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Autonomous vehicles of the contemporary era constitute a sophisticated blend of artificial 

intelligence and electronic components. These vehicles operate autonomously by employing 

neural networks trained to interpret visual input from multiple onboard cameras and 

subsequently produce corresponding steering angles. However, the existing neural networks 

are characterized by their substantial scale, necessitating substantial GPU resources, and are 

prone to latency issues and complex architectural requirements. These factors render these 

networks unsuitable for small-scale applications where latency, complex architecture, and 

expensive hardware are prohibitive. This paper proposes a methodology for optimizing these 

neural networks for small-scale operations while preserving their accuracy and precision. 

This is achieved through a fine-tuning process that customizes the architecture and modifies 

various functional values and their parameters, resulting in a deep neural network tailored 

for small-scale applications. This optimized network boasts a simpler architecture, lower 

storage requirements, and reduced demand for GPU resources. The network is developed, 

trained, and evaluated using TensorFlow, a widely employed API for machine learning 

applications. The optimized network offers several advantages, including reduced latency, 

a customizable architecture, minimized memory requirements, and decreased GPU demand, 

making it a viable solution for various applications. The paper provides a detailed 

exploration of the development of this bespoke deep neural network and its potential 

implications for the future of small-scale autonomous vehicles. 
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1. INTRODUCTION

Automation, a technological advancement that minimizes 

human intervention, has been instrumental in various sectors, 

enabling machines to adapt to human needs. Notably, the 

scientific realm has demonstrated an intense focus on 

autonomous vehicles over the past few decades. The 

importance of automation in research cannot be overstated; it 

enhances efficiency, productivity, and reduces potential 

human error [1, 2]. By automating repetitive tasks, researchers 

can dedicate more time to significant aspects such as data 

analysis and hypothesis testing. Furthermore, automation 

allows large-scale data analysis and experimentation that 

would be challenging or impossible to achieve manually. The 

end results are faster outcomes, comprehensive datasets, and 

uncovered insights that might have remained hidden, 

accelerating the pace of scientific discovery [1, 2]. 

The breakthrough in autonomous vehicles was made 

possible with the advent of deep learning, a revolutionary 

technique that replaced traditional programming. Deep 

learning's ability to learn and adapt based on data has made it 

applicable in a wide range of fields, including the automation 

of vehicles [1, 3]. The advent of Artificial Neural Networks, 

inspired by the human brain, has been incredibly beneficial in 

creating truly autonomous vehicles. These networks can be 

trained on different roads and drive on them post successful 

training [1, 3]. 

Several companies have promised autonomous vehicles, but 

Tesla Inc. has been the most successful in delivering them. 

This American company has developed, produced, and sold 

autonomous vehicles with its patented autopilot, widely 

considered the finest in the market [1]. Despite the 

development of numerous convolutional networks, the focus 

of this paper is on the customization of AlexNet and PilotNet, 

two well-known deep neural networks used in autonomous 

vehicles. These networks require large GPUs and extensive 

memory spaces, leading to high costs. Therefore, there is a 

pressing need for engineers to optimize these networks to 

simplify them and reduce memory and GPU requirements, 

especially for small-scale applications like warehouses, 

laboratories, factories, or industries [2]. 

The process of optimization involves customizing the 

neural network, using various techniques such as fine-tuning, 

dropouts, batch normalization, regularization techniques, and 

hyperparameter fine-tuning. This ensures that the network is 

simpler, has fewer latency issues, and maintains accuracy in 

line with traditionally used networks (AlexNet & PilotNet) or 

within acceptable ranges [2, 4]. 

The motivation behind this work is to address the 

limitations of current deep neural networks used in 

autonomous vehicles and propose a need for optimizing these 

networks for small-scale operations. The objective is to create 
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customized deep neural networks that are specifically tailored 

for small-scale operations, offering reduced latency, 

simplified architecture, lower memory requirements, and 

decreased GPU usage [2, 4]. 

 

1.1 Objectives 

 

The recent surge in interest and contribution to artificial 

intelligence has highlighted the potential of deep neural 

networks in solving automation problems of varying scale and 

complexity. However, building a deep neural network from 

scratch for an autonomous vehicle, considering the application, 

scale, and complexity, becomes a time-consuming process. 

