded that the 

algorithm proposed in this study exhibits slightly higher 

accuracy compared to deep learning based Simple Online and 

Realtime Tracking (DeepSORT), and significantly 

outperforms You Only Look Once (YOLO) and Mask Region-

Convolutional Neural Network (R-CNN) on both the training 

and testing sets. This indicates that the improved Meanshift 

algorithm provides stable tracking performance, especially 

maintaining high accuracy even with larger centroid errors. 

The river surface target tracking method based on the 

improved Meanshift algorithm demonstrates excellent 

stability on the training set and good generalization 

capabilities on the testing set. This suggests that the algorithm 

proposed in this study is better adapted to changes in targets, 

especially in complex dynamic environments, providing stable 

and accurate tracking results. Therefore, the algorithm 

proposed in this study is effective and valuable for river 

surface target tracking tasks. 

Analyzing the processing time of different algorithms for 

river surface image sequences as shown in Table 2, the 

following conclusions can be drawn: The algorithm proposed 

in this study demonstrates a significant advantage in 

processing time, especially when compared to the 

computationally intensive DeepSORT and Mask R-CNN. 

Even when compared to YOLO, the proposed algorithm 

exhibits competitive processing speeds in most cases and is 

faster in certain sequences. This aspect is critically important 

for scenarios requiring real-time or rapid processing, such as 

river surface target tracking, which may necessitate swift 

responses to ensure navigational safety or conduct 

environmental monitoring. The river surface target tracking 

method based on the improved Meanshift algorithm not only 

excels in tracking accuracy but also shows superiority in 

processing time. The low latency of processing times makes 

this method particularly effective for real-time applications 

that require quick responses. Therefore, the algorithm 

proposed in this study is not only technically feasible but also 

valuable in practical applications, especially in environments 

where resources are limited or where time sensitivity is crucial. 

 

 
(a) Training set 

 
(b) Testing set 

 

Figure 6. Comparison of tracking accuracy of different 

algorithms for river surface targets 

 

Table 1. Hu values for a 15*20 river surface target after various transformations 

 

Hu 

Moment 

Original 

Image 

Translation 

(4,5) 
Rotation by 15° 

Reduction by 

1.5 Times 
Flipping 

Flipping 

Followed by a 

15° Rotation 

Flipping Followed by a 

1.5 Times Reduction 

g1 0.001247 0.001156 0.001213 0.001147 0.001234 0.001147 0.001241 

g2 2.41258E-08 1.74515E-08 4.23584E-08 2.35481E-08 2.45175E-08 4.11258E-08 2.31452E-08 

g3 8.52147E-13 5.21258E-13 1.14526E-10 8.41152E-13 8.52147E-13 1.24582E-10 8.52314E-13 

g4 4.52134E-14 6.12472E-12 5.42613E-12 3.85461E-14 4.52134E-14 4.15428E-12 3.85467E-14 

g5 -3.45218E-27 -7.12458E-24 -4.75412E-23 -5.21425E-27 -5.32134E-27 -5.42158E-23 -5.12348E-27 

g6 -5.3235E-18 -7.12579E-17 -4.75156E-16 -5.12485E-18 -5.32154E-18 -5.41238E-16 -5.12485E-18 

g7 8.52134E-27 8.12458E-24 -1.12458E-22 5.15218E-27 -8.52134E-27 -6.12475E-23 -5.23145E-27 

 

Table 2. Processing time of different algorithms for river surface image sequences 

 
 YOLO Mask R-CNN DeepSORT The Proposed Algorithm 

Sequence 1 43.25 78.64 124.58 31.24 

Sequence 2 101.23 153.24 368.12 104.23 

Sequence 3 187.26 134.98 668.23 158.34 

Sequence 4 13.26 22.69 47.56 12.74 

Sequence 5 31.24 44.78 64.23 32.12 

Sequence 6 67.58 57.91 278.14 68.57 

Sequence 7 48.23 43.25 77.96 41.28 

Sequence 8 215.48 342.9 723.12 176.23 

Sequence 9 11.57 12.89 17.53 9.12 
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Table 3. Comparison of results using different dynamic river surface flow velocity measurement methods 