Hence, the objective of this work is to fine-tune existing neural 

networks for automation tasks of varying scale and complexity, 

particularly for small-scale and low-complexity tasks, while 

maintaining relative accuracy [2, 4]. 

 

1.2 Contributions 

 

This work aims to optimize existing neural networks for 

small-scale operations while maintaining similar accuracy and 

precision levels. The main contributions include customizing, 

fine-tuning, and optimizing neural networks for small-scale 

and low-complex applications. Various methods are employed, 

such as augmentation, addition of layers in the architecture, 

modification of architecture parameters, data preprocessing 

and normalization, and batch normalization. Lastly, these 

models are trained and tested, and a comparison of various 

performance metrics (such as accuracy loss) is conducted [2, 

4]. 

The remaining sections of the paper are organized as 

follows: Section 2 reviews related work, Section 3 provides an 

overview of machine learning and deep learning, Section 4 

offers a brief introduction to autonomous vehicles, Section 5 

presents the proposed optimized deep neural network, Section 

6 explains the proposed DNN architecture, and Section 7 

provides training and testing results. Finally, Section 8 

elaborates on the findings, followed by the conclusion. 

 

 

2. RELATED WORKS 

 

Artificial Intelligence (AI) has seen tremendous popularity 

both in the media and also in the engineering community. The 

technique of deep learning has been implemented by engineers 

to solve various problems in the field of automation, speech 

recognition, image processing, data analysis, etc. Naturally, 

when the idea of autonomous cars was conceived, the 

engineers looked into AI for help and used deep learning. They 

developed deep neural networks to do the transformation on 

data which is gathered by various sensors and methods [5, 6]. 

There are many types of neural nets such as convolutional 

neural networks, recurrent neural networks, auto encoders, etc. 

which can be used in the application of autonomous vehicles. 

Out of these convolutional neural networks is most famous 

because it is efficient at performing the required task and 

consists of various layers which perform operations and 

transformations on images. Naturally, the architecture of such 

neural net has many parameters and variables which in turn 

accept various values and holds different functions. Therefore, 

we can fine tune them according to the application and keeping 

various parameters in mind. Techniques such as augmenting 

of architecture such as layers, using of normalization methods 

such as batch, L2 and use of dropouts, etc can help in 

optimizing and customizing a neural network. The effect these 

techniques can be found in the studies [7-10]. 

The aim of the work is to combine all these ideas and 

methods while building neural nets and then implement these 

techniques to customize, optimize and make a net efficient for 

the required task with keeping the complexity, purpose and 

application in mind. 

 

 

3. MACHINE LEARNING AND DEEP LEARNING 

 

Traditional coding or programming had always run into the 

problem of real time adaptation. Usually, engineers used to 

write codes for specific applications but since the code wasn’t 

flexible to adapt or change according to any change or 

parameter variation this made traditional coding run into a wall. 

So, machine learning was developed and basically meant that 

we could take help of various algorithms to analyze the data 

and then after that a learning process would happen. Therefore, 

in machine learning we could learn from the data and therefore 

we would be comfortable enough to make generalized 

predictions about the data. 

Hence, machine learning had this feature of being flexible 

and better than traditional programming as we would not be 

required to write explicit codes due to learning taking place. 

Therefore, machine learning saw tremendous application in 

numerous fields such as data analysis, stock market 

predictions, image recognition, medical diagnosis, speech 

recognition etc. 

Machine learning can be considered somewhat of a blanket 

or general term and has many subfields such as deep learning, 

A.I., etc. 

Deep learning is mostly considered a subfield of machine 

learning and is also sometimes referred to as a technique which 

can be used to implement machine learning. Currently deep 

learning is most widely used in many fields such as medical 

diagnostic field to figure out cancer diagnosis from blocks of 

data which are usually patient test scans. Deep learning has 

also found application in autonomous vehicle industry too for 

developing ‘autopilots’ for the vehicles.  

The algorithms used in deep learning are inspired by human 

neural networks and therefore are termed artificial neural 

networks (ANN) because being artificial in nature. The 

algorithms used must learn from the data just like in machine 

learning and after learning they are capable of giving general 

predictions about the data which is useful to us. Their structure 

is built by units called ‘neurons’ which are similar to a 

biological neuron, and these are organized into vast layers. 