 
Method Image Sequence Actual Flow Velocity Measured Flow Velocity Error Ratio 

Buoy tracking method 

Sequence 1 106 112.3 9.78% 

Sequence 2 101 108.4 6.12% 

Sequence 3 100 106.2 7.12% 

Sequence 4 97 107.4 12.34% 

Particle image velocimetry method 

Sequence 1 104 123.4 17.25% 

Sequence 2 102 112.4 17.36% 

Sequence 3 101 113.8 13.26% 

Sequence 4 97 103.4 6.54% 

The proposed algorithm 

Sequence 1 103 107.1 3.32% 

Sequence 2 101 102.6 1.45% 

Sequence 3 102 102.8 1.23% 

Sequence 4 97 93.2 2.36% 

 

Table 4. Comparison of dynamic river surface flow velocity measurement results across different distances 

 
Measurement Distance (meter) Image Sequence Actual Flow Velocity Measured Flow Velocity Error 

45 

Sequence 1 106 112.2 6.34% 

Sequence 2 101 104.2 2.78% 

Sequence 3 100 101.5 1.74% 

Sequence 4 97 93.7 3.26% 

60 

Sequence 1 104 107.4 3.12% 

Sequence 2 102 102.5 1.45% 

Sequence 3 101 101.4 1.12% 

Sequence 4 97 95.3 2.26% 

75 

Sequence 1 103 114.7 6.78% 

Sequence 2 101 102.7 1.65% 

Sequence 3 102 101.6 2.23% 

Sequence 4 97 101.4 4.25% 

81 

Sequence 1 104 112.8 7.56% 

Sequence 2 101 104.7 3.74% 

Sequence 3 102 102.3 3.21% 

Sequence 4 97 98.2 5.57% 

 

Table 5. Comparison of dynamic river surface flow velocity measurement results for multiple sections at the same distance 

 
River Section Image Sequence Actual Flow Velocity Measured Flow Velocity Error 

Section 1 

Sequence 1 106 112.4 8.21% 

Sequence 2 101 111.4 2.23% 

Sequence 3 100 102.5 1.74% 

Sequence 4 97 92.8 4.23% 

Section 2 

Sequence 1 104 107.4 3.24% 

Sequence 2 102 102.3 1.45% 

Sequence 3 101 101.5 1.12% 

Sequence 4 97 93.8 2.26% 

Section 3 

Sequence 1 103 114.2 8.56% 

Sequence 2 101 103.6 2.65% 

Sequence 3 102 1.402 3.12% 

Sequence 4 97 92.3 4.25% 

Section 4 

Sequence 1 104 112.4 11.21% 

Sequence 2 101 104.5 3.23% 

Sequence 3 102 103.6 3.74% 

Sequence 4 97 92.5 5.57% 

 

Analyzing the results of different river dynamic surface 

velocity measurement methods as presented in Table 3, the 

following conclusions can be drawn: The method proposed in 

this study not only demonstrates high accuracy in individual 

sequences but also maintains stable measurement precision 

across all sequences, indicating strong robustness and 

reliability of the proposed method. Although the other two 

methods perform well in certain sequences, larger errors in 

other sequences suggest they may be more susceptible to 

external environmental factors. The river dynamic surface 

velocity measurement method proposed in this study, 

combining optical flow and calibration techniques, 

outperforms traditional buoy tracking and particle image 

velocimetry methods in experimental sequences. With a 

maximum error ratio not exceeding 4%, significantly lower 

than the other methods, its high accuracy is validated. 

Particularly when the actual flow velocity values are close to 

100, the measured values closely approximate the true values, 

with an error ratio below 2%, further emphasizing the high 

precision characteristics of this method. 

Table 4 displays the comparison of river dynamic surface 

velocity measurement results against actual flow velocity 

values at various distances using the method proposed in this 

study. Analysis of this data leads to the following conclusions: 

Overall, a slight increase in error is observed as the 

measurement distance increases, yet even at a distance of 81 
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meters, the highest error remains only at 7.56%. At shorter 

measurement distances (45 meters and 60 meters), the method 

proposed in this study demonstrates exceptional measurement 

accuracy. Compared to traditional methods, the proposed 

method exhibits lower error rates across all measurement 

distances, particularly at shorter distances, where its stability 

and accuracy are notably significant. Even as measurement 

distance increases, the increase in error with the proposed 

method is not significant, indicating its adaptability and 

stability. The river dynamic surface velocity measurement 

method, incorporating optical flow and calibration techniques, 

maintains high measurement accuracy across different 

distances. Although measurement error rises with increasing 

distance, it remains at a relatively low level overall, suggesting 

strong applicability and reliability of the proposed method in 

practical applications. Even at longer distances, the proposed 

method can provide relatively accurate flow velocity 

measurements, which is of significant importance for actual 

river monitoring, offering robust data support for water 

resource management, hydraulic engineering, and 

environmental protection. Therefore, the measurement 

method proposed in this study is deemed effective and holds 

potential for application in river flow velocity measurement. 