These layers are termed to be input layers, output layers and 

hidden layers. The hidden layers always exist between input 

and output layer and usually are numerous in nature which 

give a model its complexity. Deep learning explicitly uses 

these artificial neural networks (ANN) with multiple hidden 

layers. These networks are alsocalled deep neural networks 

(DNN) and have many hidden layers between their input and 

output layers and hence are termed to be deep in nature. 

 

3.1 Artificial neural networks 

 

Since we have understood how artificial networks are 

formed by organizing neurons into various layers, we use these 

layers to form a complex structure which is able to do 

mathematical operations on any data or we could say we are 
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creating mathematical computing structures which can assess 

data and then learn from that particular data and then provide 

general predictions on a new set of the similar data [3]. 

Every layer of the model or structure will serve a different 

task or function and can-do mathematical operations. The data 

enters the structure or model through its input layers and then 

passes through the hidden layers and then the output layer 

which is termed as a ‘forward pass’. We must do these forward 

passes through the model when we are training the model. 

The data which is fed to the network has many components 

or dimensions and these components of the data determine 

how many nodes in the input layer we require. The hidden 

layers have generally random number of nodes which we 

choose randomly. The node in the output layer is dependent on 

what desired prediction we are looking for from the model. 

Hence, artificial neural networks can be constructed with 

specific applications in mind and then trained on our data sets 

and after the training is complete, they can be used to perform 

predictions on new data sets. 

 

3.2 Basics of artificial neural networks 

 

To succinctly understand ANN lets define the following 

terms which are associated with artificial neural networks. 

a) Layers: These are specifically organized neurons or 

nodes which form what we call layers and are of different 

types and perform numerous mathematical transformations on 

a data. They can be dense layers, convolutional layers, pooling 

layers, recurrent layers etc. and each has their own operation 

and are used according to the purpose of the model. 

b) Layer Weights: The connection between each neuron 

in a network has assigned numbers which are called weights. 

These weights are either randomly generated or can also be 

specifically chosen. The always get multiplied with the input 

data as the data does a forward pass through the model. 

c) Activation Function: These are usually nonlinear 

functions used to map a nodes or neurons input to a 

corresponding output by doing a specific mathematical 

operation or transformation. The output is a number between 

an upper and lower limit value which depends on the function 

used. Examples are ReLu function, threshold function etc. 

d) Data Sets in ANN: There are three data sets used in 

ANN to remove over fitting & under fitting and these are 

explicitly used for training and testing the model. These are 

listed below. 

i) Training Set: In this set we have the data and the 

corresponding label of the data which is used to train the model 

repeatedly. 

ii) Validation Set: It has data which is used to validate 

the model while its training to make sure it isn’t over fitting 

the training data (good at generalizing training data only). 

iii) Test Set: This is an unlabeled and different unseen 

data which is fed to model after training is done to check if 

model can do successful prediction. 

e) Training: It refers to passing data through a network 

so that it learns the input and output mapping by using 

different algorithms. It’s essentially an optimization problem 

where the model is changing the values of weights and moving 

them towards an optimal value. It makes use of a loss function 

which helps the model in making successful prediction on the 

given data. Therefore, we repeatedly send the training data 

through the model and the model starts the learning process. 

f) Prediction: After training of the model is complete 

and we are satisfied that the model has learned well according 

to different metrics then we do predictions with the model on 

the test sets. As, the name suggest the prediction means the 

network is trying to map a given input to an output and if the 

training is done successfully this mapping will also be a 

correct output and hence, we will say the model predicted 

successfully. 

g) Batch Size: It’s defined as number of the training data 

samples which are passed to the network at once and usually 

data is broken down into batches. 

h) Epoch: It’s defined as the single pas of the entire data 

through the network. 

i) Over fitting: It is a term used to define the 

phenomenon when a neural network can only classify data it 

is trained on and not the data it hasn’t seen. It is reduced by 

using data augmentation techniques to add diversity to the 

training set and also by using drop out to reduce complexity of 

the model by making some layers not take part in the process. 

j) Under fitting: It is a term used to define the 

phenomenon when the model cannot even classify the data 

which is present in the training set and is reduced by making 

the model more complex and adding more features in the input 

data. 

Relation between batch size & epoch: 

 

Batches In Epoch=
Training Set Size

Batch Size
 

 

E.g., if training set=100 images 

Then 1 epoch is completed when 100 images are passed 

through the network. 

If batch size=10 i.e., only 10 images are passed to the model 

at one time. 

 

 

4. AUTONOMOUS VEHICLES 

 

Autonomous vehicles are vehicles which can steer 

themselves autonomously without human intervention. They 

are made capable to do this by installing them with a trained 

deep neural network & a steering control system. The DNN 

gives appropriate steering angle input to the steering control 

system & the vehicle is steered autonomously. The deep neural 

networks (DNN) are backbone and essence of an autonomous 

vehicle. 

 

4.1 Basic working 

 

An autonomous vehicle has a ‘brain’ which process the 

information which is passed to it by its sensors and then it 

gives a corresponding response to that information which is 

basically a steering angle command given to the steering 

control system of the vehicle [3]. The basic block diagram of 

the working of an autonomous vehicle is shown in Figure 1. 

As we can see in the figure, the vehicle is loaded with 

various cameras and other sensors. Usually, cameras are used 

which take pictures of the surroundings of the vehicle which 

is usually the road in front of the vehicle on which it must be 

driven. These images are taken from various positions but 

usually three positions set up is used which are referred to as 

the center, right & left position [3]. 

The center position denotes the image which is taken from 

a camera placed at the center of the car usually at the center of 

the front of the car. The other two positions are relative to this 

center position i.e., the right position means the camera is 

placed to the right of the center and similarly the left position 
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is relative to the center where the camera is placed to the left 

of the center. These three positions are used to get the 

maximum information about the road and the surrounding 

which in turn gives the data set diversity and enough 

components and dimensions which makes the model learn 

better from the data and predict more accurately on test sets. 

Images from these cameras are then taken and passed to the 

trained deep neural network (DNN) as inputs. The DNN serves 

as the brain of the operations as it now must process these 

images and perform mathematical operations on them to give 

the necessary output [11]. This output is going to be the 

steering angle which the DNN will give to a steering control 

system of the car and the car will be steered autonomously by 

the DNN [9]. 

The trained DNN has trained on similar images of different 

roads with labeled information which is always corresponding 

steering angles. So, once the DNN was trained and tested on 

numerous road images and corresponding steering angles it 

was employed in the field and hence will be able to 

successfully predict the steering angle for the input image 

present on its nodes [10]. 

The other sensors which can also be used in combination 

with cameras are usually ultrasonic sensors (measure the 

distance of any object by emitting ultrasonic sound waves & 

then receives reflected wave & calculates the time taken 

between emission and reception to measure the distance), 

radar (radio detection & ranging) and Lidar (light detection & 

ranging) Sensors. These also help in making the autonomous 

vehicle safer and less accident prone [12-16]. 

 

 
 

Figure 1. Basic block diagram of an autonomous vehicle 

 

4.2 AlexNet&PilotNet 

 

Currently engineers can build different DNNs with different 

features for different vehicles and accordingly change and 

update the model. AlexNet&PilotNet are two of the most 

famous neural networks used for image classification & 

autonomous application [1, 11]. These Neural nets were 

developed by researchers initially for image classification or 

object classification and were eventually modified and made 

suitable for autonomous driving [5]. 

AlexNet is a convolutional Neural Network which was 

made for the prime application of image classification but can 

be easily modified for autonomous application. It’s trained on 

two graphic processing units (GPUs). It has five convolutional 

layers with max pooling operation taking place between each 

layer and three fully connected and it has about 63 million 

trainable parameters. It can take up to 500MB of memory [1]. 

PilotNet which is also referred to as Nvidia Convolutional 

Neural Network is a model specifically developed to improve 

autonomous vehicle system in DARPA (Defense Advance 

Research Project Agency). It is also a convolutional neural 

network and has five convolutional layers and then four fully 

connected layers and it has about 348,219 trainable parameters 

[1]. 

The deep neural networks which are ‘traditionally’ used for 

autonomous driving have complex architectures, bigger size, 

have multiple convolutional layers with max pooling 

occurring in between those layers and then multiple dense 

layers etc. These neural networks are also trained using 

multiple graphics processing units and which require updated 

specifications and huge processing powers. Due to this the 

customization and optimization of these networks is important 

for small scale operation where such big processing units 

should not be used, and such architectural complexity would 

be overkill and unnecessary [6]. 