Table 5 provides dynamic surface velocity measurement 

results for different sections of the river at the same distance. 

It is observed that there exists a certain level of error between 

the actual flow velocity values and the measured velocity 

values. It is noted that in each river section, the error for image 

sequence 1 is significantly higher than for the other sequences, 

particularly in the last measurement of section 1, where the 

error reached 11.21%. The errors for image sequences 2, 3, 

and 4 across the river sections are relatively lower, mostly 

below 5%, indicating a degree of measurement stability. 

Despite the presence of errors, the majority of the 

measurement values maintain errors within a relatively low 

range, especially sequences 2 and 3, demonstrating higher 

accuracy. The higher error in image sequence 1 might be 

attributable to specific environmental factors or measurement 

inaccuracies, necessitating further investigation to improve 

measurement accuracy. Considering the measurement results 

from different sections, except for a few cases of high error, 

the method proposed in this study provides consistent 

measurement results across different river sections at the same 

distance. Integrating the data analysis from Table 5, the river 

dynamic surface velocity measurement method proposed in 

this study, combining optical flow and calibration techniques, 

is overall deemed effective. The majority of the measurement 

results are within an acceptable error range, especially when 

measuring at the same distance across different sections of the 

river, the method can provide relatively accurate and 

consistent velocity values. However, for the few cases where 

the error is larger, further analysis is recommended to identify 

the causes of these errors and to improve the measurement 

method, enhancing its accuracy and reliability for 

comprehensive application. In future applications, this method 

will be beneficial for precise determination of river flow 

velocity in water resource management, hydraulic engineering, 

and environmental monitoring. 

 

 

5. CONCLUSION 

 

The research presented in this study primarily focuses on 

enhancing the accuracy and stability of dynamic river surface 

target tracking and flow velocity measurement. Through the 

improvement of the Meanshift algorithm, an enhanced 

capability for the identification and tracking of dynamic water 

surface targets has been achieved. The refined algorithm is 

particularly suited to complex environments, improving the 

stability and accuracy of tracking, which is crucial for the 

dynamic and variable river surface environments. A new 

method for measuring flow velocity, combining optical flow 

and calibration techniques, has been proposed. This method 

not only increases the accuracy of flow velocity estimates but 

also reduces the interference of external environmental factors, 

which is often a challenge in traditional measurement methods. 

A series of experiments were conducted to validate the 

effectiveness of the proposed methods. Comparative 

experiments on the accuracy of river surface target tracking 

have confirmed the performance advantages of the improved 

Meanshift algorithm in tracking river targets. Comparisons of 

processing times between different algorithms have 

demonstrated the enhanced efficiency of the improved 

algorithm while ensuring tracking accuracy. Comparative 

experiments on the results of different measurement methods 

have highlighted the accuracy advantages of the river flow 

velocity measurement method that combines optical flow and 

calibration techniques. Comparisons of flow velocity in 

different measurement areas have proven the applicability and 

stability of the method in various environments. Comparisons 

of river flow velocity measurement results across different 

sections at the same distance have ensured the repeatability 

and consistency of the proposed method across continuous 

sections. 

The target tracking technique based on the improved 

Meanshift algorithm proposed in this study significantly 

surpasses traditional methods in the identification and tracking 

of dynamic river surface targets, especially in adapting to 

complex environmental changes, demonstrating stronger 

stability and accuracy. The novel flow velocity measurement 

method combining optical flow and calibration techniques 

provides a more accurate and robust way of estimating river 

flow velocity, effectively resisting interference from external 

environments. The method proposed in this paper requires 

further optimization and validation before practical 

application, especially for cases with larger errors which 

necessitate in-depth analysis and corresponding measures for 

improvement, to achieve accurate measurements under 

broader and more complex conditions.  
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