Hence, when using these neural nets, we need to optimize 

and customize them so that we can make the architecture 

simple, memory space less, not dependent on huge GPUs and 

make latency less. Of course, when such kind of optimization 

is done tradeoffs occur such as scale and complexity of the 

application will decrease but as long as the accuracy of the 

optimized model is within acceptable ranges, we can say the 

optimization is successful [7, 8]. 

What we can propose is a customized deep neural network 

which will have a simpler and customized architecture with 

lesser layers and can perform within acceptable ranges. 

 

 

5. PROPOSED OR OPTIMIZED DEEP NEURAL 

NETWORK 

 

Since, the idea is to feed an image from a camera as input 

to a trained DNN and get steering angle as output. The network 

will have convolution layers and we can figure out how many 

of these are needed to keep the architecture simple by using 

trial and error method until we achieve a satisfactory result [1, 

3]. 

This will help us to figure out the number of convolutional 

layers, its dimensions, number of filters etc. This fine tuning 

of other DNNs and then customizing each layer and adjusting 

hyper parameters to get desired results is essentially 

customization and optimization. Similarly, after that we 

require deeply connected layers the number of which will 

depend upon the complexity and scale of the task. 

The customized model’s architecture will have two 

Convolution layers which will each have max pooling to 

reduce the dimensions of the output image from these 

convolution layers and then we will have one flattened layer 

which will make the output from convolution layer suitable for 

the dense layers and finally two deeply connected layers with 

one output node. The architecture of the proposed DNN is 

shown below in Figure 2. 

 

 
 

Figure 2. Model architecture
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6. UNDERSTANDING PROPOSED DNN 

ARCHITECTURE 

 

The basic architecture of the model is shown in Figure 3 

below and we can see that it has two convolutional layers with 

max pooling happening between them. The first convolutional 

layer has 16 nodes and the input shape of 320×65×3 which 

means the dimension of the input image are 320×65 pixels 

with 3 representing it is a colored image (RGB) and the filter 

used for convolution operation or pattern detection has a size 

of 2×2. The activation function used during this layer is ‘ReLu’ 

or rectified linear unit which transforms the input data to the 

maximum of either 0 or the input data itself. The convolving 

filter which performs the dot product, or the convolution 

operation has a size of 2×2. There is also use of zero padding 

in the layers to make sure the image sizes aren’t reduced 

excessively, and dimensions are retained while the images do 

a forward pass through the layers. The shape of input images 

is 320×65 and the output channel from the first convolutional 

layer reduces it to 160×33 which then is kept through the 

second convolutional layer. 

The model has two dense layers and the first one has 10 

nodes and the second one or the output one has one node. 

There is also a flattened layer between the convolution and the 

dense layer to make the out from convolutional layers suitable 

for the dense or fully connected layers. 

 

 
 

Figure 3. Layers of optimized model 

 

The 1st Convolutional Layer is responsible for extracting 

features from input images using convolutional filters, which 

help in identifying patterns and visual characteristics relevant 

to the task. The max pooling layer then downsamples the 

output of the previous layer, reducing the spatial dimensions 

while retaining important information. This layer helps in 

reducing computation and extracting the most relevant 

features. Finally, the 2nd Convolutional Layer further analyzes 

the pooled features, capturing higher-level representations and 

spatial relationships. This layer provides a more abstract 

understanding of the input data, enabling better discrimination 

and classification. Together, these optimized layers enhance 

the model's ability to extract meaningful features, reduce the 

dimensionality of the data, and capture complex patterns, 

ultimately improving the model's overall performance. 

 

6.1 Methods used for customization and optimization 

 

The customization entails changing various layers of DNN 

according to the need or purpose or application it has to 

perform. The optimization of a model or DNN entails 

changing or tuning the parameters, functions and other 

variables and values which are present in these customized 

layers till desirable performance metrics are achieved [6-8]. 

The customization and optimization of the model was done 

in the following ways: 

i. Addition and subtraction of various layers of the 

DNN. To perform a small-scale operation, it is often required 

to lessen the complexity of a model and such can be achieved 

by using dropout which makes some layers not take part in 

the training process and reduces the complexity of the model. 

We can also customize such layers by reducing or increasing 

their nodes, increasing, or decreasing the number of filters in 

the layers, changing the dimensions of the filters i.e., rows 

and columns and also initializing the values of the filters 

depending upon how successfully the filter is performing 

pattern detection. 

ii. Reducing the dimensions of the input images of the 

feature map change i.e., reduce as it goes through the 

convolution operation, and it reduces the computational load. 

Also, the max pooling operation after each convolutional 

layers helps in reducing over fitting in the model or DNN by 

keeping values of the most activated pixel which help in 

making better pattern detection and help in successful feature 

extraction. 

iii. Also, over fitting and variance are reduced by using 

L2 regularization which is a regularization technique, and it 

augments the loss function in the DNN by adding certain 

terms to it which incentivizes the optimizer to update the 

weights of the model to a value which will make the loss 

function have a minimum optimal value [6]. 

iv. Tuning of batch size according to how well the model 

was learning and an optimum batch size makes the model fit 

correctly on the data by keeping the computational power of 

the system in mind. 

v. Batch normalization was also applied to the layer 

where it prevents the weights from updating to a high value 

which may cascade down to other layers and cause instability. 

It reduces the impact a high layer weight might influence the 

training of the model and batch normalization will happen per 

batch. Normalization will happen to the activation output of 

each layer [7]. 

vi. Xavier initialization is used to counter the problem of 

randomly initialized weights which lead to gradient 

instability and makes learning difficult for the model. In 

Xavier initialization the variance of the weights is shifted 

from 1 to a new value which reduces the gradient problems. 

For the ‘ReLu’ activation function the variance is shifted to 
1

n
 

(where n is the number of weights connected to the previous 

layers). 

vii. Data pre-processing done to the training data set 

involves cropping the images from their original size to a size 

where there is less useless information in the image. Usually, 

the sky and other surrounding objects are cropped from the 

image. The images are also flipped and doubled to increase 

the data set diversity which helps in training and gives model 

the ability to successfully generalize on unseen data after 

training. 

viii. Tuning of learning rate was also done. The value set 

for learning rate is a hyper parameter and setting it too low 

and too high will lead to problems of learning and 

computation and therefore this value is set with trial-and-error 

method. 
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6.2 Comparison 

 

The comparison between the three DNNs is shown in Table 

1. 

 

Table 1. Comparison of DNNs 

 

 
Optimized 

Model 
AlexNet PilotNet 

Convolution Layers 2 5 5 

Dense Layers 2 3 4 

Trainable 

Parameters 
1,691,909 63,000,000 348,219 

Memory Size 2 MB 508 MB 5 MB 

Training Epochs 20 20 20 

 

 

7. TRAINING AND TESTING RESULTS 

 

The optimized model is trained on the data collected from 

various track of a gaming simulator called Unity game 

simulator and is built by Unity Technologies. So, we would 

require the training & test data set to have the images of the 

various tracks which are present in that gaming simulator. The 

game simulator is shown in the Figure 4. 

The simulator allows us to record the various laps in 

different tracks as images and corresponding information is 

labeled to them. The information labeled to the images is the 

steering angle, throttle, and speed and brake values. These 

values are normalized for the DNN as normalization is an 

important preprocessing step. The training set for the model F 

will contain these images of various tracks with labeled 

information so that the model can learn accurately and 

sufficiently so that in the testing phase it is able to perform 

accurate generalizations on unlabeled and unseen data. The 

example of the data sets is shown in the Figure 5. 

 

 
 

Figure 4. Gaming simulator 

 

 
 

Figure 5. Example of data set 

 

The images are from the various tracks which are in the 

game simulator. The training set will contain labeled images 

of the tracks which are obtained by manually driving the car 

on these tracks for multiple laps with the help of a gaming 

controller. The labels to the training images are their 

corresponding steering angles. These steering angles are 

normalized values. The total number of images collected is 

30,000 and out of these 20% will be used for the validation set 

and 80% for the training set. 

Since we require three data sets namely training set, 

validation set and test set. We can easily use 80% of the 

collected images from the simulator for the training set and the 

remaining 20% for the validation set. For the testing set we 

will use different unlabeled images taken from a separate lap. 

The test set can also have images from a different track which 

is also built in the same game simulator. The optimized model 

was trained on 24,000 images and initially the epochs were set 

to 15 and the training set images were not resized, and the 

results are shown below in Table 2. 

In order to improve the training accuracy of the model, the 

training set images were augmented by resizing, cropping 

them and taking away the portions of the image which didn’t 

have any useful information. Initial the images were 320×160 

pixels and after resizing they were 318×102 pixels. After 

doing the resizing of the training set, the model was trained 

again with epochs set to 20 and the training results are shown 

below in the Table 3. These training results are considered the 

final training results of the model. 

In the Figure 6 the model loss for training and validation is 

shown for 20 epochs for each model i.e., AlexNet, PilotNet 

and the optimized model. After training the optimized model 

was tested on 10,000 unlabeled images and the results are 

shown in Table 4 and Figure 7. 

 

Table 2. Initial training results 

 
Initial Training Results 

Training 

Set 
Epoch Loss Accuracy 

Validation 

Loss 

Validation 

Accuracy 

24,000 15 0.1219 0.8700 0.0427 0.8400 

 

Table 3. Final training results 

 
Final Training Results 

Training 

Set 
Epoch Loss Accuracy 

Validation 

Loss 

Validation 

Accuracy 

24,000 20 0.0811 0.9100 0.1936 0.8900 

 

Table 4. Testing results 

 
Testing Results 

Testing Set Correct Prediction Wrong Prediction 

10,000 8900 1100 

 

 
 

Figure 6. Training and validation loss for all models 
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Figure 7. Normalized steering angle (º) prediction by 

optimized model 

 

In the Figure 7, the steering angle (º) predictions by 

optimized model has been shown for 10,000 test images. This 

work holds significant managerial implications for the 

application of autonomous vehicles. By optimizing deep 

neural networks for small-scale operations, the research offers 

practical benefits to managers and decision-makers in the 

industry. Customized neural networks with reduced latency, 

simplified architecture, and lower memory and GPU 

requirements can enable the deployment of autonomous 

vehicles in contexts where resource constraints and cost 

considerations are critical factors. This opens up opportunities 

for implementing autonomous vehicle technology in various 

industries, such as logistics, transportation, and delivery 

services, even in scenarios with limited hardware resources. 

The findings of this study provide valuable insights for 

managers looking to leverage autonomous vehicle technology 

in a cost-effective and efficient manner, thus facilitating its 

adoption and implementation in real-world applications. 

 

 

8. CONCLUSION 

 

The optimization of any neural net is a continuous process 

as various hyper parameters have to be changed using trial and 

error methods or until the desired results are achieved. There 

will always be therefore, tradeoffs and tolerance for margin of 

errors. The net or model which has been optimized and 

customized for a small-scale operation shows that training 

metrics improve after customization and optimization. The 

customization of convolution layers, the selection of various 

parameters of these layers and the overall fine tuning is a 

decent jumping point or reference point to understand what 

more can be done to add more gains to the progress and 

success which will reflect positively on the training and testing 

parameters. Optimizing neural nets for various applications 

involves comprehensive and time-consuming work to make 

sure these hyper parameters are selected in such a way that 

yields positive results. 

The optimization of the model for small scale application 

involved customizing the different layers of the model and 

then changing or setting the hyper parameters to make sure the 

metrics aligned with desired results. The work outlined here 

also involved training that particular model on a vast data set 

and yielded positive results in terms of training and testing 

parameters. However, it is still important to note that this work 

had certain caveats where the input variables were kept 

constant to keep the model simple. In addition, the training and 

testing of the model in virtual environment renders it not 

generalizable for complex road or paths. 

The aim of the work has been to understand the need of 

customization of complex traditional deep neural networks 

and then customize them according to the scale and 

complexity of the task or operation and the need to 

continuously update the model’s architecture to make it simple 

and scalable. Such type of customization, optimizations or fine 

tunings can be done exhaustively to make sure desired results 

are achieved. Out of those few customizations and 

optimizations were performed to yield acceptable performance 

metrics. 

Limitations of data access: Due to restricted data 

availability, the study may have relied on a limited dataset, 

potentially impacting the generalizability of the findings. 

Expanding access to diverse and comprehensive datasets 

would enhance the robustness and applicability of future 

research in this domain. 

Methodological limitations: The study acknowledges 

potential limitations in the methodology employed, such as 

assumptions made during the optimization process or 

constraints imposed on the customization of neural networks. 

Future research should explore alternative methodologies and 

approaches to validate and refine the findings presented in this 

study. Future research directions include: enhancing 

optimization techniques, real-world implementation and 

validation, cost efficiency analysis, and expanding application 

domain. 
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